Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Development of Dual Inhibitors of Soluble Epoxide Hydrolase/Fatty Acid Amide Hydrolase with Tetrazole Core

Author(s): Sara Mehrandish, Elham Rezaee*, Anna Sedaghat, Elmira Heidarli, Nima Naderi and Sayyed Abbas Tabatabai*

Volume 19, Issue 10, 2023

Published on: 25 July, 2023

Page: [1037 - 1048] Pages: 12

DOI: 10.2174/1573406419666230718152453

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: The attractive biological actions of the eicosatrienoic acids (EETs) and endocannabinoids (eCBs) are terminated by means of enzymatic hydrolysis via soluble epoxide hydrolase (sEH) and fatty acid amide hydrolase (FAAH) enzymes. Simultaneous inhibition of both enzymes is considered a novel approach in the treatment of inflammatory and neuropathic pain.

Methods: In this study, a novel series of tetrazole derivatives as dual sEH/FAAH inhibitors were designed, synthesized, and biologically evaluated. Compounds 6c, 7d, and 8a, the most potent inhibitors against FAAH and sEH enzymes with acceptable IC50 values, significantly decreased carrageenan- induced paw edema 5h after carrageenan injection compared to the control group compound. In addition, compound 7d exhibited a significant reduction in pain scores compared to the control group.

Results: Docking studies showed that the presented dual inhibitors could bind to the essential residues in the catalytic sites of both enzymes. In silico prediction of several pharmacokinetic properties suggests that these dual inhibitors could potentially be orally active agents.

Conclusion: These structures will be a valuable scaffold to develop soluble epoxide hydrolase inhibitors with dual potency towards fatty acid amide hydrolase.

Keywords: Synthesis, tetrazole, soluble epoxide hydrolase, fatty acid amide hydrolase, pain, inflammatory.

Graphical Abstract
[1]
Pinot, F.; Grant, D.F.; Beetham, J.K.; Parker, A.G.; Borhan, B.; Landt, S.; Jones, A.D.; Hammock, B.D. Molecular and biochemical evidence for the involvement of the Asp-333-His-523 pair in the catalytic mechanism of soluble epoxide hydrolase. J. Biol. Chem., 1995, 270(14), 7968-7974.
[http://dx.doi.org/10.1074/jbc.270.14.7968] [PMID: 7713895]
[2]
Shen, H.C.; Ding, F.X.; Deng, Q.; Xu, S.; Tong, X.; Zhang, X.; Chen, Y.; Zhou, G.; Pai, L.Y.; Alonso-Galicia, M.; Roy, S.; Zhang, B.; Tata, J.R.; Berger, J.P.; Colletti, S.L. A strategy of employing aminoheterocycles as amide mimics to identify novel, potent and bioavailable soluble epoxide hydrolase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(19), 5716-5721.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.006] [PMID: 19700315]
[3]
Rezaee, E.; Hedayati, M.; Rad, L.H.; Shahhosseini, S.; Faizi, M.; Tabatabai, S.A. Novel soluble epoxide hydrolase inhibitors with a dihydropyrimidinone scaffold: Design, synthesis and biological evaluation. MedChemComm, 2016, 7(11), 2128-2135.
[http://dx.doi.org/10.1039/C6MD00395H]
[4]
Rezaee, Z.E.; Hedayati, M.; Hoghooghi Rad, L.; Shahhosseini, S.; Faizi, M.; Tabatabai, S.A. Design, synthesis and biological evaluation of 4-benzamidobenzoic Acid hydrazide derivatives as novel soluble epoxide hydrolase inhibitors. Iran. J. Pharm. Res., 2014, 13, 51-59.
[PMID: 24711829]
[5]
Hejazi, L.; Rezaee, E.; Tabatabai, S.A. Quinazoline-4(3H)-one derivatives as novel and potent inhibitors of soluble epoxide hydrolase: Design, synthesis and biological evaluation. Bioorg. Chem., 2020, 99103736
[http://dx.doi.org/10.1016/j.bioorg.2020.103736] [PMID: 32229350]
[6]
Nazari, M.; Tabatabai, S.A.; Rezaee, E. Quantitative structure activity relationships study of soluble epoxide hydrolase inhibitors using MLR, ANN, CoMFA and CoMSIA methods. ChemistrySelect, 2019, 4(20), 6348-6353.
[http://dx.doi.org/10.1002/slct.201900471]
[7]
Qin, J.; Sun, D.; Jiang, H.; Kandhi, S.; Froogh, G.; Hwang, S.H.; Hammock, B.D.; Wolin, M.S.; Thompson, C.I.; Hintze, T.H.; Huang, A. Inhibition of soluble epoxide hydrolase increases coronary perfusion in mice. Physiol. Rep., 2015, 3(6)e12427
[http://dx.doi.org/10.14814/phy2.12427] [PMID: 26071213]
[8]
Xie, Y.; Liu, Y.; Gong, G.; Smith, D.H.; Yan, F.; Rinderspacher, A.; Feng, Y.; Zhu, Z.; Li, X.; Deng, S.X.; Branden, L. Vidović, D.; Chung, C.; Schürer, S.; Morisseau, C.; Hammock, B.D.; Landry, D.W. Discovery of potent non-urea inhibitors of soluble epoxide hydrolase. Bioorg. Med. Chem. Lett., 2009, 19(8), 2354-2359.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.066] [PMID: 19303288]
[9]
Thomson, S.J.; Askari, A.; Bishop-Bailey, D. Anti-inflammatory effects of epoxyeicosatrienoic acids. Int. J. Vasc. Med., 2012, 2012, 1-7.
[http://dx.doi.org/10.1155/2012/605101] [PMID: 22848834]
[10]
Wang, Y.X.J.; Ulu, A.; Zhang, L.N.; Hammock, B. Soluble epoxide hydrolase in atherosclerosis. Curr. Atheroscler. Rep., 2010, 12(3), 174-183.
[http://dx.doi.org/10.1007/s11883-010-0108-5] [PMID: 20425256]
[11]
Vieider, L.; Romp, E.; Temml, V.; Fischer, J.; Kretzer, C.; Schoenthaler, M.; Taha, A.; Hernández-Olmos, V.; Sturm, S.; Schuster, D.; Werz, O.; Garscha, U.; Matuszczak, B. Synthesis, biological evaluation and structure–activity relationships of diflapolin analogues as dual sEH/FLAP inhibitors. ACS Med. Chem. Lett., 2019, 10(1), 62-66.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00415] [PMID: 30655948]
[12]
Pillarisetti, S.; Khanna, I. Targeting soluble epoxide hydrolase for inflammation and pain - an overview of pharmacology and the inhibitors. Inflamm. Allergy Drug Targets, 2012, 11(2), 143-158.
[http://dx.doi.org/10.2174/187152812800392823] [PMID: 22280237]
[13]
Abis, G.; Charles, R.L.; Eaton, P.; Conte, M.R. Expression, purification, and characterisation of human soluble Epoxide Hydrolase (hsEH) and of its functional C-terminal domain. Protein Expr. Purif., 2019, 153, 105-113.
[http://dx.doi.org/10.1016/j.pep.2018.09.001] [PMID: 30218745]
[14]
Seierstad, M.; Breitenbucher, J.G. Discovery and development of fatty acid amide hydrolase (FAAH) inhibitors. J. Med. Chem., 2008, 51(23), 7327-7343.
[http://dx.doi.org/10.1021/jm800311k] [PMID: 18983142]
[15]
Kodani, S.D.; Wan, D.; Wagner, K.M.; Hwang, S.H.; Morisseau, C.; Hammock, B.D. Design and potency of dual soluble epoxide hydrolase/fatty acid amide hydrolase inhibitors. ACS Omega, 2018, 3(10), 14076-14086.
[http://dx.doi.org/10.1021/acsomega.8b01625] [PMID: 30411058]
[16]
Otrubova, K.; Ezzili, C.; Boger, D.L. The discovery and development of inhibitors of fatty acid amide hydrolase (FAAH). Bioorg. Med. Chem. Lett., 2011, 21(16), 4674-4685.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.096] [PMID: 21764305]
[17]
Zavareh, E.; Hedayati, M.; Rad, L.; Kiani, A.; Shahhosseini, S.; Faizi, M.; Tabatabai, S. Design, synthesis and biological evaluation of some oxadiazole derivatives as novel amide-based inhibitors of soluble epoxide hydrolase. Lett. Drug Des. Discov., 2014, 11(6), 721-730.
[http://dx.doi.org/10.2174/1570180811666140220005530]
[18]
Hejazi, L.; Rezaee, E.; Tabatabai, S.A. Design, synthesis and biological activity of 4,6-disubstituted Pyridin-2(1H)-ones as novel inhibitors of soluble epoxide hydrolase. Iran. J. Pharm. Res., 2019, 18(4), 1759-1769.
[http://dx.doi.org/10.22037/ijpr.2019.112047.13500] [PMID: 32184844]
[19]
Rezaee, E.; Amrolah, S.M.; Nazari, M.; Tabatabai, S.A. Novel amide derivatives of 3-phenylglutaric acid as potent soluble epoxide hydrolase inhibitors. Mol. Divers., 2021, 25(1), 45-53.
[http://dx.doi.org/10.1007/s11030-019-10023-y] [PMID: 31873869]
[20]
Mahlooji, I.; Shokri, M.; Manoochehri, R.; Mahboubi-Rabbani, M.; Rezaee, E.; Tabatabai, S.A. Discovery of phthalimide derivatives as novel inhibitors of a soluble epoxide hydrolase. Arch. Pharm., 2020, 353(8)2000052
[http://dx.doi.org/10.1002/ardp.202000052] [PMID: 32484272]
[21]
Schmelzer, K.R.; Kubala, L.; Newman, J.W.; Kim, I.H.; Eiserich, J.P.; Hammock, B.D. Soluble epoxide hydrolase is a therapeutic target for acute inflammation. Proc. Natl. Acad. Sci. USA, 2005, 102(28), 9772-9777.
[http://dx.doi.org/10.1073/pnas.0503279102] [PMID: 15994227]
[22]
Booker, L.; Kinsey, S.G.; Abdullah, R.A.; Blankman, J.L.; Long, J.Z.; Ezzili, C.; Boger, D.L.; Cravatt, B.F.; Lichtman, A.H. The fatty acid amide hydrolase (FAAH) inhibitor PF-3845 acts in the nervous system to reverse LPS-induced tactile allodynia in mice. Br. J. Pharmacol., 2012, 165(8), 2485-2496.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01445.x] [PMID: 21506952]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy