Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Potential Role of Novel Cardiovascular Biomarkers in Pediatric Patients with Chronic Kidney Disease

Author(s): Maria Augusta Duarte Abreu, Pedro Alves Soares Vaz de Castro, Fernanda Rocha Chaves Moreira, Henrique de Oliveira Ferreira and Ana Cristina Simões e Silva*

Volume 24, Issue 5, 2024

Published on: 07 July, 2023

Page: [491 - 506] Pages: 16

DOI: 10.2174/1389557523666230523114331

Price: $65

Abstract

Background: Cardiovascular Disease is the leading cause of death in adult and pediatric patients with Chronic Kidney Disease (CKD) and its pathogenesis involves the interaction of multiple pathways. As Inflammatory mechanisms play a critical role in the vascular disease of CKD pediatric patients, there are several biomarkers related to inflammation strongly associated with this comorbidity.

Objective: This review provides available evidence on the link between several biomarkers and the pathophysiology of heart disease in patients with CKD.

Methods: The data were obtained independently by the authors, who carried out a comprehensive and non-systematic search in PubMed, Cochrane, Scopus, and SciELO databases. The search terms were “Chronic Kidney Disease”, “Cardiovascular Disease”, “Pediatrics”, “Pathophysiology”, “Mineral and Bone Disorder (MBD)”, “Renin Angiotensin System (RAS)”, “Biomarkers”, “BNP”, “NTproBNP”, “CK-MB”, “CXCL6”, “CXCL16”, “Endocan-1 (ESM-1)”, “FABP3”, “FABP4”, h-FABP”, “Oncostatin- M (OSM)”, “Placental Growth Factor (PlGF)” and “Troponin I”.

Results: The pathogenesis of CKD-mediated cardiovascular disease is linked to inflammatory biomarkers, which play a critical role in the initiation, maintenance, and progression of cardiovascular disease. There are several biomarkers associated with cardiovascular disease in pediatric patients, including BNP, NTproBNP, CK-MB, CXCL6, CXCL16, Endocan-1 (ESM-1), FABP3, FABP4, Oncostatin- M (OSM), Placental Growth Factor (PlGF), and Troponin I.

Conclusion: The pathogenesis of CKD-mediated cardiovascular disease is not completely understood, but it is linked to inflammatory biomarkers. Further studies are required to elucidate the pathophysiological and potential role of these novel biomarkers.

Keywords: Chronic kidney disease, cardiovascular disease, pathophysiology, mineral and bone disorder, renin-angiotensin system, biomarkers.

Graphical Abstract
[1]
Harambat, J.; van Stralen, K.J.; Kim, J.J.; Tizard, E.J. Epidemiology of chronic kidney disease in children. Pediatr. Nephrol., 2012, 27(3), 363-373.
[http://dx.doi.org/10.1007/s00467-011-1939-1] [PMID: 21713524]
[2]
Kaspar, C.D.W.; Bholah, R.; Bunchman, T.E. A review of pediatric chronic kidney disease. Blood Purif., 2016, 41(1-3), 211-217.
[http://dx.doi.org/10.1159/000441737] [PMID: 26766175]
[3]
Lunyera, J.; Scialla, J.J. Update on chronic kidney disease mineral and bone disorder in cardiovascular disease. Semin. Nephrol., 2018, 38(6), 542-558.
[http://dx.doi.org/10.1016/j.semnephrol.2018.08.001] [PMID: 30413250]
[4]
Hanudel, M.R.; Salusky, I.B. Treatment of pediatric chronic kidney disease-mineral and bone disorder. Curr. Osteoporos. Rep., 2017, 15(3), 198-206.
[http://dx.doi.org/10.1007/s11914-017-0365-0] [PMID: 28455644]
[5]
Dai, B.; David, V.; Martin, A.; Huang, J.; Li, H.; Jiao, Y.; Gu, W.; Quarles, L.D. A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. PLoS One, 2012, 7(9), e44161.
[http://dx.doi.org/10.1371/journal.pone.0044161] [PMID: 22970174]
[6]
Naveh-Many, T.; Silver, J. The pas de trois of vitamin D, FGF23, and PTH. J. Am. Soc. Nephrol., 2017, 28(2), 393-395.
[http://dx.doi.org/10.1681/ASN.2016090944] [PMID: 27807212]
[7]
Palupi-Baroto, R.; Hermawan, K.; Murni, I.K.; Nurlitasari, T.; Prihastuti, Y.; Sekali, D.R.K.; Ambarsari, C.G. High fibroblast growth factor 23 as a biomarker for severe cardiac impairment in children with chronic kidney disease: A single tertiary center study. Int. J. Nephrol. Renovasc. Dis., 2021, 14, 165-171.
[http://dx.doi.org/10.2147/IJNRD.S304143] [PMID: 34135617]
[8]
Pool, L.R.; Kershaw, K.N.; Gordon-Larsen, P.; Gutiérrez, O.M.; Reis, J.P.; Isakova, T.; Wolf, M.; Carnethon, M.R. Racial differences in the associations between food insecurity and fibroblast growth factor 23 in the coronary artery risk development in young adults study. J. Ren. Nutr., 2020, 30(6), 509-517.
[http://dx.doi.org/10.1053/j.jrn.2020.01.020] [PMID: 32147284]
[9]
Khouzam, N.; Wesseling-Perry, K. Pathophysiology and treatment of cardiovascular disease in pediatric chronic kidney disease. Pediatr. Nephrol., 2019, 34(1), 1-10.
[http://dx.doi.org/10.1007/s00467-017-3798-x] [PMID: 28939921]
[10]
Goodman, W.G.; London, G.; Amann, K.; Block, G.A.; Giachelli, C.; Hruska, K.A.; Ketteler, M.; Levin, A.; Massy, Z.; McCarron, D.A.; Raggi, P.; Shanahan, C.M.; Yorioka, N. Vascular calcification work group. Vascular calcification in chronic kidney disease. Am. J. Kidney Dis., 2004, 43(3), 572-579.
[http://dx.doi.org/10.1053/j.ajkd.2003.12.005] [PMID: 14981617]
[11]
Chen, N.X.; Moe, S.M. Pathophysiology of vascular calcification. Curr. Osteoporos. Rep., 2015, 13(6), 372-380.
[http://dx.doi.org/10.1007/s11914-015-0293-9] [PMID: 26409849]
[12]
Lau, W.L.; Leaf, E.M.; Hu, M.C.; Takeno, M.M.; Kuro-o, M.; Moe, O.W.; Giachelli, C.M.; Vitamin, D. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int., 2012, 82(12), 1261-1270.
[http://dx.doi.org/10.1038/ki.2012.322] [PMID: 22932118]
[13]
Neves, K.R.; Graciolli, F.G.; dos Reis, L.M.; Graciolli, R.G.; Neves, C.L.; Magalhães, A.O.; Custódio, M.R.; Batista, D.G.; Jorgetti, V.; Moysés, R.M.A. Vascular calcification: Contribution of parathyroid hormone in renal failure. Kidney Int., 2007, 71(12), 1262-1270.
[http://dx.doi.org/10.1038/sj.ki.5002241] [PMID: 17410101]
[14]
García-Bello, J.A.; Gómez-Díaz, R.A.; Contreras-Rodríguez, A.; Sánchez-Barbosa, L.; Mondragón-González, R.; Gallardo-Montoya, J.M.; Wacher, N.H. Endothelial dysfunction in children with chronic kidney disease. Nefrologia, 2021, 41(4), 436-445.
[http://dx.doi.org/10.1016/j.nefroe.2020.10.002] [PMID: 36165112]
[15]
Mitsnefes, M.M. Cardiovascular disease in children with chronic kidney disease. J. Am. Soc. Nephrol., 2012, 23(4), 578-585.
[http://dx.doi.org/10.1681/ASN.2011111115] [PMID: 22383696]
[16]
Grabner, A.; Faul, C. The role of fibroblast growth factor 23 and Klotho in uremic cardiomyopathy. Curr. Opin. Nephrol. Hypertens., 2016, 25(4), 314-324.
[http://dx.doi.org/10.1097/MNH.0000000000000231] [PMID: 27219043]
[17]
Grabner, A.; Amaral, A.P.; Schramm, K.; Singh, S.; Sloan, A.; Yanucil, C.; Li, J.; Shehadeh, L.A.; Hare, J.M.; David, V.; Martin, A.; Fornoni, A.; Di Marco, G.S.; Kentrup, D.; Reuter, S.; Mayer, A.B.; Pavenstädt, H.; Stypmann, J.; Kuhn, C.; Hille, S.; Frey, N.; Leifheit-Nestler, M.; Richter, B.; Haffner, D.; Abraham, R.; Bange, J.; Sperl, B.; Ullrich, A.; Brand, M.; Wolf, M.; Faul, C. Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab., 2015, 22(6), 1020-1032.
[http://dx.doi.org/10.1016/j.cmet.2015.09.002] [PMID: 26437603]
[18]
Simões e Silva, A.C.; Teixeira, M.M. ACE inhibition, ACE2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis. Pharmacol. Res., 2016, 107, 154-162.
[http://dx.doi.org/10.1016/j.phrs.2016.03.018] [PMID: 26995300]
[19]
Simões e Silva, A.C.; Flynn, J.T. The renin–angiotensin–aldosterone system in 2011: Role in hypertension and chronic kidney disease. Pediatr. Nephrol., 2012, 27(10), 1835-1845.
[http://dx.doi.org/10.1007/s00467-011-2002-y] [PMID: 21947887]
[20]
Crackower, M.A.; Sarao, R.; Oudit, G.Y.; Yagil, C.; Kozieradzki, I.; Scanga, S.E.; Oliveira-dos-Santos, A.J.; da Costa, J.; Zhang, L.; Pei, Y.; Scholey, J.; Ferrario, C.M.; Manoukian, A.S.; Chappell, M.C.; Backx, P.H.; Yagil, Y.; Penninger, J.M. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature, 2002, 417(6891), 822-828.
[http://dx.doi.org/10.1038/nature00786] [PMID: 12075344]
[21]
Robinson-Cohen, C.; Hoofnagle, A.N.; Ix, J.H.; Sachs, M.C.; Tracy, R.P.; Siscovick, D.S.; Kestenbaum, B.R.; de Boer, I.H. Racial differences in the association of serum 25-hydroxyvitamin D concentration with coronary heart disease events. JAMA, 2013, 310(2), 179-188.
[http://dx.doi.org/10.1001/jama.2013.7228] [PMID: 23839752]
[22]
Simões, E. Silva, A.C.; Diniz, J.S.S.; Pereira, R.M.; Pinheiro, S.V.B.; Santos, R.A.S. Circulating renin Angiotensin system in childhood chronic renal failure: Marked increase of Angiotensin-(1-7) in end-stage renal disease. Pediatr. Res., 2006, 60(6), 734-739.
[http://dx.doi.org/10.1203/01.pdr.0000246100.14061.bc] [PMID: 17065573]
[23]
Saritas, T.; Floege, J. Cardiovascular disease in patients with chronic kidney disease. Herz, 2020, 45(2), 122-128.
[http://dx.doi.org/10.1007/s00059-019-04884-0] [PMID: 31938803]
[24]
Zamboli, P.; Lucà, S.; Borrelli, S.; Garofalo, C.; Liberti, M.E.; Pacilio, M.; Lucà, S.; Palladino, G.; Punzi, M. High-flow arteriovenous fistula and heart failure: Could the indexation of blood flow rate and echocardiography have a role in the identification of patients at higher risk? J. Nephrol., 2018, 31(6), 975-983.
[http://dx.doi.org/10.1007/s40620-018-0472-8] [PMID: 29357085]
[25]
Okamoto, R.; Ali, Y.; Hashizume, R.; Suzuki, N.; Ito, M. BNP as a major player in the heart-kidney connection. Int. J. Mol. Sci., 2019, 20(14), 3581.
[http://dx.doi.org/10.3390/ijms20143581] [PMID: 31336656]
[26]
Clerico, A.; Passino, C.; Franzini, M.; Emdin, M. Cardiac biomarker testing in the clinical laboratory: Where do we stand? General overview of the methodology with special emphasis on natriuretic peptides. Clin. Chim. Acta, 2015, 443, 17-24.
[http://dx.doi.org/10.1016/j.cca.2014.06.003] [PMID: 24937843]
[27]
Khalifeh, N.; Haider, D.; Hörl, W.H. Natriuretic peptides in chronic kidney disease and during renal replacement therapy: An update. J. Investig. Med., 2009, 57(1), 33-39.
[http://dx.doi.org/10.2310/JIM.0b013e318194f44b] [PMID: 19158605]
[28]
Jalal, F.; Dehbi, M.; Berteloot, A.; Crine, P. Biosynthesis and polarized distribution of neutral endopeptidase in primary cultures of kidney proximal tubule cells. Biochem. J., 1994, 302(3), 669-674.
[http://dx.doi.org/10.1042/bj3020669] [PMID: 7945190]
[29]
Ralat, L.A.; Guo, Q.; Ren, M.; Funke, T.; Dickey, D.M.; Potter, L.R.; Tang, W.J. Insulin-degrading enzyme modulates the natriuretic peptide-mediated signaling response. J. Biol. Chem., 2011, 286(6), 4670-4679.
[http://dx.doi.org/10.1074/jbc.M110.173252] [PMID: 21098034]
[30]
Marin-Grez, M.; Fleming, J.T.; Steinhausen, M. Atrial natriuretic peptide causes pre-glomerular vasodilatation and post-glomerular vasoconstriction in rat kidney. Nature, 1986, 324(6096), 473-476.
[http://dx.doi.org/10.1038/324473a0] [PMID: 2946962]
[31]
Jensen, K.T.; Carstens, J.; Pedersen, E.B. Effect of BNP on renal hemodynamics, tubular function and vasoactive hormones in humans. Am. J. Physiol., 1998, 274(1), F63-F72.
[PMID: 9458824]
[32]
Ito, T.; Yoshimura, M.; Nakamura, S.; Nakayama, M.; Shimasaki, Y.; Harada, E.; Mizuno, Y.; Yamamuro, M.; Harada, M.; Saito, Y.; Nakao, K.; Kurihara, H.; Yasue, H.; Ogawa, H. Inhibitory effect of natriuretic peptides on aldosterone synthase gene expression in cultured neonatal rat cardiocytes. Circulation, 2003, 107(6), 807-810.
[http://dx.doi.org/10.1161/01.CIR.0000057794.29667.08] [PMID: 12591748]
[33]
Liang, F.; Kapoun, A.M.; Lam, A.; Damm, D.L.; Quan, D.; O’Connell, M.; Protter, A.A. B-Type natriuretic peptide inhibited angiotensin II-stimulated cholesterol biosynthesis, cholesterol transfer, and steroidogenesis in primary human adrenocortical cells. Endocrinology, 2007, 148(8), 3722-3729.
[http://dx.doi.org/10.1210/en.2006-1599] [PMID: 17478552]
[34]
Maisel, A.S.; Krishnaswamy, P.; Nowak, R.M.; McCord, J.; Hollander, J.E.; Duc, P.; Omland, T.; Storrow, A.B.; Abraham, W.T.; Wu, A.H.B.; Clopton, P.; Steg, P.G.; Westheim, A.; Knudsen, C.W.; Perez, A.; Kazanegra, R.; Herrmann, H.C.; McCullough, P.A. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N. Engl. J. Med., 2002, 347(3), 161-167.
[http://dx.doi.org/10.1056/NEJMoa020233] [PMID: 12124404]
[35]
Rinat, C.; Becker-Cohen, R.; Nir, A.; Feinstein, S.; Algur, N.; Ben-Shalom, E.; Farber, B.; Frishberg, Y. B-type natriuretic peptides are reliable markers of cardiac strain in CKD pediatric patients. Pediatr. Nephrol., 2012, 27(4), 617-625.
[http://dx.doi.org/10.1007/s00467-011-2025-4] [PMID: 22038201]
[36]
deFilippi, C.R.; Fink, J.C.; Nass, C.M.; Chen, H.; Christenson, R. N-terminal pro-B-type natriuretic peptide for predicting coronary disease and left ventricular hypertrophy in asymptomatic CKD not requiring dialysis. Am. J. Kidney Dis., 2005, 46(1), 35-44.
[http://dx.doi.org/10.1053/j.ajkd.2005.04.007] [PMID: 15983955]
[37]
Nalcacioglu, H.; Ozkaya, O.; Kafali, H.C.; Tekcan, D.; Avci, B.; Baysal, K. Is N-terminal pro-brain natriuretic peptide a reliable marker for body fluid status in children with chronic kidney disease? Arch. Med. Sci., 2020, 16(4), 802-810.
[http://dx.doi.org/10.5114/aoms.2019.85460] [PMID: 32542081]
[38]
Garoufi, A.; Koumparelou, A.; Askiti, V.; Lykoudis, P.; Mitsioni, A.; Drapanioti, S.; Servos, G.; Papadaki, M.; Gourgiotis, D.; Marmarinos, A. Plasma brain natriuretic peptide levels in children with chronic kidney disease and renal transplant recipients: A single center study. Children, 2022, 9(6), 916.
[http://dx.doi.org/10.3390/children9060916] [PMID: 35740855]
[39]
Skrzypczyk, P. Okarska-Napierała, M.; Pietrzak, R.; Pawlik, K.; Waścińska, K.; Werner, B.; Pańczyk-Tomaszewska, M. NT-proBNP as a potential marker of cardiovascular damage in children with chronic kidney disease. J. Clin. Med., 2021, 10(19), 4344.
[http://dx.doi.org/10.3390/jcm10194344] [PMID: 34640365]
[40]
Izquierdo, M.C.; Martin-Cleary, C.; Fernandez-Fernandez, B.; Elewa, U.; Sanchez-Niño, M.D.; Carrero, J.J.; Ortiz, A. CXCL16 in kidney and cardiovascular injury. Cytokine Growth Factor Rev., 2014, 25(3), 317-325.
[http://dx.doi.org/10.1016/j.cytogfr.2014.04.002] [PMID: 24861945]
[41]
Sheikine, Y.; Sirsjö, A. CXCL16/SR-PSOX—A friend or a foe in atherosclerosis? Atherosclerosis, 2008, 197(2), 487-495.
[http://dx.doi.org/10.1016/j.atherosclerosis.2007.11.034] [PMID: 18191863]
[42]
Gutwein, P.; Abdel-Bakky, M.S.; Schramme, A.; Doberstein, K.; Kämpfer-Kolb, N.; Amann, K.; Hauser, I.A.; Obermüller, N.; Bartel, C.; Abdel-Aziz, A.A.H.; El Sayed, E.S.M.; Pfeilschifter, J. CXCL16 is expressed in podocytes and acts as a scavenger receptor for oxidized low-density lipoprotein. Am. J. Pathol., 2009, 174(6), 2061-2072.
[http://dx.doi.org/10.2353/ajpath.2009.080960] [PMID: 19435795]
[43]
Schramme, A.; Abdel-Bakky, M.S.; Kämpfer-Kolb, N.; Pfeilschifter, J.; Gutwein, P. The role of CXCL16 and Its processing metalloproteinases ADAM10 and ADAM17 in the proliferation and migration of human mesangial cells. Biochem. Biophys. Res. Commun., 2008, 370.
[44]
Wuttge, D.M.; Zhou, X.; Sheikine, Y.; Wågsäter, D.; Stemme, V.; Hedin, U.; Stemme, S.; Hansson, G.K.; Sirsjö, A. CXCL16/SR-PSOX is an interferon-gamma-regulated chemokine and scavenger receptor expressed in atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol., 2004, 24(4), 750-755.
[http://dx.doi.org/10.1161/01.ATV.0000124102.11472.36] [PMID: 14988089]
[45]
Xia, Y.; Entman, M.L.; Wang, Y. Critical role of CXCL16 in hypertensive kidney injury and fibrosis. Hypertension, 2013, 62(6), 1129-1137.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01837] [PMID: 24060897]
[46]
Izquierdo, M.C.; Sanz, A.B.; Mezzano, S.; Blanco, J.; Carrasco, S.; Sanchez-Niño, M.D.; Benito-Martín, A.; Ruiz-Ortega, M.; Egido, J.; Ortiz, A. TWEAK (tumor necrosis factor–like weak inducer of apoptosis) activates CXCL16 expression during renal tubulointerstitial inflammation. Kidney Int., 2012, 81(11), 1098-1107.
[http://dx.doi.org/10.1038/ki.2011.475] [PMID: 22278019]
[47]
Chen, G.; Lin, S.C.; Chen, J.; He, L.; Dong, F.; Xu, J.; Han, S.; Du, J.; Entman, M.L.; Wang, Y. CXCL16 recruits bone marrow-derived fibroblast precursors in renal fibrosis. J. Am. Soc. Nephrol., 2011, 22(10), 1876-1886.
[http://dx.doi.org/10.1681/ASN.2010080881] [PMID: 21816936]
[48]
Ma, Z.; Jin, X.; He, L.; Wang, Y. CXCL16 regulates renal injury and fibrosis in experimental renal artery stenosis. Am. J. Physiol. Heart Circ. Physiol., 2016, 311(3), H815-H821.
[http://dx.doi.org/10.1152/ajpheart.00948.2015] [PMID: 27496882]
[49]
Lin, Z.; Gong, Q.; Zhou, Z.; Zhang, W.; Liao, S.; Liu, Y.; Yan, X.; Pan, X.; Lin, S.; Li, X. Increased plasma CXCL16 levels in patients with chronic kidney diseases. Eur. J. Clin. Invest., 2011, 41(8), 836-845.
[http://dx.doi.org/10.1111/j.1365-2362.2011.02473.x] [PMID: 21299552]
[50]
Nazari, A.; Sardoo, A.M.; Fard, E.T.; Khorramdelazad, H.; Hassanshahi, G.; Nadimi, A.E. Plasma CXCL16 level is associated with cardiovascular disease in Iranian hemodialysis patients. Biomed. Pharmac. J., 2017, 10, 01-07.
[http://dx.doi.org/10.13005/bpj/1074]
[51]
Afsar, B.; Takir, M.; Kostek, O.; Covic, A.; Kanbay, M. Endocan: A new molecule playing a role in the development of hypertension and chronic kidney disease? J. Clin. Hypertens., 2014, 16(12), 914-916.
[http://dx.doi.org/10.1111/jch.12440] [PMID: 25376269]
[52]
Zhang, S.M.; Zuo, L.; Zhou, Q.; Gui, S.Y.; Shi, R.; Wu, Q.; Wei, W.; Wang, Y. Expression and distribution of endocan in human tissues. Biotech. Histochem., 2012, 87(3), 172-178.
[http://dx.doi.org/10.3109/10520295.2011.577754] [PMID: 21526908]
[53]
Kali, K.; Shetty, R. Endocan: A novel circulating proteoglycan. Indian J. Pharmacol., 2014, 46.
[54]
Balta, S.; Mikhailidis, D.P.; Demirkol, S.; Ozturk, C.; Celik, T.; Iyisoy, A. Endocan: A novel inflammatory indicator in cardiovascular disease? Atherosclerosis, 2015, 243(1), 339-343.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.09.030] [PMID: 26448266]
[55]
Leite, A.R.; Borges-Canha, M.; Cardoso, R.; Neves, J.S.; Castro-Ferreira, R.; Leite-Moreira, A. Novel biomarkers for evaluation of endothelial dysfunction. Angiology, 2020, 71(5), 397-410.
[http://dx.doi.org/10.1177/0003319720903586] [PMID: 32077315]
[56]
Lee, H.G.; Choi, H.Y.; Bae, J.S. Endocan as a potential diagnostic or prognostic biomarker for chronic kidney disease. Kidney Int., 2014, 86(6), 1079-1081.
[http://dx.doi.org/10.1038/ki.2014.292] [PMID: 25427083]
[57]
Lee, W.; Ku, S.K.; Kim, S.W.; Bae, J.S. Endocan elicits severe vascular inflammatory responses in vitro and in vivo. J. Cell. Physiol., 2014, 229(5), 620-630.
[http://dx.doi.org/10.1002/jcp.24485] [PMID: 24446198]
[58]
Pawlak, K.; Mysliwiec, M.; Pawlak, D. Endocan-the new endothelial activation marker independently associated with soluble endothelial adhesion molecules in uraemic patients with cardiovascular disease. Clin. Biochem., 2015, 48(6), 425-430.
[http://dx.doi.org/10.1016/j.clinbiochem.2015.01.006] [PMID: 25617664]
[59]
Matsui, M.; Uemura, S.; Takeda, Y.; Samejima, K.; Matsumoto, T.; Hasegawa, A.; Tsushima, H.; Hoshino, E.; Ueda, T.; Morimoto, K.; Okamoto, K.; Okada, S.; Onoue, K.; Okayama, S.; Kawata, H.; Kawakami, R.; Maruyama, N.; Akai, Y.; Iwano, M.; Shiiki, H.; Saito, Y. Placental growth factor as a predictor of cardiovascular events in patients with CKD from the NARA-CKD study. J. Am. Soc. Nephrol., 2015, 26(11), 2871-2881.
[http://dx.doi.org/10.1681/ASN.2014080772] [PMID: 25788536]
[60]
Torán, J.L.; Aguilar, S.; López, J.A.; Torroja, C.; Quintana, J.A.; Santiago, C.; Abad, J.L.; Gomes-Alves, P.; Gonzalez, A.; Bernal, J.A.; Jiménez-Borreguero, L.J.; Alves, P.M. R-Borlado, L.; Vázquez, J.; Bernad, A. CXCL6 is an important paracrine factor in the pro-angiogenic human cardiac progenitor-like cell secretome. Sci. Rep., 2017, 7(1), 12490.
[http://dx.doi.org/10.1038/s41598-017-11976-6] [PMID: 28970523]
[61]
Rose-John, S. Interleukin-6 family cytokines. Cold Spring Harb. Perspect. Biol., 2018, 10(2), a028415.
[http://dx.doi.org/10.1101/cshperspect.a028415] [PMID: 28620096]
[62]
Szibor, M.; Pöling, J.; Warnecke, H.; Kubin, T.; Braun, T. Remodeling and dedifferentiation of adult cardiomyocytes during disease and regeneration. Cell. Mol. Life Sci., 2014, 71(10), 1907-1916.
[http://dx.doi.org/10.1007/s00018-013-1535-6] [PMID: 24322910]
[63]
Kim, M.; O’Brien, L.E.; Kwon, S.H.; Mostov, K.E. STAT1 is required for redifferentiation during Madin-Darby canine kidney tubulogenesis. Mol. Biol. Cell, 2010, 21(22), 3926-3933.
[http://dx.doi.org/10.1091/mbc.e10-02-0112] [PMID: 20861313]
[64]
Huang, H.L.; Zhu, S.; Wang, W.Q.; Nie, X.; Shi, Y.Y.; He, Y.; Song, H.L.; Miao, Q.; Fu, P.; Wang, L.L.; Li, G.X. Diagnosis of acute myocardial infarction in hemodialysis patients with high-sensitivity cardiac Troponin T assay. Arch. Pathol. Lab. Med., 2016, 140(1), 75-80.
[http://dx.doi.org/10.5858/arpa.2014-0580-OA] [PMID: 26717058]
[65]
Wayand, D.; Baum, H.; Schätzle, G.; Schärf, J.; Neumeier, D. Cardiac troponin T and I in end-stage renal failure. Clin. Chem., 2000, 46(9), 1345-1350.
[http://dx.doi.org/10.1093/clinchem/46.9.1345] [PMID: 10973864]
[66]
Michos, E.D.; Wilson, L.M.; Yeh, H.C.; Berger, Z.; Suarez-Cuervo, C.; Stacy, S.R.; Bass, E.B. Prognostic value of cardiac troponin in patients with chronic kidney disease without suspected acute coronary syndrome: A systematic review and meta-analysis. Ann. Intern. Med., 2014, 161(7), 491-501.
[http://dx.doi.org/10.7326/M14-0743] [PMID: 25111499]
[67]
Sadoh, W.E.; Eregie, C.O.; Nwaneri, D.U.; Sadoh, A.E. The diagnostic value of both troponin T and creatinine kinase isoenzyme (CK-MB) in detecting combined renal and myocardial injuries in asphyxiated infants. PLoS One, 2014, 9(3), e91338.
[http://dx.doi.org/10.1371/journal.pone.0091338] [PMID: 24625749]
[68]
Porter, G.A.; Norton, T.L.; Lindsley, J.; Stevens, J.S.; Phillips, D.S.; Bennett, W.M. Relationship between elevated serum troponin values in end-stage renal disease patients and abnormal isotopic cardiac scans following stress. Ren. Fail., 2003, 25(1), 55-65.
[http://dx.doi.org/10.1081/JDI-120017468] [PMID: 12617333]
[69]
Baig, S.Z.; Coats, W.C.; Aggarwal, K.B.; Alpert, M.A. Assessing cardiovascular disease in the dialysis patient. Adv. Perit. Dial., 2009, 25, 147-154.
[PMID: 19886337]
[70]
Thumser, A.E.; Moore, J.B.; Plant, N.J. Fatty acid binding proteins. Curr. Opin. Clin. Nutr. Metab. Care, 2014, 17(2), 124-129.
[http://dx.doi.org/10.1097/MCO.0000000000000031] [PMID: 24500438]
[71]
Storch, J.; Thumser, A.E. Tissue-specific functions in the fatty acid-binding protein family. J. Biol. Chem., 2010, 285(43), 32679-32683.
[http://dx.doi.org/10.1074/jbc.R110.135210] [PMID: 20716527]
[72]
Su, Y.H.; Shu, K.H.; Hu, C.P.; Cheng, C.H.; Wu, M.J.; Yu, T.M.; Chuang, Y.W.; Huang, S.T.; Chen, C.H. Serum Endocan correlated with stage of chronic kidney disease and deterioration in renal transplant recipients. Transplant. Proc., 2014, 46(2), 323-327.
[http://dx.doi.org/10.1016/j.transproceed.2013.10.057] [PMID: 24655954]
[73]
Hayes Ryan, D.; McCarthy, F.P.; O’Donoghue, K.; Kenny, L.C. Placental growth factor: A review of literature and future applications. Pregnancy Hypertens., 2018, 14, 260-264.
[http://dx.doi.org/10.1016/j.preghy.2018.03.003] [PMID: 29555222]
[74]
Selvaraj, S.K.; Giri, R.K.; Perelman, N.; Johnson, C.; Malik, P.; Kalra, V.K. Mechanism of monocyte activation and expression of proinflammatory cytochemokines by placenta growth factor. Blood, 2003, 102(4), 1515-1524.
[http://dx.doi.org/10.1182/blood-2002-11-3423] [PMID: 12689930]
[75]
Khurana, R.; Moons, L.; Shafi, S.; Luttun, A.; Collen, D.; Martin, J.F.; Carmeliet, P.; Zachary, I.C. Placental growth factor promotes atherosclerotic intimal thickening and macrophage accumulation. Circulation, 2005, 111(21), 2828-2836.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.495887] [PMID: 15911697]
[76]
Taniguchi, T.; Asano, Y.; Nakamura, K.; Yamashita, T.; Saigusa, R.; Ichimura, Y.; Takahashi, T.; Toyama, T.; Yoshizaki, A.; Sato, S. Fli1 deficiency induces CXCL6 expression in dermal fibroblasts and endothelial cells, contributing to the development of fibrosis and vasculopathy in systemic sclerosis. J. Rheumatol., 2017, 44(8), 1198-1205.
[http://dx.doi.org/10.3899/jrheum.161092] [PMID: 28507181]
[77]
Rot, A.; von Andrian, U.H. Chemokines in innate and adaptive host defense: Basic chemokinese grammar for immune cells. Annu. Rev. Immunol., 2004, 22(1), 891-928.
[http://dx.doi.org/10.1146/annurev.immunol.22.012703.104543] [PMID: 15032599]
[78]
Strieter, R.M.; Polverini, P.J.; Kunkel, S.L.; Arenberg, D.A.; Burdick, M.D.; Kasper, J.; Dzuiba, J.; Van Damme, J.; Walz, A.; Marriott, D.; Chan, S-Y.; Roczniak, S.; Shanafelt, A.B. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem., 1995, 270(45), 27348-27357.
[http://dx.doi.org/10.1074/jbc.270.45.27348] [PMID: 7592998]
[79]
Tian, H.; Huang, P.; Zhao, Z.; Tang, W.; Xia, J. HIF-1α plays a role in the chemotactic migration of hepatocarcinoma cells through the modulation of CXCL6 expression. Cell. Physiol. Biochem., 2014, 34(5), 1536-1546.
[http://dx.doi.org/10.1159/000366357] [PMID: 25323032]
[80]
Wuyts, A.; Struyf, S.; Gijsbers, K.; Schutyser, E.; Put, W.; Conings, R.; Lenaerts, J.P.; Geboes, K.; Opdenakker, G.; Menten, P.; Proost, P.; Van Damme, J. The CXC chemokine GCP-2/CXCL6 is predominantly induced in mesenchymal cells by interleukin-1beta and is down-regulated by interferon-gamma: Comparison with interleukin-8/CXCL8. Lab. Invest., 2003, 83(1), 23-34.
[http://dx.doi.org/10.1097/01.LAB.0000048719.53282.00] [PMID: 12533683]
[81]
Sun, M.Y.; Wang, S.J.; Li, X.Q.; Shen, Y.L.; Lu, J.R.; Tian, X.H.; Rahman, K.; Zhang, L.J.; Nian, H.; Zhang, H. CXCL6 promotes renal interstitial fibrosis in diabetic nephropathy by activating JAK/STAT3 signaling pathway. Front. Pharmacol., 2019, 10, 224.
[http://dx.doi.org/10.3389/fphar.2019.00224] [PMID: 30967776]
[82]
Karagiannis, G.S.; Saraon, P.; Jarvi, K.A.; Diamandis, E.P. Proteomic signatures of angiogenesis in androgen-independent prostate cancer. Prostate, 2014, 74(3), 260-272.
[http://dx.doi.org/10.1002/pros.22747] [PMID: 24166580]
[83]
Reich, N.; Beyer, C.; Gelse, K.; Akhmetshina, A.; Dees, C.; Zwerina, J.; Schett, G.; Distler, O.; Distler, J.H.W. Microparticles stimulate angiogenesis by inducing ELR+ CXC-chemokines in synovial fibroblasts. J. Cell. Mol. Med., 2011, 15(4), 756-762.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01051.x] [PMID: 20219013]
[84]
Hermanns, H.M. Oncostatin M and interleukin-31: Cytokines, receptors, signal transduction and physiology. Cytokine Growth Factor Rev., 2015, 26(5), 545-558.
[http://dx.doi.org/10.1016/j.cytogfr.2015.07.006] [PMID: 26198770]
[85]
Stawski, L.; Trojanowska, M. Oncostatin M and its role in fibrosis. Connect. Tissue Res., 2019, 60(1), 40-49.
[http://dx.doi.org/10.1080/03008207.2018.1500558] [PMID: 30056769]
[86]
Neuwirt, H.; Eder, I.E.; Puhr, M.; Rudnicki, M. SOCS-3 is downregulated in progressive CKD patients and regulates proliferation in human renal proximal tubule cells in a STAT1/3 independent manner. Lab. Invest., 2013, 93(1), 123-134.
[http://dx.doi.org/10.1038/labinvest.2012.154] [PMID: 23108375]
[87]
Sato, F.; Miyaoka, Y.; Miyajima, A.; Tanaka, M.; Oncostatin, M. Oncostatin M maintains the hematopoietic microenvironment in the bone marrow by modulating adipogenesis and osteogenesis. PLoS One, 2014, 9(12), e116209.
[http://dx.doi.org/10.1371/journal.pone.0116209] [PMID: 25551451]
[88]
Hui, W.; Cawston, T.E.; Richards, C.D.; Rowan, A.D. A model of inflammatory arthritis highlights a role for oncostatin M in pro-inflammatory cytokine-induced bone destruction via RANK/RANKL. Arthritis Res., 2005, 7(1), R57-R64.
[http://dx.doi.org/10.1186/ar1460] [PMID: 15642143]
[89]
Hui, W.; Bell, M.; Carroll, G. Detection of oncostatin M in synovial fluid from patients with rheumatoid arthritis. Ann. Rheum. Dis., 1997, 56(3), 184-187.
[http://dx.doi.org/10.1136/ard.56.3.184] [PMID: 9135222]
[90]
Song, H.Y.; Jeon, E.S.; Kim, J.I.; Jung, J.S.; Kim, J.H.; Oncostatin, M. Oncostatin M promotes osteogenesis and suppresses adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells. J. Cell. Biochem., 2007, 101(5), 1238-1251.
[http://dx.doi.org/10.1002/jcb.21245] [PMID: 17226768]
[91]
Kubin, T.; Pöling, J.; Kostin, S.; Gajawada, P.; Hein, S.; Rees, W.; Wietelmann, A.; Tanaka, M.; Lörchner, H.; Schimanski, S.; Szibor, M.; Warnecke, H.; Braun, T.; Oncostatin, M. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell, 2011, 9(5), 420-432.
[http://dx.doi.org/10.1016/j.stem.2011.08.013] [PMID: 22056139]
[92]
Zhang, X.; Ma, S.; Zhang, R.; Li, S.; Zhu, D.; Han, D.; Li, X.; Li, C.; Yan, W.; Sun, D.; Xu, B.; Wang, Y.; Cao, F. Oncostatin M-induced cardiomyocyte dedifferentiation regulates the progression of diabetic cardiomyopathy through B-Raf/Mek/Erk signaling pathway. Acta Biochim. Biophys. Sin., 2016, 48(3), 257-265.
[http://dx.doi.org/10.1093/abbs/gmv137] [PMID: 26837420]
[93]
Nightingale, J.; Patel, S.; Suzuki, N.; Buxton, R.; Takagi, K.; Suzuki, J.; Sumi, Y.; Imaizumi, A.; Mason, R.M.; Zhang, Z. Oncostatin M, a cytokine released by activated mononuclear cells, induces epithelial cell-myofibroblast transdifferentiation via Jak/Stat pathway activation. J. Am. Soc. Nephrol., 2004, 15(1), 21-32.
[http://dx.doi.org/10.1097/01.ASN.0000102479.92582.43] [PMID: 14694154]
[94]
Humphreys, B.D.; Valerius, M.T.; Kobayashi, A.; Mugford, J.W.; Soeung, S.; Duffield, J.S.; McMahon, A.P.; Bonventre, J.V. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell, 2008, 2(3), 284-291.
[http://dx.doi.org/10.1016/j.stem.2008.01.014] [PMID: 18371453]
[95]
Little, M.H. Renal organogenesis. Organogenesis, 2011, 7(4), 229-241.
[http://dx.doi.org/10.4161/org.7.4.18057] [PMID: 22198432]
[96]
Pollack, V.; Sarközi, R.; Banki, Z.; Feifel, E.; Wehn, S.; Gstraunthaler, G.; Stoiber, H.; Mayer, G.; Montesano, R.; Strutz, F.; Schramek, H. Oncostatin M-induced effects on EMT in human proximal tubular cells: Differential role of ERK signaling. Am. J. Physiol. Renal Physiol., 2007, 293(5), F1714-F1726.
[http://dx.doi.org/10.1152/ajprenal.00130.2007] [PMID: 17881458]
[97]
Hernández-Vargas, P.; López-Franco, O.; Sanjuán, G.; Rupérez, M.; Ortiz-Muñoz, G.; Suzuki, Y.; Aguado-Roncero, P.; Pérez-Tejerizo, G.; Blanco, J.; Egido, J.; Ruiz-Ortega, M.; Gómez-Guerrero, C. Suppressors of cytokine signaling regulate angiotensin II-activated Janus kinase-signal transducers and activators of transcription pathway in renal cells. J. Am. Soc. Nephrol., 2005, 16(6), 1673-1683.
[http://dx.doi.org/10.1681/ASN.2004050374] [PMID: 15829701]
[98]
Takeda, S.; Yamashita, A.; Maeda, K.; Maéda, Y. Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature, 2003, 424(6944), 35-41.
[http://dx.doi.org/10.1038/nature01780] [PMID: 12840750]
[99]
Thygesen, K.; Mair, J.; Katus, H.; Plebani, M.; Venge, P.; Collinson, P.; Lindahl, B.; Giannitsis, E.; Hasin, Y.; Galvani, M.; Tubaro, M.; Alpert, J.S.; Biasucci, L.M.; Koenig, W.; Mueller, C.; Huber, K.; Hamm, C.; Jaffe, A.S. Recommendations for the use of cardiac troponin measurement in acute cardiac care. Eur. Heart J., 2010, 31(18), 2197-2204.
[http://dx.doi.org/10.1093/eurheartj/ehq251] [PMID: 20685679]
[100]
Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Fourth Universal Definition of Myocardial Infarction (2018). Executive group on behalf of the joint European society of cardiology (ESC)/American college of cardiology (ACC)/american heart association (AHA)/world heart federation (WHF) task force for the universal definition of myocardial infarction. J. Am. Coll. Cardiol., 2018, 72(18), 2231-2264.
[http://dx.doi.org/10.1016/j.jacc.2018.08.1038] [PMID: 30153967]
[101]
Thygesen, K.; Mair, J.; Giannitsis, E.; Mueller, C.; Lindahl, B.; Blankenberg, S.; Huber, K.; Plebani, M.; Biasucci, L.M.; Tubaro, M.; Collinson, P.; Venge, P.; Hasin, Y.; Galvani, M.; Koenig, W.; Hamm, C.; Alpert, J.S.; Katus, H.; Jaffe, A.S. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur. Heart J., 2012, 33(18), 2252-2257.
[http://dx.doi.org/10.1093/eurheartj/ehs154] [PMID: 22723599]
[102]
Thygesen, K.; Alpert, J.S.; White, H.D.; Jaffe, A.S.; Apple, F.S.; Galvani, M.; Katus, H.A.; Newby, L.K.; Ravkilde, J.; Chaitman, B.; Clemmensen, P.M.; Dellborg, M.; Hod, H.; Porela, P.; Underwood, R.; Bax, J.J.; Beller, G.A.; Bonow, R.; Van Der Wall, E.E.; Bassand, J-P.; Wijns, W.; Ferguson, T.B.; Steg, P.G.; Uretsky, B.F.; Williams, D.O.; Armstrong, P.W.; Antman, E.M.; Fox, K.A.; Hamm, C.W.; Ohman, E.M.; Simoons, M.L.; Poole-Wilson, P.A.; Gurfinkel, E.P.; Lopez-Sendon, J-L.; Pais, P.; Mendis, S.; Zhu, J-R.; Wallentin, L.C.; Fernandez-Aviles, F.; Fox, K.M.; Parkhomenko, A.N.; Priori, S.G.; Tendera, M.; Voipio-Pulkki, L-M.; Vahanian, A.; Camm, A.J.; De Caterina, R.; Dean, V.; Dickstein, K.; Filippatos, G.; Funck-Brentano, C.; Hellemans, I.; Kristensen, S.D.; McGregor, K.; Sechtem, U.; Silber, S.; Tendera, M.; Widimsky, P.; Zamorano, J.L.; Morais, J.; Brener, S.; Harrington, R.; Morrow, D.; Sechtem, U.; Lim, M.; Martinez-Rios, M.A.; Steinhubl, S.; Levine, G.N.; Gibler, W.B.; Goff, D.; Tubaro, M.; Dudek, D.; Al-Attar, N. Universal definition of myocardial infarction. Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Eur. Heart J., 2007, 28(20), 2525-2538.
[http://dx.doi.org/10.1093/eurheartj/ehm355] [PMID: 17951287]
[103]
Jaffe, A.S. Chasing troponin. J. Am. Coll. Cardiol., 2006, 48(9), 1763-1764.
[http://dx.doi.org/10.1016/j.jacc.2006.08.006] [PMID: 17084246]
[104]
Neves, A.L.; Henriques-Coelho, T.; Leite-Moreira, A.; Areias, J.C. Cardiac injury biomarkers in paediatric age: Are we there yet? Heart Fail. Rev., 2016, 21(6), 771-781.
[http://dx.doi.org/10.1007/s10741-016-9567-2] [PMID: 27255332]
[105]
Saenger, A.K. A tale of two biomarkers: The use of troponin and CK-MB in contemporary practice. Clin. Lab. Sci., 2010, 23(3), 134-140.
[http://dx.doi.org/10.29074/ascls.23.3.134] [PMID: 20734885]
[106]
Ooi, D.S.; Isotalo, P.A.; Veinot, J.P. Correlation of antemortem serum creatine kinase, creatine kinase-MB, troponin I, and troponin T with cardiac pathology. Clin. Chem., 2000, 46(3), 338-344.
[http://dx.doi.org/10.1093/clinchem/46.3.338] [PMID: 10702520]
[107]
Long, B.; Belcher, C.N.; Koyfman, A.; Bronner, J.M. Interpreting troponin in renal disease: A narrative review for emergency clinicians. Am. J. Emerg. Med., 2020, 38(5), 990-997.
[http://dx.doi.org/10.1016/j.ajem.2019.11.041] [PMID: 31831340]
[108]
Chesnaye, N.C.; Szummer, K.; Bárány, P.; Heimbürger, O.; Magin, H.; Almquist, T.; Uhlin, F.; Dekker, F.W.; Wanner, C.; Jager, K.J.; Evans, M. Association between renal function and Troponin T over time in stable chronic kidney disease patients. J. Am. Heart Assoc., 2019, 8, e013091.
[http://dx.doi.org/10.1161/JAHA.119.013091] [PMID: 31662068]
[109]
McLaurin, M.D.; Apple, F.S.; Voss, E.M.; Herzog, C.A.; Sharkey, S.W. Cardiac troponin I, cardiac troponin T, and creatine kinase MB in dialysis patients without ischemic heart disease: evidence of cardiac troponin T expression in skeletal muscle. Clin. Chem., 1997, 43(6), 976-982.
[http://dx.doi.org/10.1093/clinchem/43.6.976] [PMID: 9191549]
[110]
Karadaş, U.; Karadaş, N.Ö.; Bak, M.; Serdaroğlu, E.; Yılmazer, M.M.; Meşe, T. The role of cardiac troponin T in detection of cardiac damage and long term mortality in children with chronic renal disease. Turk. J. Pediatr., 2019, 61(6), 873-878.
[http://dx.doi.org/10.24953/turkjped.2019.06.008] [PMID: 32134581]
[111]
Gualano, B.; Artioli, G.G.; Poortmans, J.R.; Lancha, Junior, A.H. Exploring the therapeutic role of creatine supplementation. Amino Acids, 2010, 38(1), 31-44.
[http://dx.doi.org/10.1007/s00726-009-0263-6] [PMID: 19253023]
[112]
de Poli, R.A.B.; Roncada, L.H.; Malta, E.S.; Artioli, G.G.; Bertuzzi, R.; Zagatto, A.M. Creatine supplementation improves phosphagen energy pathway during Supramaximal effort, but does not improve anaerobic capacity or performance. Front. Physiol., 2019, 10, 352.
[http://dx.doi.org/10.3389/fphys.2019.00352] [PMID: 31024332]
[113]
Kitzenberg, D.; Colgan, S.P.; Glover, L.E. Creatine kinase in ischemic and inflammatory disorders. Clin. Transl. Med., 2016, 5(1), 31.
[http://dx.doi.org/10.1186/s40169-016-0114-5] [PMID: 27527620]
[114]
Cervellin, G.; Comelli, I.; Benatti, M.; Sanchis-Gomar, F.; Bassi, A.; Lippi, G. Non-traumatic rhabdomyolysis: Background, laboratory features, and acute clinical management. Clin. Biochem., 2017, 50(12), 656-662.
[http://dx.doi.org/10.1016/j.clinbiochem.2017.02.016] [PMID: 28235546]
[115]
Jaffe, A.S.; Garfinkel, B.T.; Ritter, C.S.; Sobel, B.E.; Plasma, M.B. Plasma mb creatine kinase after vigorous exercise in professional athletes. Am. J. Cardiol., 1984, 53(6), 856-858.
[http://dx.doi.org/10.1016/0002-9149(84)90419-3] [PMID: 6702638]
[116]
Antman, E.M.; Tanasijevic, M.J.; Thompson, B.; Schactman, M.; McCabe, C.H.; Cannon, C.P.; Fischer, G.A.; Fung, A.Y.; Thompson, C.; Wybenga, D.; Braunwald, E. Cardiac-specific troponin I levels to predict the risk of mortality in patients with acute coronary syndromes. N. Engl. J. Med., 1996, 335(18), 1342-1349.
[http://dx.doi.org/10.1056/NEJM199610313351802] [PMID: 8857017]
[117]
Younger, J.F.; Plein, S.; Barth, J.; Ridgway, J.P.; Ball, S.G.; Greenwood, J.P. Troponin-I concentration 72 h after myocardial infarction correlates with infarct size and presence of microvascular obstruction. Heart, 2006, 93(12), 1547-1551.
[http://dx.doi.org/10.1136/hrt.2006.109249] [PMID: 17540686]
[118]
Boo, N.Y.; Hafidz, H.; Nawawi, H.M.; Cheah, F.C.; Fadzil, Y.J.; Abdul-Aziz, B.B.; Ismail, Z. Comparison of serum cardiac troponin T and creatine kinase MB isoenzyme mass concentrations in asphyxiated term infants during the first 48 h of life. J. Paediatr. Child Health, 2005, 41(7), 331-337.
[http://dx.doi.org/10.1111/j.1440-1754.2005.00626.x] [PMID: 16014136]
[119]
Jaffe, A.S. Elevations in cardiac troponin measurements: False false-positives: the real truth. Cardiovasc. Toxicol., 2001, 1(2), 087-092.
[http://dx.doi.org/10.1385/CT:1:2:087] [PMID: 12213978]
[120]
Bosch, X.; Poch, E.; Grau, J.M. Rhabdomyolysis and acute kidney injury. N. Engl. J. Med., 2009, 361(1), 62-72.
[http://dx.doi.org/10.1056/NEJMra0801327] [PMID: 19571284]
[121]
Robbins, M.J.; Epstein, E.M.; Shah, S. Creatine kinase subform analysis in hemodialysis patients without acute coronary syndromes. Nephron, 1997, 76(3), 296-299.
[http://dx.doi.org/10.1159/000190194] [PMID: 9226229]
[122]
Jaffe, A.S.; Ritter, C.; Meltzer, V.; Harter, H.; Roberts, R. Unmasking artifactual increases in creatine kinase isoenzymes in patients with renal failure. J. Lab. Clin. Med., 1984, 104(2), 193-202.
[PMID: 6747438]
[123]
Löwbeer, C.; Gutierrez, A.; Gustafsson, S.A.; Norrman, R.; Hulting, J.; Seeberger, A. Elevated cardiac troponin T in peritoneal dialysis patients is associated with CRP and predicts all-cause mortality and cardiac death. Nephrol. Dial. Transplant., 2002, 17(12), 2178-2183.
[http://dx.doi.org/10.1093/ndt/17.12.2178] [PMID: 12454230]
[124]
Furuhashi, M.; Saitoh, S.; Shimamoto, K.; Miura, T. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin. Med. Insights Cardiol., 2015, 8(Suppl. 3), 23-33.
[PMID: 25674026]
[125]
Furuhashi, M. Fatty acid-binding protein 4 in cardiovascular and metabolic diseases. J. Atheroscler. Thromb., 2019, 26(3), 216-232.
[http://dx.doi.org/10.5551/jat.48710] [PMID: 30726793]
[126]
Furuhashi, M.; Hotamisligil, G.S. Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov., 2008, 7(6), 489-503.
[http://dx.doi.org/10.1038/nrd2589] [PMID: 18511927]
[127]
Okazaki, Y.; Furuhashi, M.; Tanaka, M.; Mita, T.; Fuseya, T.; Ishimura, S.; Watanabe, Y.; Hoshina, K.; Akasaka, H.; Ohnishi, H.; Yoshida, H.; Saitoh, S.; Shimamoto, K.; Miura, T. Urinary excretion of fatty acid-binding protein 4 is associated with albuminuria and renal dysfunction. PLoS One, 2014, 9(12), e115429.
[http://dx.doi.org/10.1371/journal.pone.0115429] [PMID: 25506691]
[128]
Tanaka, M.; Furuhashi, M.; Okazaki, Y.; Mita, T.; Fuseya, T.; Ohno, K.; Ishimura, S.; Yoshida, H.; Miura, T. Ectopic expression of fatty acid-binding protein 4 in the glomerulus is associated with proteinuria and renal dysfunction. Nephron Clin. Pract., 2015, 128(3-4), 345-351.
[http://dx.doi.org/10.1159/000368412] [PMID: 25592475]
[129]
Xu, A.; Tso, A.W.K.; Cheung, B.M.Y.; Wang, Y.; Wat, N.M.S.; Fong, C.H.Y.; Yeung, D.C.Y.; Janus, E.D.; Sham, P.C.; Lam, K.S.L. Circulating adipocyte-fatty acid binding protein levels predict the development of the metabolic syndrome: A 5-year prospective study. Circulation, 2007, 115(12), 1537-1543.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.647503] [PMID: 17389279]
[130]
Iso, T.; Maeda, K.; Hanaoka, H.; Suga, T.; Goto, K.; Syamsunarno, M.R.A.A.; Hishiki, T.; Nagahata, Y.; Matsui, H.; Arai, M.; Yamaguchi, A.; Abumrad, N.A.; Sano, M.; Suematsu, M.; Endo, K.; Hotamisligil, G.S.; Kurabayashi, M. Capillary endothelial fatty acid binding proteins 4 and 5 play a critical role in fatty acid uptake in heart and skeletal muscle. Arterioscler. Thromb. Vasc. Biol., 2013, 33(11), 2549-2557.
[http://dx.doi.org/10.1161/ATVBAHA.113.301588] [PMID: 23968980]
[131]
Makowski, L.; Brittingham, K.C.; Reynolds, J.M.; Suttles, J.; Hotamisligil, G.S. The fatty acid-binding protein, aP2, coordinates macrophage cholesterol trafficking and inflammatory activity. Macrophage expression of aP2 impacts peroxisome proliferator-activated receptor gamma and IkappaB kinase activities. J. Biol. Chem., 2005, 280(13), 12888-12895.
[http://dx.doi.org/10.1074/jbc.M413788200] [PMID: 15684432]
[132]
Hui, X.; Li, H.; Zhou, Z.; Lam, K.S.L.; Xiao, Y.; Wu, D.; Ding, K.; Wang, Y.; Vanhoutte, P.M.; Xu, A. Adipocyte fatty acid-binding protein modulates inflammatory responses in macrophages through a positive feedback loop involving c-Jun NH2-terminal kinases and activator protein-1. J. Biol. Chem., 2010, 285(14), 10273-10280.
[http://dx.doi.org/10.1074/jbc.M109.097907] [PMID: 20145251]
[133]
Elmasri, H.; Karaaslan, C.; Teper, Y.; Ghelfi, E.; Weng, M.; Ince, T.A.; Kozakewich, H.; Bischoff, J.; Cataltepe, S. Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. FASEB J., 2009, 23(11), 3865-3873.
[http://dx.doi.org/10.1096/fj.09-134882] [PMID: 19625659]
[134]
Furuhashi, M.; Ishimura, S.; Ota, H.; Hayashi, M.; Nishitani, T.; Tanaka, M.; Yoshida, H.; Shimamoto, K.; Hotamisligil, G.S.; Miura, T. Serum fatty acid-binding protein 4 is a predictor of cardiovascular events in end-stage renal disease. PLoS One, 2011, 6(11), e27356.
[http://dx.doi.org/10.1371/journal.pone.0027356] [PMID: 22102888]
[135]
Mohammed, A.G.M.; Gafar, H.S.; Elmalah, A.A.; Elhady, M.; Abd Elgalil, H.M.; Bayoumy, E.S.M. Cardiac biomarkers and cardiovascular outcome in children with chronic kidney disease. Iran. J. Kidney Dis., 2019, 13(2), 120-128.
[PMID: 30988249]
[136]
Niizeki, T.; Takeishi, Y.; Arimoto, T.; Takabatake, N.; Nozaki, N.; Hirono, O.; Watanabe, T.; Nitobe, J.; Harada, M.; Suzuki, S.; Koyama, Y.; Kitahara, T.; Sasaki, T.; Kubota, I. Heart-type fatty acid-binding protein is more sensitive than troponin T to detect the ongoing myocardial damage in chronic heart failure patients. J. Card. Fail., 2007, 13(2), 120-127.
[http://dx.doi.org/10.1016/j.cardfail.2006.10.014] [PMID: 17395052]
[137]
Setsuta, K.; Seino, Y.; Ogawa, T.; Arao, M.; Miyatake, Y.; Takano, T. Use of cytosolic and myofibril markers in the detection of ongoing myocardial damage in patients with chronic heart failure. Am. J. Med., 2002, 113(9), 717-722.
[http://dx.doi.org/10.1016/S0002-9343(02)01394-3] [PMID: 12517360]
[138]
Shirakabe, A.; Kobayashi, N.; Hata, N.; Shinada, T.; Tomita, K.; Tsurumi, M.; Okazaki, H.; Matsushita, M.; Yamamoto, Y.; Yokoyama, S.; Asai, K.; Shimizu, W. The serum heart-type fatty acid-binding protein (HFABP) levels can be used to detect the presence of acute kidney injury on admission in patients admitted to the non-surgical intensive care unit. BMC Cardiovasc. Disord., 2016, 16(1), 174.
[http://dx.doi.org/10.1186/s12872-016-0340-1] [PMID: 27596162]
[139]
Kleine, A.H.; Glatz, J.F.C.; Van Nieuwenhoven, F.A.; Van der Vusse, G.J. Release of heart fatty acid-binding protein into plasma after acute myocardial infarction in man. Mol. Cell. Biochem., 1992, 116(1-2), 155-162.
[http://dx.doi.org/10.1007/BF01270583] [PMID: 1480144]
[140]
Ye, X.; He, Y.; Wang, S.; Wong, G.T.; Irwin, M.G.; Xia, Z. Heart-type fatty acid binding protein (H-FABP) as a biomarker for acute myocardial injury and long-term post-ischemic prognosis. Acta Pharmacol. Sin., 2018, 39(7), 1155-1163.
[http://dx.doi.org/10.1038/aps.2018.37] [PMID: 29770799]
[141]
Al-Hadi, H.A.; William, B.; Fox, K.A. Serum level of heart-type Fatty Acid-binding protein in patients with chronic renal failure. Sultan Qaboos Univ. Med. J., 2009, 9(3), 311-314.
[PMID: 21509315]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy