Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Virtual Screening, ADMET Analysis, and Synthesis of 2-(1H-benzotriazol- 1-yl) N- substituted Acetohydrazide that Binds to the Glycoprotein B of Herpes Simplex Virus-I (HSV-I)

Author(s): Dhanashri Revannath Mali* and Sunil V. Amrutkar

Volume 21, Issue 5, 2023

Published on: 29 August, 2023

Article ID: e170723218776 Pages: 10

DOI: 10.2174/2211352521666230717111247

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Herpes simplex Virus type 1 (HSV-1) is a contagious human pathogen causing severe infection. In recent decades, the virus has become dormant and resistant to available treatment creating the need for the development of new therapeutic agents against it. Benzotriazole is a versatile molecule with a wide range of activities like antibacterial, antiprotozoal, antiulcer, anthelmintic, and antiproliferative activity.

Methods: A series of 2-(1H- benzotriazole-1-yl) N- substituted acetohydrazide derivatives were synthesized using the method given in the literature. The derivatives were obtained in good yield and characterized by spectral methods of analysis. The antiviral activity against the glycoprotein B of Herpes Simplex Virus-I (HSV-I) was determined using molecular docking (2GUM).

Result: All compounds had strong binding affinity over the standard Acyclovir. Compound 5h had the highest binding affinity and the highest inhibitory activity.

Conclusion: The Benzotriazole-N- substituted acetohydrazide derivatives has the highest binding affinity and good inhibition of glycoprotein B of Herpes Simplex Virus-I (HSV-I), which makes it a good antiviral agent.

Keywords: Benzotriazole, herpes simplex virus-I (HSV-I), antiviral, in silico activity, molecular docking, therapeutic agent.

Graphical Abstract
[1]
Angamuthua, D.; Swaminathan, R.; Purushothamana, I. Antiviral evaluation on phytochemicals from the leaves of punica granatum l., and punicalagin against human herpes virus-3. J. Virol. Antivir. Res., 2021, 10(2), 1-12.
[2]
Roizman, B.; Furlong, D. The replications of Herpesviruses. Reproduction, 1974, 229-403.
[3]
Viegas, D.J.; Edwards, T.G.; Bloom, D.C.; Abreu, P.A. Virtual screening identified compounds that bind to cyclin dependent kinase 2 and prevent herpes simplex virus type 1 replication and reactivation in neurons. Antiviral Res., 2019, 172, 104621.
[http://dx.doi.org/10.1016/j.antiviral.2019.104621] [PMID: 31634495]
[4]
Wu, J.; Power, H.; Miranda-Saksena, M.; Valtchev, P.; Schindeler, A.; Cunningham, A.L.; Dehghani, F. Identifying HSV-1 inhibitors from natural compounds via virtual screening targeting surface glycoprotein D. Pharmaceuticals, 2022, 15(3), 361.
[http://dx.doi.org/10.3390/ph15030361] [PMID: 35337158]
[5]
Fatahzadeh, M.; Schwartz, R.A. Human herpes simplex virus infections: Epidemiology, pathogenesis, symptomatology, diagnosis, and management. J. Am. Acad. Dermatol., 2007, 57(5), 737-763.
[http://dx.doi.org/10.1016/j.jaad.2007.06.027] [PMID: 17939933]
[6]
Farooq, A.V.; Shukla, D. Herpes simplex epithelial and stromal keratitis: An epidemiologic update. Surv. Ophthalmol., 2012, 57(5), 448-462.
[http://dx.doi.org/10.1016/j.survophthal.2012.01.005] [PMID: 22542912]
[7]
Kawada, J.I. Neurological disorders associated with human alphaherpesviruses. Adv. Exp. Med. Biol., 2018, 1045, 85-102.
[8]
Kumar, A.; De, S.; Moharana, A.K.; Nayak, T.K.; Saswat, T.; Datey, A.; Mamidi, P.; Mishra, P.; Subudhi, B.B.; Chattopadhyay, S. Inhibition of herpes simplex virus-1 infection by MBZM-N-IBT: In silico and in vitro studies. Virol. J., 2021, 18(1), 103.
[http://dx.doi.org/10.1186/s12985-021-01581-5] [PMID: 34039377]
[9]
Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Vogel’s Textbook of Practical Organic Chemistry, 2004, 1162-1163.
[10]
Patil, T.D.; Amrutkar, S.V. Novel benzotriazole acetamide derivatives as benzo-fused five- membered nitrogen-containing heterocycles - in silico screening, molecular docking, and synthesis. Lett. Drug Des. Discov., 2022, 19(4), 337-349.
[http://dx.doi.org/10.2174/1570180818666211007110509]
[11]
Li, X.X. Chen, Z Ethyl 2-(1H-1,2,3-benzotriazol-1-yl)acetate. Acta Crystallogr. Sect. E Struct. Rep. Online, 2011, 67(Pt 1), 140.
[12]
Patil, A.S.; Ram, B.G.; Mahajan, S.K.; Amrutkar, S.V. Synthesis of N- (Alkyl or Aryl) -2- (1 H -benzotriazol-1-yl) -acetamides as selective COX-2 inhibitor. J. Pharm. Sci. Res., 2013, 5(1), 1-4.
[13]
Parekh, D.V.; Desai, P.S. Synthesis, characterization and antimicrobial activity studies of 5-(2-(5-benzoyl-1H-1,2,3-benzotriazole-1-yl)2-oxoethylamino)-2-hydroxy benzoic acid and their transition metal chelates. Adv. Appl. Sci. Res., 2012, 3(4)1992-1996.www.pelagiaresearchlibrary.com [Internet]
[14]
Jimit, S. Patel CSG and DJ Sen. Synthesis of novel n-substituted 2-(1h-benzotriazol-1-yl) - acetohydrazide derivatives as antimicrobial agents. Int. J. Drug Dev. Res., 2012, 4(3), 322-329.
[15]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2016, 2017(7), 1-13.
[PMID: 28256516]
[16]
Guttikonda, N. M. Mathe S, Sulochana MB. In silico Analysis of PHB from Halophiles for potential Bio-medical applications. Int. J. Sci. Res. Sci. Technol., 2019, 6(3), 211-218.
[17]
Jatav, V.K.; Singh, S.; Sharma, S. Virtual screening & molecular docking of glycoprotein B inhibitor as a treatment of Herpes Simplex Virus 1. Int. Res. J Humanit. Eng. Pharm. Sci., 2015, 2(10), 20-24.
[18]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[20]
BIOVIA DS Discovery Studio Modeling Environment. Dassault Systèmes: San Diego, 2017.
[21]
Chowdary, T.K.; Cairns, T.M.; Atanasiu, D.; Cohen, G.H.; Eisenberg, R.J.; Heldwein, E.E. Crystal structure of the conserved herpesvirus fusion regulator complex gH–gL. Nat. Struct. Mol. Biol., 2010, 17(7), 882-888.
[http://dx.doi.org/10.1038/nsmb.1837] [PMID: 20601960]
[22]
Gadhave, R.; Vichare, V.; Joshi, S. Synthesis and biological evaluation for antihistaminic activity of N1-Alkyl– 2(N4-Alkyl/Aryl piperazinyl methyl) benzimidazole derivatives. Asian J. Res. Chem, 2012, 5(7), 918-921.
[23]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.https://jcheminf.biomedcentral.com/track/pdf/10.1186/1758-2946-3-33
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[24]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263(January), 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[25]
Ghannam, I.A.Y.; Abd El-Meguid, E.A.; Ali, I.H.; Sheir, D.H.; El Kerdawy, A.M. Novel 2-arylbenzothiazole DNA gyrase inhibitors: Synthesis, antimicrobial evaluation, QSAR and molecular docking studies. Bioorg. Chem., 2019, 93, 103373.
[http://dx.doi.org/10.1016/j.bioorg.2019.103373] [PMID: 31698294]
[26]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), 455-461.
[27]
Ismail, R.A.; Baba, H.H.; Muhammad, S.A.; Abdulkadir, A.; Mustapha, B.M.; Shitu, M.I. Virtual screening, molecular docking, and adme / T properties analysis of repellent efficacy of natural compounds on dermestes maculatus of protopterus annectens. IJZAB, 2020, 5(6), 255-263.
[28]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel., 1995, 8(2), 127-134.
[http://dx.doi.org/10.1093/protein/8.2.127] [PMID: 7630882]
[29]
Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[30]
Chinchole, P.P.; Wankhede, S.B. Comparative In silico drug likeness and In vitro study of some Schiff’s bases as potent COX-II Inhibitors. Res. J. Pharm. Technol., 2019, 12(10), 4973-4980.
[http://dx.doi.org/10.5958/0974-360X.2019.00862.X]
[31]
Rnjith, D.; Ravikumar, C. SwissADME predictions of pharmacokinetics and drug-likeness properties of small molecules present in Ipomoea mauritiana Jacq. J. Pharmacogn. Phytochem., 2019, 8(5), 2063-2073.
[32]
Lipinski, C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[33]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[34]
B, U.L.; Sangeetha, N.; Manisha, P.; Ramkumar, K.; Kavitha, M.; Sabina, E.P. Virtual screening of peptidyl arginine deiminase type 4 inhibiting potential of chosen flavonoids. Res. J. Pharm. Techno., 2018, 11(2), 753-757.
[http://dx.doi.org/10.5958/0974-360X.2018.00141.5]
[35]
Sangeetha, K.; Martín-Acebes, M.A.; Saiz, J.C.; Meena, K.S. Molecular docking and antiviral activities of plant derived compounds against zika virus. Microb. Pathog., 2020, 149, 104540.
[http://dx.doi.org/10.1016/j.micpath.2020.104540] [PMID: 33045342]
[36]
Brito, M.A. Pharmacokinetic study with computational tools in the medicinal chemistry course. Braz. J. Pharm. Sci., 2011, 47(4), 797-805.
[http://dx.doi.org/10.1590/S1984-82502011000400017]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy