Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

Clinical Applications of Sunscreens and Formulation Advancements

Author(s): Sunena*, Deepali Tomar and Sunil Jawla

Volume 16, Issue 2, 2024

Published on: 24 July, 2023

Page: [198 - 208] Pages: 11

DOI: 10.2174/2589977515666230718124841

Price: $65

conference banner
Abstract

Sunscreens cover the big market ratio in terms of cosmetic applications, but the therapeutic necessity of sunscreen still needs to be uncovered in the clinical context. Clinically, sunscreens are being employed more often nowadays as a result of the rising consequences of skin malignancies and the photodamaging effects of UV radiation. Sunscreens are essential to prevent aging by shielding the skin from the harmful effects of ultraviolet (UV) radiation. Over the recent decades, there has been a significant evolution in the usage of sunscreens as photo protectants. The demand for sunscreen formulations will inevitably rise as more people become aware of the protection that sunscreens provide against tanning, photoaging, non-melanoma skin cancers, premalignant skin lesions, and skin melanomas. The novel contemporary formulation techniques are also beneficial in enhancing the product's aesthetic look and quality. Recently, regulatory agencies have also started paying attention to the regulation of the clinical application, efficacy, and safety parameters related to sunscreen. This review underlines the pathophysiological response of UV exposure with the therapeutic applications of sunscreen in various dermatological conditions and the recent formulation advancements in the development of sunscreen.

Keywords: Sunscreen, cosmetics, photoprotection, melanoma, sunburns, UV radiation.

Graphical Abstract
[1]
Sambandan DR, Ratner D. Sunscreens: An overview and update. J Am Acad Dermatol 2011; 64(4): 748-58.
[http://dx.doi.org/10.1016/j.jaad.2010.01.005] [PMID: 21292345]
[2]
Latha MS, Martis J, Shobha V, et al. Sunscreening agents: A review. J Clin Aesthet Dermatol 2013; 6(1): 16-26.
[PMID: 23320122]
[3]
Moore C, Cevikbas F, Pasolli HA, et al. UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc Natl Acad Sci 2013; 110(34): E3225-34.
[http://dx.doi.org/10.1073/pnas.1312933110] [PMID: 23929777]
[4]
Harrison SC, Bergfeld WF. Ultraviolet light and skin cancer in athletes. Sports Health 2009; 1(4): 335-40.
[http://dx.doi.org/10.1177/1941738109338923] [PMID: 23015891]
[5]
Hughes MCB, Williams GM, Baker P, Green AC. Sunscreen and prevention of skin aging: A randomized trial. Ann Intern Med 2013; 158(11): 781-90.
[http://dx.doi.org/10.7326/0003-4819-158-11-201306040-00002] [PMID: 23732711]
[6]
Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol 2008; 84(3): 539-49.
[http://dx.doi.org/10.1111/j.1751-1097.2007.00226.x] [PMID: 18435612]
[7]
Damiani E, Puglia C. Nanocarriers and microcarriers for enhancing the UV protection of sunscreens: An overview. J Pharm Sci 2019; 108(12): 3769-80.
[http://dx.doi.org/10.1016/j.xphs.2019.09.009] [PMID: 31521640]
[8]
Melanoma: Risk Factors and Prevention. Available from: https://www.cancer.net/cancer-types/melanoma/risk-factors-and-prevention
[9]
Tomas D. Apoptosis, UV-radiation, precancerosis and skin tumors. Acta Med Croatica 2009; 63(S2): 53-8.
[PMID: 19999548]
[10]
Radiation: Ultraviolet (UV) radiation and skin cancer. World Health Organization 2017; p. 16.
[11]
D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci 2013; 14(6): 12222-48.
[http://dx.doi.org/10.3390/ijms140612222] [PMID: 23749111]
[12]
Rezende SG, Dourado JG, Amorim De Lino FM, Vinhal DC, Silva EC, Gil EDS. Methods used in evaluation of the sun protection factor of sunscreens. Revista Eletrônica de Farmácia 2014; 11(2): 18.
[http://dx.doi.org/10.5216/ref.v11i2.27013]
[13]
Moyal D, Wichrowski K, Tricaud C. in vivo persistent pigment darkening method: A demonstration of the reproducibility of the UVA protection factors results at several testing laboratories. Photodermatol Photoimmunol Photomed 2006; 22(3): 124-8.
[http://dx.doi.org/10.1111/j.1600-0781.2006.00223.x] [PMID: 16719864]
[14]
Gilchrest BA, Eller MS, Geller AC, Yaar M. The pathogenesis of melanoma induced by ultraviolet radiation. N Engl J Med 1999; 340(17): 1341-8.
[http://dx.doi.org/10.1056/NEJM199904293401707] [PMID: 10219070]
[15]
Gies P, Roy C, Udelhofen P. Solar and ultraviolet radiation.In: Prevention of skin cancer. Dordrecht: Springer 2004; pp. 21-54.
[http://dx.doi.org/10.1007/978-94-017-0511-0_3]
[16]
Matts PJ, Alard V, Brown MW, et al. The COLIPA in vitro UVA method: A standard and reproducible measure of sunscreen UVA protection. Int J Cosmet Sci 2010; 32(1): 35-46.
[http://dx.doi.org/10.1111/j.1468-2494.2009.00542.x] [PMID: 20412201]
[17]
Ullrich SE. Photoimmune suppression and photocarcinogenesis. Front Biosci 2002; 7(4): A804.
[http://dx.doi.org/10.2741/A804] [PMID: 11861222]
[18]
Ziegler A, Jonason AS, Leffellt DJ, et al. Sunburn and p53 in the onset of skin cancer. Nature 1994; 372(6508): 773-6.
[http://dx.doi.org/10.1038/372773a0] [PMID: 7997263]
[19]
Stoebner PE, Poosti R, Djoukelfit K, Martinez J, Meunier L. Decreased human epidermal antigen-presenting cell activity after ultraviolet A exposure: dose–response effects and protection by sunscreens. Br J Dermatol 2007; 156(6): 1315-20.
[http://dx.doi.org/10.1111/j.1365-2133.2007.07895.x] [PMID: 17535231]
[20]
De Fabo EC. Arctic stratospheric ozone depletion and increased UVB radiation: potential impacts to human health. Int J Circumpolar Health 2005; 64(5): 509-22.
[http://dx.doi.org/10.3402/ijch.v64i5.18032] [PMID: 16440613]
[21]
Yousef Hani, Alhajj Mandy, Sharma Sandeep. Anatomy, skin (integument), epidermis. StatPearls 2017.
[22]
Cichorek M, Wachulska M, Stasiewicz A, Tymińska A. Skin melanocytes: Biology and development. Postepy Dermatol Alergol 2013; 30(1): 30-41.
[http://dx.doi.org/10.5114/pdia.2013.33376]
[23]
Haass NK, Herlyn M. Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc 2005; 10(2): 153-63.
[http://dx.doi.org/10.1111/j.1087-0024.2005.200407.x]
[24]
Markiewicz E, Idowu O. Melanogenic difference consideration in ethnic skin type: A balance approach between skin brightening applications and beneficial sun exposure. Clin Cosmet Investig Dermatol 2020; 13: 215-32.
[http://dx.doi.org/10.2147/CCID.S245043] [PMID: 32210602]
[25]
Grimes PE. Management of hyperpigmentation in darker racial ethnic groups. Semin Cutan Med Surg 2009; 28(2): 77-85.
[http://dx.doi.org/10.1016/j.sder.2009.04.001]
[26]
Young AR. Chromophores in human skin. Phys Med Biol 1997; 42(5): 789-802.
[http://dx.doi.org/10.1088/0031-9155/42/5/004] [PMID: 9172259]
[27]
Halder RM, Nootheti PK. Ethnic skin disorders overview. J Am Acad Dermatol 2003; 48(6): S143-8.
[http://dx.doi.org/10.1067/mjd.2003.274] [PMID: 12789168]
[28]
Eun HC. Cutaneous photodamage in asians. J Dermatol 2001; 28(11): 614-6.
[http://dx.doi.org/10.1111/j.1346-8138.2001.tb00045.x] [PMID: 11770717]
[29]
Ito S, Wakamatsu K, Ozeki H. Chemical analysis of melanins and its application to the study of the regulation of melanogenesis. Pigment Cell Res 2000; 13(S8): 103-9.
[http://dx.doi.org/10.1034/j.1600-0749.13.s8.19.x] [PMID: 11041366]
[30]
Vincensi MR, d’Ischia M, Napolitano A, et al. Phaeomelanin versus eumelanin as a chemical indicator of ultraviolet sensitivity in fair-skinned subjects at high risk for melanoma: A pilot study. Melanoma Res 1998; 8(1): 53-8.
[http://dx.doi.org/10.1097/00008390-199802000-00009] [PMID: 9508377]
[31]
Elwood JM, Diffey BL. A consideration of ambient solar ultraviolet radiation in the interpretation of studies of the aetiology of melanoma. Melanoma Res 1993; 3(2): 113-22.
[PMID: 8518549]
[32]
Holcomb NC, Bautista RM, Jarrett SG, Carter KM, Gober MK, D’Orazio JA. cAMP-mediated regulation of melanocyte genomic instability: A melanoma-preventive strategy. Adv Protein Chem Struct Biol 2019; 115: 247-95.
[http://dx.doi.org/10.1016/bs.apcsb.2018.10.008] [PMID: 30798934]
[33]
Rastogi RP, Richa KA, Kumar A, Tyagi MB, Sinha RP. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010; 2010: 1-32.
[http://dx.doi.org/10.4061/2010/592980] [PMID: 21209706]
[34]
Ravnbak MH. Objective determination of Fitzpatrick skin type. Dan Med Bull 2010; 57(8): B4153.
[PMID: 20682135]
[35]
Kim K, Park H, Lim KM. Phototoxicity: Its mechanism and animal alternative test methods. Toxicol Res 2015; 31(2): 97-104.
[http://dx.doi.org/10.5487/TR.2015.31.2.097] [PMID: 26191378]
[36]
Goncalo M. Phototoxic and photoallergic reactions InContact dermatitis. Berlin, Heidelberg: Springer 2011; pp. 361-76.
[37]
Alscher RG, Donahue JL, Cramer CL. Reactive oxygen species and antioxidants: Relationships in green cells. Physiol Plant 1997; 100(2): 224-33.
[http://dx.doi.org/10.1111/j.1399-3054.1997.tb04778.x]
[38]
Lugović L, Situm M, Ozanić-Bulić S, Sjerobabski-Masnec I. Phototoxic and photoallergic skin reactions. Coll Antropol 2007; 31(1): 63-7.
[PMID: 17469754]
[39]
Widgerow AD, Napekoski K. New approaches to skin photodamage histology-Differentiating ‘good’ versus ‘bad’ Elastin. J Cosmet Dermatol 2021; 20(2): 526-31.
[http://dx.doi.org/10.1111/jocd.13865] [PMID: 33251676]
[40]
Hölzle E, Hönigsmann H. UV-radiation-sources, wavelength, environment. J Dtsch Dermatol Ges 2005; 3(S2): S3-S10.
[http://dx.doi.org/10.1111/j.1610-0387.2005.04392.x] [PMID: 16117741]
[41]
Marks R. Epidemiology of melanoma: Clinical dermatology. Clinical and Experimental Dermatology. Clin Dermatol 2000; 25(6): 459-63.
[42]
Tatalovich Z, Wilson JP, Mack T, Yan Y, Cockburn M. The objective assessment of lifetime cumulative ultraviolet exposure for determining melanoma risk. J Photochem Photobiol B 2006; 85(3): 198-204.
[http://dx.doi.org/10.1016/j.jphotobiol.2006.08.002] [PMID: 16963272]
[43]
Chen X, Yang C, Jiang G. Research progress on skin photoaging and oxidative stress. Postepy Dermatol Alergol 2021; 38(6): 931-6.
[http://dx.doi.org/10.5114/ada.2021.112275] [PMID: 35125996]
[44]
Garland CF, Garland FC, Gorham ED. Rising trends in melanoma an hypothesis concerning sunscreen effectiveness. Ann Epidemiol 1993; 3(1): 103-10.
[http://dx.doi.org/10.1016/1047-2797(93)90017-X] [PMID: 8287144]
[45]
Boyle P, Maisonneuve P, Doré J-F. Epidemiology of malignant melanoma. Br Med Bull 1995; 51(3): 523-47.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a072978] [PMID: 7552080]
[46]
Liu T, Soong S. Epidemiology of malignant melanoma. Surg Clin North Am 1996; 76(6): 1205-22.
[http://dx.doi.org/10.1016/S0039-6109(05)70511-9] [PMID: 8977547]
[47]
Qureshi AA, Laden F, Colditz GA, Hunter DJ. Geographic variation and risk of skin cancer in US women. Differences between melanoma, squamous cell carcinoma, and basal cell carcinoma. Arch Intern Med 2008; 168(5): 501-7.
[http://dx.doi.org/10.1001/archinte.168.5.501] [PMID: 18332296]
[48]
Freitas-Rodríguez S, Folgueras AR, López-Otín C. The role of matrix metalloproteinases in aging: Tissue remodeling and beyond. Biochim Biophys Acta Mol Cell Res 2017; 1864(11): 2015-25.
[http://dx.doi.org/10.1016/j.bbamcr.2017.05.007] [PMID: 28499917]
[49]
Sorrell JM, Caplan AI. Fibroblast heterogeneity: More than skin deep. J Cell Sci 2004; 117(5): 667-75.
[http://dx.doi.org/10.1242/jcs.01005] [PMID: 14754903]
[50]
Berneburg M, Grether-Beck S, Kürten V, et al. Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion. J Biol Chem 1999; 274(22): 15345-9.
[http://dx.doi.org/10.1074/jbc.274.22.15345] [PMID: 10336420]
[51]
Gremmel T, Wild S, Schuller W, et al. Six genes associated with the clinical phenotypes of individuals with deficient and proficient DNA repair. Transl Oncogenomics 2008; 3: 1-13.
[PMID: 21566739]
[52]
Aberer W, Schuler G, Stingl G, Hönigsmann H, Wolff K. Ultraviolet light depletes surface markers of Langerhans cells. J Invest Dermatol 1981; 76(3): 202-10.
[http://dx.doi.org/10.1111/1523-1747.ep12525745] [PMID: 6453905]
[53]
Stingl G, Gazze-Stingl LA, Aberer W, Wolff K. Antigen presentation by murine epidermal langerhans cells and its alteration by ultraviolet B light. J Immunol 1981; 127(4): 1707-13.
[http://dx.doi.org/10.4049/jimmunol.127.4.1707] [PMID: 6168700]
[54]
Aberer W, Leibl H. Effect of UVB radiation on the biosynthesis of HLA-DR antigens. Arch Dermatol Res 1987; 279(5): 321-6.
[http://dx.doi.org/10.1007/BF00431225] [PMID: 3498445]
[55]
Schwarz A, Noordegraaf M, Maeda A, Torii K, Clausen BE, Schwarz T. Langerhans cells are required for UVR-induced immunosuppression. J Invest Dermatol 2010; 130(5): 1419-27.
[http://dx.doi.org/10.1038/jid.2009.429] [PMID: 20090769]
[56]
Schwarz T, Schwarz A. Molecular mechanisms of ultraviolet radiation-induced immunosuppression. Eur J Cell Biol 2011; 90(6-7): 560-4.
[http://dx.doi.org/10.1016/j.ejcb.2010.09.011] [PMID: 21035896]
[57]
Krystel-Whittemore M, Dileepan KN, Wood JG. Mast cell: A multi-functional master cell. Front Immunol 2016; 6: 620.
[http://dx.doi.org/10.3389/fimmu.2015.00620] [PMID: 26779180]
[58]
Lavker RM. Structural alterations in exposed and unexposed aged skin. J Invest Dermatol 1979; 73(1): 59-66.
[http://dx.doi.org/10.1111/1523-1747.ep12532763] [PMID: 448178]
[59]
Eschenfelder CC, Benrath J, Zimmermann M, Gillardon F. Involvement of substance P in ultraviolet irradiation-induced inflammation in rat skin. Eur J Neurosci 1995; 7(7): 1520-6.
[http://dx.doi.org/10.1111/j.1460-9568.1995.tb01147.x] [PMID: 7551178]
[60]
Kulka M, Sheen CH, Tancowny BP, Grammer LC, Schleimer RP. Neuropeptides activate human mast cell degranulation and chemokine production. Immunology 2008; 123(3): 398-410.
[http://dx.doi.org/10.1111/j.1365-2567.2007.02705.x] [PMID: 17922833]
[61]
Sheen CH, Schleimer RP, Kulka M. Codeine induces human mast cell chemokine and cytokine production: Involvement of G-protein activation. Allergy 2007; 62(5): 532-8.
[http://dx.doi.org/10.1111/j.1398-9995.2007.01345.x] [PMID: 17441793]
[62]
McCary C, Tancowny BP, Catalli A, et al. Substance P downregulates expression of the high affinity IgE receptor (FcεRI) by human mast cells. J Neuroimmunol 2010; 220(1-2): 17-24.
[http://dx.doi.org/10.1016/j.jneuroim.2009.12.006] [PMID: 20117843]
[63]
Tancowny BP, Karpov V, Schleimer RP, Kulka M. Substance P primes lipoteichoic acid- and Pam3CysSerLys4-mediated activation of human mast cells by up-regulating Toll-like receptor 2. Immunology 2010; 131(2): 220-30.
[http://dx.doi.org/10.1111/j.1365-2567.2010.03296.x] [PMID: 20497485]
[64]
Hart PH, Grimbaldeston MA, Swift GJ, Jaksic A, Noonan FP, Finlay-Jones JJ. Dermal mast cells determine susceptibility to ultraviolet B-induced systemic suppression of contact hypersensitivity responses in mice. J Exp Med 1998; 187(12): 2045-53.
[http://dx.doi.org/10.1084/jem.187.12.2045] [PMID: 9625764]
[65]
Bosset S, Barré P, Chalon A, et al. Skin ageing: Clinical and histopathologic study of permanent and reducible wrinkles. Eur J Dermatol 2002; 12(3): 247-52.
[PMID: 11978565]
[66]
Bosset S, Bonnet-Duquennoy M, Barré P, et al. Photoageing shows histological features of chronic skin inflammation without clinical and molecular abnormalities. Br J Dermatol 2003; 149(4): 826-35.
[http://dx.doi.org/10.1046/j.1365-2133.2003.05456.x] [PMID: 14616376]
[67]
Bosset S, Bonnet-Duquennoy M, Barré P, et al. Decreased expression of keratinocyte β1 integrins in chronically sun-exposed skin in vivo. Br J Dermatol 2003; 148(4): 770-8.
[http://dx.doi.org/10.1046/j.1365-2133.2003.05159.x] [PMID: 12752137]
[68]
Yan Y, Wang B, Zuo Y, Qu T. Inhibitory effects of mizolastine on ultraviolet B-induced leukotriene B4 production and 5-lipoxygenase expression in normal human dermal fibroblasts in vitro. Photochem Photobiol 2006; 82(3): 665-9.
[http://dx.doi.org/10.1562/2005-08-17-RA-652] [PMID: 16402861]
[69]
Ma LJ, Guzmán EA, DeGuzman A, et al. Unexpected effects of UVB in IL-10 transgenic mice: Normalization of contact hypersensitivity response. Arch Dermatol Res 2006; 297(9): 417-20.
[http://dx.doi.org/10.1007/s00403-005-0634-0] [PMID: 16389560]
[70]
Rai R, Srinivas CR. Photoprotection. Indian J Dermatol Venereol Leprol 2007; 73(2): 73-79.21.
[71]
Guidance for Industry. Enforcement Policy-OTC Sunscreen Drug Products Marketed Without an Approved Application. 2011. Available from: http://www.fda.gov/downloads/Drugs/Guidance Compliance Regulatory Information/Guidances/UCM259001.pdf(Accessed August 01, 2022).
[73]
Johansen JD, Frosch PJ, Lepoittevin JP. Eds Contact dermatitis. Springer Science & Business Media 2010.
[74]
Singhal M, Khanna S, Nasa AT. Cosmeceuticals for the skin: An overview. Asian J Pharm Clin Res 2011; 4(2): 1-6.
[75]
Bodekaer M, Faurschou A, Philipsen PA, Wulf HC. Sun protection factor persistence during a day with physical activity and bathing. Photodermatol Photoimmunol Photomed 2008; 24(6): 296-300.
[http://dx.doi.org/10.1111/j.1600-0781.2008.00379.x] [PMID: 19000186]
[76]
Schalka S, dos Reis VMS, Cucé LC. The influence of the amount of sunscreen applied and its sun protection factor (SPF): Evaluation of two sunscreens including the same ingredients at different concentrations. Photodermatol Photoimmunol Photomed 2009; 25(4): 175-80.
[http://dx.doi.org/10.1111/j.1600-0781.2009.00408.x] [PMID: 19614894]
[77]
Kim SM, Oh BH, Lee YW, Choe YB, Ahn KJ. The relation between the amount of sunscreen applied and the sun protection factor in Asian skin. J Am Acad Dermatol 2010; 62(2): 218-22.
[http://dx.doi.org/10.1016/j.jaad.2009.06.047] [PMID: 19962787]
[78]
Peres DDA, Ariede MB, Candido TM, et al. Quality by design (QbD), process analytical technology (PAT), and design of experiment applied to the development of multifunctional sunscreens. Drug Dev Ind Pharm 2017; 43(2): 246-56.
[http://dx.doi.org/10.1080/03639045.2016.1236809] [PMID: 27627681]
[79]
Geoffrey K, Mwangi AN, Maru SM. Sunscreen products: Rationale for use, formulation development and regulatory considerations. Saudi Pharm J 2019; 27(7): 1009-18.
[http://dx.doi.org/10.1016/j.jsps.2019.08.003] [PMID: 31997908]
[80]
Sander M, Sander M, Burbidge T, Beecker J. The efficacy and safety of sunscreen use for the prevention of skin cancer. CMAJ 2020; 192(50): E1802-8.
[http://dx.doi.org/10.1503/cmaj.201085] [PMID: 33318091]
[81]
Aziz ZAA, Mohd-Nasir H, Ahmad A, et al. Role of nanotechnology for design and development of cosmeceutical: Application in makeup and skin care. Front Chem 2019; 7: 739.
[http://dx.doi.org/10.3389/fchem.2019.00739] [PMID: 31799232]
[82]
Smijs T, Pavel S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol Sci Appl 2011; 4: 95-112.
[http://dx.doi.org/10.2147/NSA.S19419] [PMID: 24198489]
[83]
Montenegro L, Carbone C, Puglisi G. Vehicle effects on in vitro release and skin permeation of octylmethoxycinnamate from microemulsions. Int J Pharm 2011; 405(1-2): 162-8.
[http://dx.doi.org/10.1016/j.ijpharm.2010.11.036]
[84]
Netto MPharm G, Jose J. Development, characterization, and evaluation of sunscreen cream containing solid lipid nanoparticles of silymarin. J Cosmet Dermatol 2018; 17(6): 1073-83.
[http://dx.doi.org/10.1111/jocd.12470] [PMID: 29226503]
[85]
Mestres JP, Duracher L, Baux C, Vian L, Marti-Mestres G. Benzophenone-3 entrapped in solid lipid microspheres: Formulation and in vitro skin evaluation. Int J Pharm 2010; 400(1-2): 1-7.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.028] [PMID: 20670679]
[86]
Gause S, Chauhan A. Broad spectrum UV protection by crystalline organic microrod sunscreens. Int J Pharm 2015; 489(1-2): 30-44.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.027] [PMID: 25886802]
[87]
Huang X, Wang X, Wang S, Yang J, Zhong L, Pan J. UV and dark-triggered repetitive release and encapsulation of benzophenone-3 from biocompatible ZnO nanoparticles potential for skin protection. Nanoscale 2013; 5(12): 5596-601.
[http://dx.doi.org/10.1039/c3nr00090g] [PMID: 23680782]
[88]
Chrétien MN, Heafey E, Scaiano JC. Reducing adverse effects from UV sunscreens by zeolite encapsulation: comparison of oxybenzone in solution and in zeolites. Photochem Photobiol 2010; 86(1): 153-61.
[http://dx.doi.org/10.1111/j.1751-1097.2009.00644.x] [PMID: 19930122]
[89]
Sanad RA, AbdelMalak NS, elBayoomy TS, Badawi AA. Formulation of a novel oxybenzone-loaded nanostructured lipid carriers (NLCs). AAPS PharmSciTech 2010; 11(4): 1684-94.
[http://dx.doi.org/10.1208/s12249-010-9553-2] [PMID: 21107771]
[90]
Gilbert E, Roussel L, Serre C, et al. Percutaneous absorption of benzophenone-3 loaded lipid nanoparticles and polymeric nanocapsules: A comparative study. Int J Pharm 2016; 504(1-2): 48-58.
[http://dx.doi.org/10.1016/j.ijpharm.2016.03.018] [PMID: 26976501]
[91]
Badea G, Lacatusu I, Ott C, Badea N, Grafu I, Meghea A. Integrative approach in prevention and therapy of basal cellular carcinoma by association of three actives loaded into lipid nanocarriers. J Photochem Photobiol B 2015; 147: 1-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.03.007] [PMID: 25828466]
[92]
Villalobos-Hernandez JR, Muller-Goymann CC. Novel nanoparticulate carrier system based on carnauba wax and decyl oleate for the dispersion of inorganic sunscreens in aqueous media. Euro J Pharm Biopharm 2005; 60(1):113-122. Nesseem D. Formulation of sunscreens with enhancement sun protection factor response based on solid lipid nanoparticles. Int J Cosmet Sci 2011; 33(1): 70-9.
[PMID: 20704600]
[93]
Lee YJ, Nam GW. Sunscreen boosting effect by solid lipid nanoparticles-loaded fucoxanthin formulation. Cosmetics 2020; 7(1): 14.
[http://dx.doi.org/10.3390/cosmetics7010014]
[94]
Sanju N, Vineet M, Kumud M. Development and evaluation of a broad spectrum polyherbal sunscreen formulation using solid lipid nanoparticles of safranal. J Cosmet Dermatol 2022; 21(10): 4433-46.
[http://dx.doi.org/10.1111/jocd.14777] [PMID: 35034408]
[95]
Tolbert SH, McFadden PD, Loy DA. New hybrid organic/inorganic polysilsesquioxane–silica particles as sunscreens. ACS Appl Mater Interfaces 2016; 8(5): 3160-74.
[http://dx.doi.org/10.1021/acsami.5b10472] [PMID: 26730573]
[96]
Andreani T, Dias-Ferreira J, Fangueiro JF, et al. Formulating octyl methoxycinnamate in hybrid lipid-silica nanoparticles: An innovative approach for UV skin protection. Heliyon 2020; 6(5)e03831
[http://dx.doi.org/10.1016/j.heliyon.2020.e03831] [PMID: 32395645]
[97]
Zaccariello G, Back M, Zanello M, et al. Formation and controlled growth of bismuth titanate phases into mesoporous silica nanoparticles: An efficient self-sealing nanosystem for UV filtering in cosmetic formulation. ACS Appl Mater Interfaces 2017; 9(2): 1913-21.
[http://dx.doi.org/10.1021/acsami.6b13252] [PMID: 28001044]
[98]
Olson E, Li Y, Lin FY, et al. Thin biobased transparent UV-blocking coating enabled by nanoparticle self-assembly. ACS Appl Mater Interfaces 2019; 11(27): 24552-9.
[http://dx.doi.org/10.1021/acsami.9b05383] [PMID: 31246398]
[99]
Arianto A, Cella G, Bangun H. Preparation and evaluation of sunscreen nanoemulsions with synergistic efficacy on SPF by combination of soybean oil, avobenzone, and octyl methoxycinnamate. Open Access Maced J Med Sci 2019; 7(17): 2751-6.
[http://dx.doi.org/10.3889/oamjms.2019.745] [PMID: 31844431]
[100]
Nesseem D. Formulation of sunscreens with enhancement sun protection factor response based on solid lipid nanoparticles. Int J Cosmet Sci 33(1): 70-9.
[http://dx.doi.org/10.1111/j.1468-2494.2010.00598.x]
[101]
Couvreur P, Barratt G, Fattal E, Vauthier C. Nanocapsule technology: A review. Crit Rev Ther Drug Carrier Syst 2002; 19(2): 99-134.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i2.10]
[102]
Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001; 70(1-2): 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[103]
Dash TK, Konkimalla VB. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J Control Release 2012; 158(1): 15-33.
[104]
Perugini P, Simeoni S, Scalia S, et al. Effect of nanoparticle encapsulation on the photostability of the sunscreen agent, 2-ethylhexyl-p-methoxycinnamate. Int J Pharm 2002; 246(1-2): 37-45.
[http://dx.doi.org/10.1016/S0378-5173(02)00356-3] [PMID: 12270607]
[105]
Lorca BS, Bessa ES, Nele M, Santos EP, Pinto JC. Preparation of PMMA nanoparticles loaded with benzophenone 3 through miniemulsion polymerization. Brazilian Polymer Conference 2012; 319(1)
[http://dx.doi.org/10.1002/masy.201100252]
[106]
Lapidot N, Gans O, Biagini F, Sosonkin L, Rottman C. Advanced sunscreens: UV absorbers encapsulated in sol-gel glass microcapsules. J Sol-Gel Sci Technol 2003; 26(1/3): 67-72.
[http://dx.doi.org/10.1023/A:1020785217895]
[107]
Li CC, Lin YT, Chen YT, Sie SF, Chen-Yang YW. Improvement in UV protection retention capability and reduction in skin penetration of benzophenone-3 with mesoporous silica as drug carrier by encapsulation. J Photochem Photobiol B 2015; 148: 277-83.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.04.027] [PMID: 25985148]
[108]
Zhang J, Raphael AP, Yang Y, Popat A, Prow TW, Yu C. Nanodispersed UV blockers in skin-friendly silica vesicles with superior UV-attenuating efficiency. J Mater Chem B Mater Biol Med 2014; 2(44): 7673-8.
[http://dx.doi.org/10.1039/C4TB01332H] [PMID: 32261903]
[109]
Chen-Yang YW, Chen YT, Li CC, et al. Preparation of UV-filter encapsulated mesoporous silica with high sunscreen ability. Mater Lett 2011; 65(6): 1060-2.
[http://dx.doi.org/10.1016/j.matlet.2010.12.034]
[110]
Suh HW, Lewis J, Fong L, et al. Biodegradable bioadhesive nanoparticle incorporation of broad-spectrum organic sunscreen agents. Bioeng Transl Med 2019; 4(1): 129-40.
[http://dx.doi.org/10.1002/btm2.10092] [PMID: 30680324]
[111]
Jaspart S, Piel G, Delattre L, Evrard B. Solid lipid microparticles: Formulation, preparation, characterisation, drug release and applications. Expert Opin Drug Deliv 2005; 2(1): 75-87.
[http://dx.doi.org/10.1517/17425247.2.1.75] [PMID: 16296736]
[112]
Tursilli R, Piel G, Delattre L, Scalia S. Solid lipid microparticles containing the sunscreen agent, octyl-dimethylaminobenzoate: Effect of the vehicle. Eur J Pharm Biopharm 2007; 66(3): 483-7.
[http://dx.doi.org/10.1016/j.ejpb.2007.02.017] [PMID: 17407809]
[113]
Gomaa YA, El-Khordagui LK, Boraei NA, Darwish IA. Chitosan microparticles incorporating a hydrophilic sunscreen agent. Carbohydr Polym 2010; 81(2): 234-42.
[http://dx.doi.org/10.1016/j.carbpol.2010.02.024]
[114]
Yalavarthi PR, Dudala TB, Mudumala NL, et al. A perspective overview on lipospheres as lipid carrier systems. Int J Pharm Investig 2014; 4(4): 149-55.
[http://dx.doi.org/10.4103/2230-973X.143112] [PMID: 25426435]
[115]
Deng Y, Ediriwickrema A, Yang F, Lewis J, Girardi M, Saltzman WM. A sunblock based on bioadhesive nanoparticles. Nat Mater 2015; 14(12): 1278-85.
[http://dx.doi.org/10.1038/nmat4422] [PMID: 26413985]
[116]
Yener G, Incegül T, Yener N. Importance of using solid lipid microspheres as carriers for UV filters on the example octyl methoxy cinnamate. Int J Pharm 2003; 258(1-2): 203-7.
[http://dx.doi.org/10.1016/S0378-5173(03)00203-5] [PMID: 12753766]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy