Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

The Development of HDAC and Tubulin Dual-Targeting Inhibitors for Cancer Therapy

Author(s): Jing Nie, Huina Wu, Yepeng Luan and Jiyong Wu*

Volume 24, Issue 5, 2024

Published on: 31 August, 2023

Page: [480 - 490] Pages: 11

DOI: 10.2174/1389557523666230717110255

Price: $65

Abstract

Histone deacetylases (HDACs) are a class of enzymes that are responsible for the removal of acetyl groups from the ε-N-acetyl lysine of histones, allowing histones to wrap DNA more tightly. HDACs play an essential role in many biological processes, such as gene regulation, transcription, cell proliferation, angiogenesis, migration, differentiation and metastasis, which make it an excellent target for anticancer drug discovery. The search for histone deacetylase inhibitors (HDACis) has been intensified, with numerous HDACis being discovered, and five of them have reached the market. However, currently available HDAC always suffers from several shortcomings, such as limited efficacy, drug resistance, and toxicity. Accordingly, dual-targeting HDACis have attracted much attention from academia to industry, and great advances have been achieved in this area. In this review, we summarize the progress on inhibitors with the capacity to concurrently inhibit tubulin polymerization and HDAC activity and their application in cancer treatment.

Keywords: Histone deacetylase, multitarget inhibitors, microtubule, colchicine, combretastatin, A4, nitrogen-containing heterocycle inhibitors, chalcone derivatives, antitumor.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Dawson, M.A.; Kouzarides, T. Cancer epigenetics: From mechanism to therapy. Cell, 2012, 150(1), 12-27.
[http://dx.doi.org/10.1016/j.cell.2012.06.013] [PMID: 22770212]
[3]
Peixoto, P.; Cartron, P.F.; Serandour, A.A.; Hervouet, E. From 1957 to nowadays: A brief history of epigenetics. Int. J. Mol. Sci., 2020, 21(20), 7571.
[http://dx.doi.org/10.3390/ijms21207571] [PMID: 33066397]
[4]
Dang, F.; Wei, W. Targeting the acetylation signaling pathway in cancer therapy. Semin. Cancer Biol., 2022, 85, 209-218.
[http://dx.doi.org/10.1016/j.semcancer.2021.03.001] [PMID: 33705871]
[5]
Huang, M.; Huang, J.; Zheng, Y.; Sun, Q. Histone acetyltransferase inhibitors: An overview in synthesis, structure-activity relationship and molecular mechanism. Eur. J. Med. Chem., 2019, 178, 259-286.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.078] [PMID: 31195169]
[6]
Ran, J.; Zhou, J. Targeted inhibition of histone deacetylase 6 in inflammatory diseases. Thorac. Cancer, 2019, 10(3), 405-412.
[http://dx.doi.org/10.1111/1759-7714.12974] [PMID: 30666796]
[7]
Didonna, A.; Opal, P. The promise and perils of HDAC inhibitors in neurodegeneration. Ann. Clin. Transl. Neurol., 2015, 2(1), 79-101.
[http://dx.doi.org/10.1002/acn3.147] [PMID: 25642438]
[8]
Bagchi, R.A.; Weeks, K.L. Histone deacetylases in cardiovascular and metabolic diseases. J. Mol. Cell. Cardiol., 2019, 130, 151-159.
[http://dx.doi.org/10.1016/j.yjmcc.2019.04.003] [PMID: 30978343]
[9]
Ropero, S.; Esteller, M. The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol., 2007, 1(1), 19-25.
[http://dx.doi.org/10.1016/j.molonc.2007.01.001] [PMID: 19383284]
[10]
Tasneem, S.; Alam, M.M.; Amir, M.; Akhter, M.; Parvez, S.; Verma, G.; Nainwal, L.M.; Equbal, A.; Anwer, T.; Shaquiquzzaman, M. Heterocyclic moieties as HDAC inhibitors: Role in cancer therapeutics. Mini Rev. Med. Chem., 2022, 22(12), 1648-1706.
[http://dx.doi.org/10.2174/1389557519666211221144013] [PMID: 34939540]
[11]
Schobert, R.; Biersack, B. Multimodal HDAC inhibitors with improved anticancer activity. Curr. Cancer Drug Targets, 2017, 18(1), 39-56.
[http://dx.doi.org/10.2174/1568009617666170206102613] [PMID: 28176653]
[12]
Vancurova, I.; Uddin, M.M.; Zou, Y.; Vancura, A. Combination therapies targeting HDAC and IKK in solid tumors. Trends Pharmacol. Sci., 2018, 39(3), 295-306.
[http://dx.doi.org/10.1016/j.tips.2017.11.008] [PMID: 29233541]
[13]
Bass, A.K.A.; El-Zoghbi, M.S.; Nageeb, E.S.M.; Mohamed, M.F.A.; Badr, M.; Abuo-Rahma, G.E.D.A. Comprehensive review for anticancer hybridized multitargeting HDAC inhibitors. Eur. J. Med. Chem., 2021, 209, 112904.
[http://dx.doi.org/10.1016/j.ejmech.2020.112904] [PMID: 33077264]
[14]
Dumontet, C.; Jordan, M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov., 2010, 9(10), 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
[15]
Pal, D.; Song, I.; Dashrath Warkad, S.; Song, K.; Seong Yeom, G.; Saha, S.; Shinde, P.B.; Balasaheb Nimse, S. Indazole-based microtubule-targeting agents as potential candidates for anticancer drugs discovery. Bioorg. Chem., 2022, 122, 105735.
[http://dx.doi.org/10.1016/j.bioorg.2022.105735] [PMID: 35298962]
[16]
Sadoul, K.; Khochbin, S. The growing landscape of tubulin acetylation: Lysine 40 and many more. Biochem. J., 2016, 473(13), 1859-1868.
[http://dx.doi.org/10.1042/BCJ20160172] [PMID: 27354562]
[17]
Hubbert, C.; Guardiola, A.; Shao, R.; Kawaguchi, Y.; Ito, A.; Nixon, A.; Yoshida, M.; Wang, X.F.; Yao, T.P. HDAC6 is a microtubule-associated deacetylase. Nature, 2002, 417(6887), 455-458.
[http://dx.doi.org/10.1038/417455a] [PMID: 12024216]
[18]
Zhang, Y.; Li, N.; Caron, C.; Matthias, G.; Hess, D.; Khochbin, S.; Matthias, P. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J., 2003, 22(5), 1168-1179.
[http://dx.doi.org/10.1093/emboj/cdg115] [PMID: 12606581]
[19]
Coulup, S.K.; Georg, G.I. Revisiting microtubule targeting agents: α-Tubulin and the pironetin binding site as unexplored targets for cancer therapeutics. Bioorg. Med. Chem. Lett., 2019, 29(15), 1865-1873.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.042] [PMID: 31130264]
[20]
Čermák, V.; Dostál, V.; Jelínek, M.; Libusová, L.; Kovář, J.; Rösel, D.; Brábek, J. Microtubule-targeting agents and their impact on cancer treatment. Eur. J. Cell Biol., 2020, 99(4), 151075.
[http://dx.doi.org/10.1016/j.ejcb.2020.151075] [PMID: 32414588]
[21]
Cao, D.; Liu, Y.; Yan, W.; Wang, C.; Bai, P.; Wang, T.; Tang, M.; Wang, X.; Yang, Z.; Ma, B.; Ma, L.; Lei, L.; Wang, F.; Xu, B.; Zhou, Y.; Yang, T.; Chen, L. Design, synthesis, and evaluation of in vitro and in vivo anticancer activity of 4-substituted coumarins: A novel class of potent tubulin polymerization inhibitors. J. Med. Chem., 2016, 59(12), 5721-5739.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00158] [PMID: 27213819]
[22]
Yan, X.Y.; Leng, J.F.; Chen, T.T.; Zhao, Y.J.; Kong, L.Y.; Yin, Y. Design, synthesis, and biological evaluation of novel diphenylamine derivatives as tubulin polymerization inhibitors targeting the colchicine binding site. Eur. J. Med. Chem., 2022, 237, 114372.
[http://dx.doi.org/10.1016/j.ejmech.2022.114372] [PMID: 35447432]
[23]
Tan, L.; Zhang, J.; Wang, Y.; Wang, X.; Wang, Y.; Zhang, Z.; Shuai, W.; Wang, G.; Chen, J.; Wang, C.; Ouyang, L.; Li, W. Development of dual inhibitors targeting epidermal growth factor receptor in cancer therapy. J. Med. Chem., 2022, 65(7), 5149-5183.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01714] [PMID: 35311289]
[24]
Raghavendra, N.M.; Pingili, D.; Kadasi, S.; Mettu, A.; Prasad, S.V.U.M. Dual or multi-targeting inhibitors: The next generation anticancer agents. Eur. J. Med. Chem., 2018, 143, 1277-1300.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.021] [PMID: 29126724]
[25]
Hesham, H.M.; Lasheen, D.S.; Abouzid, K.A.M. Chimeric HDAC inhibitors: Comprehensive review on the HDAC-based strategies developed to combat cancer. Med. Res. Rev., 2018, 38(6), 2058-2109.
[http://dx.doi.org/10.1002/med.21505] [PMID: 29733427]
[26]
Smalley, J.P.; Cowley, S.M.; Hodgkinson, J.T. Bifunctional HDAC therapeutics: One drug to rule them all? Molecules, 2020, 25(19), 4394.
[http://dx.doi.org/10.3390/molecules25194394] [PMID: 32987782]
[27]
Biersack, B.; Polat, S.; Höpfner, M. Anticancer properties of chimeric HDAC and kinase inhibitors. Semin. Cancer Biol., 2022, 83, 472-486.
[http://dx.doi.org/10.1016/j.semcancer.2020.11.005] [PMID: 33189849]
[28]
Liu, T.; Wan, Y.; Xiao, Y.; Xia, C.; Duan, G. Dual-target inhibitors based on HDACs: Novel antitumor agents for cancer therapy. J. Med. Chem., 2020, 63(17), 8977-9002.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00491] [PMID: 32320239]
[29]
Galloway, T.J.; Wirth, L.J.; Colevas, A.D.; Gilbert, J.; Bauman, J.E.; Saba, N.F.; Raben, D.; Mehra, R.; Ma, A.W.; Atoyan, R.; Wang, J.; Burtness, B.; Jimeno, A. A Phase I study of CUDC-101, a multitarget inhibitor of HDACs, EGFR, and HER2, in combination with chemoradiation in patients with head and neck squamous cell carcinoma. Clin. Cancer Res., 2015, 21(7), 1566-1573.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2820] [PMID: 25573383]
[30]
Younes, A.; Berdeja, J.G.; Patel, M.R.; Flinn, I.; Gerecitano, J.F.; Neelapu, S.S.; Kelly, K.R.; Copeland, A.R.; Akins, A.; Clancy, M.S.; Gong, L.; Wang, J.; Ma, A.; Viner, J.L.; Oki, Y. Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: An open-label, dose-escalation, phase 1 trial. Lancet Oncol., 2016, 17(5), 622-631.
[http://dx.doi.org/10.1016/S1470-2045(15)00584-7] [PMID: 27049457]
[31]
Jin, J.; Mao, S.; Li, F.; Li, X.; Huang, X.; Yu, M.; Guo, W.; Jin, J. A novel alkylating deacetylase inhibitor molecule EDO-S101 in combination with cytarabine synergistically enhances apoptosis of acute myeloid leukemia cells. Med. Oncol., 2019, 36(9), 77.
[http://dx.doi.org/10.1007/s12032-019-1302-0] [PMID: 31372848]
[32]
Tresckow, B.; Sayehli, C.; Aulitzky, W.E.; Goebeler, M.E.; Schwab, M.; Braz, E.; Krauss, B.; Krauss, R.; Hermann, F.; Bartz, R.; Engert, A. Phase I study of domatinostat (4 SC -202), a class I histone deacetylase inhibitor in patients with advanced hematological malignancies. Eur. J. Haematol., 2019, 102(2), 163-173.
[http://dx.doi.org/10.1111/ejh.13188] [PMID: 30347469]
[33]
Chao, M.W.; Lai, M.J.; Liou, J.P.; Chang, Y.L.; Wang, J.C.; Pan, S.L.; Teng, C.M. The synergic effect of vincristine and vorinostat in leukemia in vitro and in vivo. J. Hematol. Oncol., 2015, 8(1), 82.
[http://dx.doi.org/10.1186/s13045-015-0176-7] [PMID: 26156322]
[34]
Zhang, X.; Zhang, J.; Tong, L.; Luo, Y.; Su, M.; Zang, Y.; Li, J.; Lu, W.; Chen, Y. The discovery of colchicine-SAHA hybrids as a new class of antitumor agents. Bioorg. Med. Chem., 2013, 21(11), 3240-3244.
[http://dx.doi.org/10.1016/j.bmc.2013.03.049] [PMID: 23602523]
[35]
Zhang, X.; Kong, Y.; Zhang, J.; Su, M.; Zhou, Y.; Zang, Y.; Li, J.; Chen, Y.; Fang, Y.; Zhang, X.; Lu, W. Design, synthesis and biological evaluation of colchicine derivatives as novel tubulin and histone deacetylase dual inhibitors. Eur. J. Med. Chem., 2015, 95, 127-135.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.035] [PMID: 25805446]
[36]
Paidakula, S.; Nerella, S.; Kankala, S.; Kankala, R.K. Recent trends in tubulin-binding combretastatin A-4 analogs for anticancer drug development. Curr. Med. Chem., 2022, 29(21), 3748-3773.
[http://dx.doi.org/10.2174/0929867328666211202101641] [PMID: 34856892]
[37]
Nam, N.H. Combretastatin A-4 analogues as antimitotic antitumor agents. Curr. Med. Chem., 2003, 10(17), 1697-1722.
[http://dx.doi.org/10.2174/0929867033457151] [PMID: 12871118]
[38]
Karatoprak, G. Ş.; Küpeli Akkol, E.; Genç, Y.; Bardakcı, H.; Yücel, Ç.; Sobarzo-Sánchez, E. Combretastatins: An overview of structure, probable mechanisms of action and potential applications Molecules, 2020, 25(11), 2560.
[http://dx.doi.org/10.3390/molecules25112560] [PMID: 32486408]
[39]
Wang, Y.; Sun, M.; Wang, Y.; Qin, J.; Zhang, Y.; Pang, Y.; Yao, Y.; Yang, H.; Duan, Y. Discovery of novel tubulin/HDAC dual-targeting inhibitors with strong antitumor and antiangiogenic potency. Eur. J. Med. Chem., 2021, 225, 113790.
[http://dx.doi.org/10.1016/j.ejmech.2021.113790] [PMID: 34454126]
[40]
Shan, Y.S.; Zhang, J.; Liu, Z.; Wang, M.; Dong, Y. Developments of combretastatin A-4 derivatives as anticancer agents. Curr. Med. Chem., 2011, 18(4), 523-538.
[http://dx.doi.org/10.2174/092986711794480221] [PMID: 21143124]
[41]
Hamze, A.; Alami, M.; Provot, O. Developments of isoCombretastatin A-4 derivatives as highly cytotoxic agents. Eur. J. Med. Chem., 2020, 190, 112110.
[http://dx.doi.org/10.1016/j.ejmech.2020.112110] [PMID: 32061961]
[42]
Nainwal, L.M.; Alam, M.M.; Shaquiquzzaman, M.; Marella, A.; Kamal, A. Combretastatin-based compounds with therapeutic characteristics: A patent review. Expert Opin. Ther. Pat., 2019, 29(9), 703-731.
[http://dx.doi.org/10.1080/13543776.2019.1651841] [PMID: 31369715]
[43]
Aboeldahab, A.M.A.; Beshr, E.A.M.; Shoman, M.E.; Rabea, S.M.; Aly, O.M. Spirohydantoins and 1,2,4-triazole-3-carboxamide derivatives as inhibitors of histone deacetylase: Design, synthesis, and biological evaluation. Eur. J. Med. Chem., 2018, 146, 79-92.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.021] [PMID: 29396364]
[44]
Schmitt, F.; Gosch, L.; Dittmer, A.; Rothemund, M.; Mueller, T.; Schobert, R.; Biersack, B.; Volkamer, A.; Höpfner, M. Oxazole-bridged combretastatin A-4 derivatives with tethered hydroxamic acids: Structure–activity relations of new inhibitors of HDAC and/or tubulin function. Int. J. Mol. Sci., 2019, 20(2), 383.
[http://dx.doi.org/10.3390/ijms20020383] [PMID: 30658435]
[45]
Tang, H.; Liang, Y.; Shen, H.; Cai, S.; Yu, M.; Fan, H.; Ding, K.; Wang, Y. Discovery of a 2,6-diarylpyridine-based hydroxamic acid derivative as novel histone deacetylase 8 and tubulin dual inhibitor for the treatment of neuroblastoma. Bioorg. Chem., 2022, 128, 106112.
[http://dx.doi.org/10.1016/j.bioorg.2022.106112] [PMID: 36070628]
[46]
Lamaa, D.; Lin, H.P.; Zig, L.; Bauvais, C.; Bollot, G.; Bignon, J.; Levaique, H.; Pamlard, O.; Dubois, J.; Ouaissi, M.; Souce, M.; Kasselouri, A.; Saller, F.; Borgel, D.; Jayat-Vignoles, C.; Al-Mouhammad, H.; Feuillard, J.; Benihoud, K.; Alami, M.; Hamze, A. Design and synthesis of tubulin and histone deacetylase inhibitor based on iso -combretastatin A-4. J. Med. Chem., 2018, 61(15), 6574-6591.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00050] [PMID: 30004697]
[47]
Heravi, M.M.; Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Adv., 2020, 10(72), 44247-44311.
[http://dx.doi.org/10.1039/D0RA09198G] [PMID: 35557843]
[48]
Barreca, M.; Ingarra, A.M.; Raimondi, M.V.; Spanò, V.; De Franco, M.; Menilli, L.; Gandin, V.; Miolo, G.; Barraja, P.; Montalbano, A. Insight on pyrimido[5,4-g]indolizine and pyrimido[4,5-c]pyrrolo[1,2-a]azepine systems as promising photosensitizers on malignant cells. Eur. J. Med. Chem., 2022, 237, 114399.
[http://dx.doi.org/10.1016/j.ejmech.2022.114399] [PMID: 35468516]
[49]
Yue, K.; Sun, S.; Jia, G.; Qin, M.; Hou, X.; Chou, C.J.; Huang, C.; Li, X. First-in-class hydrazide-based HDAC6 selective inhibitor with potent oral anti-inflammatory activity by attenuating NLRP3 inflammasome activation. J. Med. Chem., 2022, 65(18), 12140-12162.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00853] [PMID: 36073117]
[50]
Fang, Z.; Mu, B.; Liu, Y.; Guo, N.; Xiong, L.; Guo, Y.; Xia, A.; Zhang, R.; Zhang, H.; Yao, R.; Fan, Y.; Li, L.; Yang, S.; Xiang, R. Discovery of a potent, selective and cell active inhibitor of m6A demethylase ALKBH5. Eur. J. Med. Chem., 2022, 238, 114446.
[http://dx.doi.org/10.1016/j.ejmech.2022.114446] [PMID: 35597008]
[51]
Lang, D.K.; Kaur, R.; Arora, R.; Saini, B.; Arora, S. Nitrogen-containing heterocycles as anticancer agents: An overview. Anticancer. Agents Med. Chem., 2020, 20(18), 2150-2168.
[http://dx.doi.org/10.2174/1871520620666200705214917] [PMID: 32628593]
[52]
Zhou, Y.; Yan, W.; Cao, D.; Shao, M.; Li, D.; Wang, F.; Yang, Z.; Chen, Y.; He, L.; Wang, T.; Shen, M.; Chen, L. Design, synthesis and biological evaluation of 4-anilinoquinoline derivatives as novel potent tubulin depolymerization agents. Eur. J. Med. Chem., 2017, 138, 1114-1125.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.040] [PMID: 28763646]
[53]
Zhang, W.; Yang, L.; Si, W.; Tang, M.; Bai, P.; Zhu, Z.; Kuang, S.; Liu, J.; Shi, M.; Huang, J.; Chen, X.; Li, D.; Wen, Y.; Yang, Z.; Xiao, K.; Chen, L. SKLB-14b, a novel oral microtubule-destabilizing agent based on hydroxamic acid with potent anti-tumor and anti-multidrug resistance activities. Bioorg. Chem., 2022, 128, 106053.
[http://dx.doi.org/10.1016/j.bioorg.2022.106053] [PMID: 35964504]
[54]
Yang, Z.; Wang, T.; Wang, F.; Niu, T.; Liu, Z.; Chen, X.; Long, C.; Tang, M.; Cao, D.; Wang, X.; Xiang, W.; Yi, Y.; Ma, L.; You, J.; Chen, L. Discovery of selective histone deacetylase 6 inhibitors using the quinazoline as the cap for the treatment of cancer. J. Med. Chem., 2016, 59(4), 1455-1470.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01342] [PMID: 26443078]
[55]
Wang, F.; Zheng, L.; Yi, Y.; Yang, Z.; Qiu, Q.; Wang, X.; Yan, W.; Bai, P.; Yang, J.; Li, D.; Pei, H.; Niu, T.; Ye, H.; Nie, C.; Hu, Y.; Yang, S.; Wei, Y.; Chen, L. SKLB-23bb, A HDAC6-selective inhibitor, exhibits superior and broad-spectrum antitumor activity via additionally targeting microtubules. Mol. Cancer Ther., 2018, 17(4), 763-775.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0332] [PMID: 29610282]
[56]
Hauguel, C.; Ducellier, S.; Provot, O.; Ibrahim, N.; Lamaa, D.; Balcerowiak, C.; Letribot, B.; Nascimento, M.; Blanchard, V.; Askenatzis, L.; Levaique, H.; Bignon, J.; Baschieri, F.; Bauvais, C.; Bollot, G.; Renko, D.; Deroussent, A.; Prost, B.; Laisne, M.C.; Michallet, S.; Lafanechère, L.; Papot, S.; Montagnac, G.; Tran, C.; Alami, M.; Apcher, S.; Hamze, A. Design, synthesis and biological evaluation of quinoline-2-carbonitrile-based hydroxamic acids as dual tubulin polymerization and histone deacetylases inhibitors. Eur. J. Med. Chem., 2022, 240, 114573.
[http://dx.doi.org/10.1016/j.ejmech.2022.114573] [PMID: 35797900]
[57]
Peng, X.; Chen, J.; Li, L.; Sun, Z.; Liu, J.; Ren, Y.; Huang, J.; Chen, J. Efficient synthesis and bioevaluation of novel dual tubulin/histone deacetylase 3 inhibitors as potential anticancer agents. J. Med. Chem., 2021, 64(12), 8447-8473.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00413] [PMID: 34097389]
[58]
Singh, A.; Chang, T.Y.; Kaur, N.; Hsu, K.C.; Yen, Y.; Lin, T.E.; Lai, M.J.; Lee, S.B.; Liou, J.P. CAP rigidification of MS-275 and chidamide leads to enhanced antiproliferative effects mediated through HDAC1, 2 and tubulin polymerization inhibition. Eur. J. Med. Chem., 2021, 215, 113169.
[http://dx.doi.org/10.1016/j.ejmech.2021.113169] [PMID: 33588178]
[59]
Thorpe, P.E. Vascular targeting agents as cancer therapeutics. Clin. Cancer Res., 2004, 10(2), 415-427.
[http://dx.doi.org/10.1158/1078-0432.CCR-0642-03] [PMID: 14760060]
[60]
Kumar, V.; Dhawan, S.; Girase, P.S.; Awolade, P.; Shinde, S.R.; Karpoormath, R.; Singh, P. Recent advances in chalcone-based anticancer heterocycles: A structural and molecular target perspective. Curr. Med. Chem., 2021, 28(33), 6805-6845.
[http://dx.doi.org/10.2174/0929867328666210322102836] [PMID: 33749549]
[61]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Chalcone derivatives: Anti-inflammatory potential and molecular targets perspectives. Curr. Top. Med. Chem., 2017, 17(28), 3146-3169.
[http://dx.doi.org/10.2174/1568026617666170914160446] [PMID: 28914193]
[62]
Mathew, B.; Parambi, D.G.T.; Sivasankarapillai, V.S.; Uddin, M.S.; Suresh, J.; Mathew, G.E.; Joy, M.; Marathakam, A.; Gupta, S.V. Perspective design of chalcones for the Management of CNS disorders: A mini-review. CNS Neurol. Disord. Drug Targets, 2019, 18(6), 432-445.
[http://dx.doi.org/10.2174/1871527318666190610111246] [PMID: 31187716]
[63]
Pérez-González, A.; Castañeda-Arriaga, R.; Guzmán-López, E.G.; Hernández-Ayala, L.F.; Galano, A. Chalcone derivatives with a high potential as multifunctional antioxidant neuroprotectors. ACS Omega, 2022, 7(43), 38254-38268.
[http://dx.doi.org/10.1021/acsomega.2c05518] [PMID: 36340167]
[64]
Rudrapal, M.; Khan, J.; Dukhyil, A.A.B.; Alarousy, R.M.I.I.; Attah, E.I.; Sharma, T.; Khairnar, S.J.; Bendale, A.R. Chalcone scaffolds, bioprecursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics. Molecules, 2021, 26(23), 7177.
[http://dx.doi.org/10.3390/molecules26237177] [PMID: 34885754]
[65]
Ducki, S.; Rennison, D.; Woo, M.; Kendall, A.; Chabert, J.F.D.; McGown, A.T.; Lawrence, N.J. Combretastatin-like chalcones as inhibitors of microtubule polymerization. Part 1: Synthesis and biological evaluation of antivascular activity. Bioorg. Med. Chem., 2009, 17(22), 7698-7710.
[http://dx.doi.org/10.1016/j.bmc.2009.09.039] [PMID: 19837593]
[66]
Wang, B.; Chen, X.; Gao, J.; Su, L.; Zhang, L.; Xu, H.; Luan, Y. Anti-tumor activity evaluation of novel tubulin and HDAC dual-targeting inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(18), 2638-2645.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.045] [PMID: 31400938]
[67]
Mourad, A.A.E.; Mourad, M.A.E.; Jones, P.G. Novel HDAC/tubulin dual inhibitor: Design, synthesis and docking studies of α-phthalimido-chalcone hybrids as potential anticancer agents with apoptosis-inducing activity. Drug Des. Devel. Ther., 2020, 14, 3111-3130.
[http://dx.doi.org/10.2147/DDDT.S256756] [PMID: 32848361]
[68]
Hinnen, P.; Eskens, F A L.M. Vascular disrupting agents in clinical development. Br. J. Cancer, 2007, 96(8), 1159-1165.
[http://dx.doi.org/10.1038/sj.bjc.6603694] [PMID: 17375046]
[69]
Gaya, A.M.; Rustin, G.J.S. Vascular disrupting agents: A new class of drug in cancer therapy. Clin. Oncol. (R. Coll. Radiol.), 2005, 17(4), 277-290.
[http://dx.doi.org/10.1016/j.clon.2004.11.011] [PMID: 15997924]
[70]
Daenen, L.G.; Roodhart, J.M.; Shaked, Y.; Voest, E.E. Vascular disrupting agents (VDAs) in anticancer therapy. Curr. Clin. Pharmacol., 2010, 5(3), 178-185.
[http://dx.doi.org/10.2174/157488410791498815] [PMID: 20406172]
[71]
Mita, M.M.; Sargsyan, L.; Mita, A.C.; Spear, M. Vascular-disrupting agents in oncology. Expert Opin. Investig. Drugs, 2013, 22(3), 317-328.
[http://dx.doi.org/10.1517/13543784.2013.759557] [PMID: 23316880]
[72]
Ji, Y.T.; Liu, Y.N.; Liu, Z.P. Tubulin colchicine binding site inhibitors as vascular disrupting agents in clinical developments. Curr. Med. Chem., 2015, 22(11), 1348-1360.
[http://dx.doi.org/10.2174/0929867322666150114163732] [PMID: 25620094]
[73]
Zhu, H.; Li, W.; Shuai, W.; Liu, Y.; Yang, L.; Tan, Y.; Zheng, T.; Yao, H.; Xu, J.; Zhu, Z.; Yang, D.H.; Chen, Z.S.; Xu, S. Discovery of novel N-benzylbenzamide derivatives as tubulin polymerization inhibitors with potent antitumor activities. Eur. J. Med. Chem., 2021, 216, 113316.
[http://dx.doi.org/10.1016/j.ejmech.2021.113316] [PMID: 33676300]
[74]
Zhu, H.; Tan, Y.; He, C.; Liu, Y.; Duan, Y.; Zhu, W.; Zheng, T.; Li, D.; Xu, J.; Yang, D.H.; Chen, Z.S.; Xu, S. Discovery of a novel vascular disrupting agent inhibiting tubulin polymerization and HDACs with potent antitumor effects. J. Med. Chem., 2022, 65(16), 11187-11213.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00681] [PMID: 35926141]
[75]
Sun, M.; Qin, J.; Kang, Y.; Zhang, Y.; Ba, M.; Yang, H.; Duan, Y.; Yao, Y. 2-Methoxydiol derivatives as new tubulin and HDAC dual-targeting inhibitors, displaying antitumor and antiangiogenic response. Bioorg. Chem., 2022, 120, 105625.
[http://dx.doi.org/10.1016/j.bioorg.2022.105625] [PMID: 35078046]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy