Generic placeholder image

Current Pharmacogenomics and Personalized Medicine

Editor-in-Chief

ISSN (Print): 1875-6921
ISSN (Online): 1875-6913

Mini-Review Article

Regulatory Role, Mechanism, and Metabolic Profile of BIOTIN in Gene Expression

Author(s): Ankita Wal, Abhijit Sasmal, Riya Singh, Princy Yadav, Yogesh Singh, Vipin Garg and Pranay Wal*

Volume 20, Issue 2, 2023

Published on: 24 July, 2023

Page: [73 - 86] Pages: 14

DOI: 10.2174/1875692120666230712160812

Price: $65

Open Access Journals Promotions 2
Abstract

Biotin, a vitamin that is water-soluble, is part of the vitamin B complex and is required by all living things, including humans. Biotin-dependent carboxylases are a prosthetic group of enzymes, and biotin catalyzes essential processes in the production of fatty acids, the breakdown of amino acids, and gluconeogenesis in eukaryotic cells. The role of biotin as the prosthetic group of the four biotin-dependent carboxylases is well understood in higher animals. Based on the roles of these carboxylases in metabolism, it was discovered that biotin is required for cell survival, proliferation, and differentiation. Biotin appears to play a role in cell function and has a spermatogenic impact. Biotin has been found to have a direct impact on the transcription of important enzymes in glucose metabolism. Glucokinase and phosphoenolpyruvate carboxykinase are glycolytic enzymes that biotin controls (PEPCK). Biotin appears to be involved in gene control, which may explain some of its functions regarding fetal development and cellular biology. According to investigations using microarrays as well as other types of gene expression, biotin appears to affect the transcription of genes encoding cytokines and their receptors, glucose metabolism genes, and genes involved in cellular biotin homeostasis. A biotin shortage has a considerable effect on gene expression in numerous tissues and cells, according to a microarray study. Biotin supplementation affects the expression of several genes depending on the tissue, demonstrating that gene expression differences reflect tissue function. Biotin affects energy, lipid, and glucose metabolism, according to metabolite research, which has improved our understanding of the biotin metabolic pathway. Using microarray and transcriptome analysis, this research investigates the effect of biotin on gene expression.

Keywords: Biotin, gene-expression, cell differentiation, spermatogenesis, neurotropic factor, glucose enzymes, glucokinase metabolism, cytokines.

Graphical Abstract
[1]
Patel DP, Swink SM, Castelo-Soccio L. A review of the use of biotin for hair loss. Skin Appendage Disord 2017; 3(3): 166-9.
[http://dx.doi.org/10.1159/000462981] [PMID: 28879195]
[2]
Bistas KG, Tadi P. Biotin. In: Florida: StatPearls Publishing 2021.
[3]
AL-Eitan LN Alqa’qa’ K, Amayreh W, et al.. Identification and characterization of BTD Gene mutations in jordanian children with biotinidase deficiency. J Pers Med 2020; 10(1): 4.
[http://dx.doi.org/10.3390/jpm10010004] [PMID: 31973013]
[4]
Soleymani T, Lo Sicco K, Shapiro J. The infatuation with biotin supplementation: Is there truth behind its rising popularity? A comparative analysis of clinical efficacy versus social popularity. J Drugs Dermatol 2017; 16(5): 496-500.
[PMID: 28628687]
[5]
Chauhan J, Dakshinamurti K. Transcriptional regulation of the glucokinase gene by biotin in starved rats. J Biol Chem 1991; 266(16): 10035-8.
[http://dx.doi.org/10.1016/S0021-9258(18)99181-7] [PMID: 2037560]
[6]
Rodriguez-Melendez R, Zempleni J. Regulation of gene expression by biotin. (review) J Nutr Biochem 2003; 14(12): 680-90.
[http://dx.doi.org/10.1016/j.jnutbio.2003.07.001] [PMID: 14690760]
[7]
Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front Nutr 2019; 6: 48.
[http://dx.doi.org/10.3389/fnut.2019.00048] [PMID: 31058161]
[8]
León-Del-Río A, Valadez-Graham V, Gravel RA. Holocarboxylase synthetase: A moonlighting transcriptional coregulator of gene expression and a cytosolic regulator of biotin utilization. Annu Rev Nutr 2017; 37(1): 207-23.
[http://dx.doi.org/10.1146/annurev-nutr-042617-104653] [PMID: 28564555]
[9]
Satiaputra J, Shearwin KE, Booker GW, Polyak SW. Mechanisms of biotin-regulated gene expression in microbes. Synth Syst Biotechnol 2016; 1(1): 17-24.
[http://dx.doi.org/10.1016/j.synbio.2016.01.005] [PMID: 29062923]
[10]
Kim HK, Han SN, Vitamin E, Vitamin E:. Regulatory role on gene and protein expression and metabolomics profiles. IUBMB Life 2019; 71(4): 442-55.
[http://dx.doi.org/10.1002/iub.2003] [PMID: 30632663]
[11]
Sealey WM, Teague AM, Stratton SL, Mock DM. Smoking accelerates biotin catabolism in women. Am J Clin Nutr 2004; 80(4): 932-5.
[http://dx.doi.org/10.1093/ajcn/80.4.932] [PMID: 15447901]
[12]
Zempleni J. Uptake, localization, and noncarboxylase roles of biotin. Annu Rev Nutr 2005; 25(1): 175-96.
[http://dx.doi.org/10.1146/annurev.nutr.25.121304.131724] [PMID: 16011464]
[13]
Birling MC, Herault Y, Pavlovic G. Modeling human disease in rodents by CRISPR/Cas9 genome editing. Mamm Genome 2017; 28(7-8): 291-301.
[http://dx.doi.org/10.1007/s00335-017-9703-x] [PMID: 28677007]
[14]
Hartenian E, Doench JG. Genetic screens and functional genomics using CRISPR/Cas9 technology. FEBS J 2015; 282(8): 1383-93.
[http://dx.doi.org/10.1111/febs.13248] [PMID: 25728500]
[15]
Sharma S, Petsalaki E. Application of CRISPR-Cas9 based genome-wide screening approaches to study cellular signalling mechanisms. Int J Mol Sci 2018; 19(4): 933.
[http://dx.doi.org/10.3390/ijms19040933] [PMID: 29561791]
[16]
Williams BR. Rapid Detection of Cellular Response to Biological Agents. 2005. Available From: [https://apps.dtic. mil/sti/citations/ADA471370
[17]
Vlasova TI, Stratton SL, Wells AM, Mock NI, Mock DM. Biotin deficiency reduces expression of SLC19A3, a potential biotin transporter, in leukocytes from human blood. J Nutr 2005; 135(1): 42-7.
[http://dx.doi.org/10.1093/jn/135.1.42] [PMID: 15623830]
[18]
Fischer A, Pallauf J, Gohil K, Weber SU, Packer L, Rimbach G. Effect of selenium and vitamin E deficiency on differential gene expression in rat liver. Biochem Biophys Res Commun 2001; 285(2): 470-5.
[http://dx.doi.org/10.1006/bbrc.2001.5171] [PMID: 11444866]
[19]
Roy S, Lado BH, Khanna S, Sen CK. Vitamin E sensitive genes in the developing rat fetal brain: A high-density oligonucleotide microarray analysis. FEBS Lett 2002; 530(1-3): 17-23.
[http://dx.doi.org/10.1016/S0014-5793(02)03309-4] [PMID: 12387859]
[20]
Nier B, Weinberg P, Rimbach G, Stöcklin E, Barella L. Differential gene expression in skeletal muscle of rats with Vitamin E deficiency. IUBMB Life 2006; 58(9): 540-8.
[http://dx.doi.org/10.1080/15216540600871100] [PMID: 17002982]
[21]
Rota C, Barella L, Minihane AM, Stöcklin E, Rimbach G. Dietary alpha-tocopherol affects differential gene expression in rat testes. IUBMB Life 2004; 56(5): 277-80.
[http://dx.doi.org/10.1080/15216540410001724133] [PMID: 15370891]
[22]
González-Calvo L, Dervishi E, Joy M, et al. Genome-wide expression profiling in muscle and subcutaneous fat of lambs in response to the intake of concentrate supplemented with vitamin E. BMC Genomics 2017; 18(1): 92.
[http://dx.doi.org/10.1186/s12864-016-3405-8] [PMID: 28095783]
[23]
Siler U, Barella L, Spitzer V, et al. Lycopene and Vitamin E interfere with autocrine/paracrine loops in the Dunning prostate cancer model. FASEB J 2004; 18(9): 1019-21.
[http://dx.doi.org/10.1096/fj.03-1116fje] [PMID: 15084515]
[24]
Tsavachidou D, McDonnell TJ, Wen S, et al. Selenium and vitamin E: Cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst 2009; 101(5): 306-20.
[http://dx.doi.org/10.1093/jnci/djn512] [PMID: 19244175]
[25]
Wang P, Yu W, Hu Z, et al. Involvement of JNK/p73/NOXA in vitamin E analog-induced apoptosis of human breast cancer cells. Mol Carcinog 2008; 47(6): 436-45.
[http://dx.doi.org/10.1002/mc.20400] [PMID: 18058804]
[26]
Wang C, Husain K, Zhang A. EGR-1/Bax pathway plays a role in vitamin E δ-tocotrienol-induced apoptosis in pancreatic cancer cells. J Nutral biochemistry 2015; 26(8): 797-807.
[27]
Fontana F, Raimondi M, Marzagalli M, Moretti RM, Marelli MM, Limonta P. Tocotrienols and cancer: From the state of the art to promising novel patents. Recent Patents Anticancer Drug Discov 2019; 14(1): 5-18.
[http://dx.doi.org/10.2174/1574892814666190116111827] [PMID: 30652648]
[28]
Makpol S, Zainuddin A, Chua KH, Mohd Yusof YA, Ngah WZ. Gamma-tocotrienol modulated gene expression in senescent human diploid fibroblasts as revealed by microarray analysis. Oxid Med Cell Longev 2013; 2013: 45432.
[http://dx.doi.org/10.1155/2013/454328]
[29]
Meydani SN, Han SN, Wu D. Vitamin E and immune response in the aged: Molecular mechanisms and clinical implications. Immunol Rev 2005; 205(1): 269-84.
[http://dx.doi.org/10.1111/j.0105-2896.2005.00274.x] [PMID: 15882360]
[30]
Galli F, Azzi A, Birringer M, et al. Vitamin E: Emerging aspects and new directions. Free Radic Biol Med 2017; 102: 16-36.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.09.017] [PMID: 27816611]
[31]
Lee G, Han S. The role of vitamin E in immunity. Nutrients 2018; 10(11): 1614.
[http://dx.doi.org/10.3390/nu10111614] [PMID: 30388871]
[32]
Ni J, Chen M, Zhang Y, Li R, Huang J, Yeh S. Vitamin E succinate inhibits human prostate cancer cell growth via modulating cell cycle regulatory machinery. Biochem Biophys Res Commun 2003; 300(2): 357-63.
[http://dx.doi.org/10.1016/S0006-291X(02)02851-6] [PMID: 12504091]
[33]
Hrdlickova R, Toloue M, Tian B. RNA ‐Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA 2017; 8(1): e1364.
[http://dx.doi.org/10.1002/wrna.1364] [PMID: 27198714]
[34]
Finno CJ, Bordbari MH, Gianino G, et al. An innate immune response and altered nuclear receptor activation defines the spinal cord transcriptome during alpha-tocopherol deficiency in Ttpa-null mice. Free Radic Biol Med 2018; 120: 289-302.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.02.037] [PMID: 29526809]
[35]
Finno CJ, Bordbari MH, Valberg SJ, et al. Transcriptome profiling of equine vitamin E deficient neuroaxonal dystrophy identifies upregulation of liver X receptor target genes. Free Radic Biol Med 2016; 101: 261-71.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.10.009] [PMID: 27751910]
[36]
Das Gupta S, Patel M, Wahler J, et al. Differential gene regulation and tumor-inhibitory activities of alpha-, delta-, and gamma-tocopherols in estrogen-mediated mammary carcinogenesis. Cancer Prev Res 2017; 10(12): 694-703.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0190] [PMID: 28972008]
[37]
Li J, Che N, Xu L, et al. LC-MS-based serum metabolomics reveals a distinctive signature in patients with rheumatoid arthritis. Clin Rheumatol 2018; 37(6): 1493-502.
[http://dx.doi.org/10.1007/s10067-018-4021-6] [PMID: 29442259]
[38]
Lloyd AJ, Willis ND, Wilson T, et al. Addressing the pitfalls when designing intervention studies to discover and validate biomarkers of habitual dietary intake. Metabolomics 2019; 15(5): 72.
[http://dx.doi.org/10.1007/s11306-019-1532-3] [PMID: 31049735]
[39]
Lodge JK. Symposium 2: Modern approaches to nutritional research challenges Targeted and non-targeted approaches for metabolite profiling in nutritional research. Proc Nutr Soc 2010; 69(1): 95-102.
[http://dx.doi.org/10.1017/S0029665109991704] [PMID: 19954566]
[40]
Shin TH, Lee DY, Lee HS, et al. Integration of metabolomics and transcriptomics in nanotoxicity studies. BMB Rep 2018; 51(1): 14-20.
[http://dx.doi.org/10.5483/BMBRep.2018.51.1.237] [PMID: 29301609]
[41]
Du Preez I, Loots DT. Novel insights into the pharmacometabonomics of first-line tuberculosis drugs relating to metabolism, mechanism of action and drug-resistance. Drug Metab Rev 2018; 50(4): 466-81.
[http://dx.doi.org/10.1080/03602532.2018.1559184] [PMID: 30558443]
[42]
Schulz M, Hövelmann Y, Hübner F, Humpf HU. Identification of potential urinary biomarkers for bell pepper intake by HPLC–HRMS-based metabolomics and structure elucidation by NMR. J Agric Food Chem 2021; 69(45): 13644-56.
[http://dx.doi.org/10.1021/acs.jafc.1c04210] [PMID: 34735138]
[43]
Noorbakhsh H, Yavarmanesh M, Mortazavi SA, Adibi P, Moazzami AA. Metabolomics analysis revealed metabolic changes in patients with diarrhea-predominant irritable bowel syndrome and metabolic responses to a synbiotic yogurt intervention. Eur J Nutr 2019; 58(8): 3109-19.
[http://dx.doi.org/10.1007/s00394-018-1855-2] [PMID: 30392136]
[44]
Moazzami AA, Frank S, Gombert A, et al. Non-targeted 1 H-NMR-metabolomics suggest the induction of master regulators of energy metabolism in the liver of vitamin E-deficient rats. Food Funct 2015; 6(4): 1090-7.
[http://dx.doi.org/10.1039/C4FO00947A] [PMID: 25629236]
[45]
Langer S, Kennel A, Lodge JK. The influence of juicing on the appearance of blueberry metabolites 2 h after consumption: A metabolite profiling approach. Br J Nutr 2018; 119(11): 1233-44.
[http://dx.doi.org/10.1017/S0007114518000855] [PMID: 29770756]
[46]
McDougall M, Choi J, Magnusson K, Truong L, Tanguay R, Traber MG. Chronic vitamin E deficiency impairs cognitive function in adult zebrafish via dysregulation of brain lipids and energy metabolism. Free Radic Biol Med 2017; 112: 308-17.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.08.002] [PMID: 28790013]
[47]
Head B, Traber MG. Expanding role of vitamin E in protection against metabolic dysregulation: Insights gained from model systems, especially the developing nervous system of zebrafish embryos. Free Radic Biol Med 2021; 176: 80-91.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.09.016] [PMID: 34555455]
[48]
Paschalis V, Theodorou AA, Margaritelis NV, Kyparos A, Nikolaidis MG. N-acetylcysteine supplementation increases exercise performance and reduces oxidative stress only in individuals with low levels of glutathione. Free Radic Biol Med 2018; 115: 288-97.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.12.007] [PMID: 29233792]
[49]
Kikuchi J, Yamada S. The exposome paradigm to predict environmental health in terms of systemic homeostasis and resource balance based on NMR data science. RSC Advances 2021; 11(48): 30426-47.
[http://dx.doi.org/10.1039/D1RA03008F] [PMID: 35480260]
[50]
Perumpail B, Li A, John N, et al. The role of vitamin E in the treatment of NAFLD. Diseases 2018; 6(4): 86.
[http://dx.doi.org/10.3390/diseases6040086] [PMID: 30249972]
[51]
Li R, Zhang Y, Rasool S, Geetha T, Babu JR. Effects and underlying mechanisms of bioactive compounds on type 2 diabetes mellitus and Alzheimer’s disease. Oxid Med Cell Longev 2019; 2019(8165707)
[http://dx.doi.org/10.1155/2019/8165707]
[52]
Ding Y, Yu A, Tsokos GC, Malek TR. CD25 and protein phosphatase 2A cooperate to enhance IL-2R signaling in human regulatory T cells. J Immunol 2019; 203(1): 93-104.
[http://dx.doi.org/10.4049/jimmunol.1801570] [PMID: 31085588]
[53]
Sedel F, Bernard D, Mock DM, Tourbah A. Targeting demyelination and virtual hypoxia with high-dose biotin as a treatment for progressive multiple sclerosis Neuropharmacology 2016; 110(Pt B): 644-53.
[http://dx.doi.org/10.1016/j.neuropharm.2015.08.028] [PMID: 26327679]
[54]
Wu D, Kittana H, Shu J, et al. Dietary depletion of milk exosomes and their microRNA cargos elicits a depletion of miR-200a-3p and elevated intestinal inflammation and chemokine (CXC motif) ligand 9 expression in Mdr1a−/− mice. Curr Dev Nutr 2019; 3(12): nzz122.
[http://dx.doi.org/10.1093/cdn/nzz122] [PMID: 32154493]
[55]
Choi JH, Lim SK, Kim DI, et al. Safflower bud inhibits RANKL-induced osteoclast differentiation and prevents bone loss in ovariectomized mice. Phytomedicine 2017; 34: 6-13.
[http://dx.doi.org/10.1016/j.phymed.2017.07.006] [PMID: 28899511]
[56]
Peterson CT, Rodionov DA, Osterman AL, Peterson SN. B vitamins and their role in immune regulation and cancer. Nutrients 2020; 12(11): 3380.
[http://dx.doi.org/10.3390/nu12113380] [PMID: 33158037]
[57]
Kuroishi T. Regulation of immunological and inflammatory functions by biotin. Can J Physiol Pharmacol 2015; 93(12): 1091-6.
[http://dx.doi.org/10.1139/cjpp-2014-0460] [PMID: 26168302]
[58]
Moreno-Yruela C, Bæk M, Monda F, Olsen CA. Chiral posttranslational modification to lysine ε-amino groups. Acc Chem Res 2022; 55(10): 1456-66.
[http://dx.doi.org/10.1021/acs.accounts.2c00115] [PMID: 35500056]
[59]
Knowland D, Arac A, Sekiguchi KJ, et al. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron 2014; 82(3): 603-17.
[http://dx.doi.org/10.1016/j.neuron.2014.03.003] [PMID: 24746419]
[60]
Fonseca H, Azevedo L, Serrano C, Sousa C, Marcão A, Vilarinho L. 3-Methylcrotonyl-CoA carboxylase deficiency: Mutational spectrum derived from comprehensive newborn screening. Gene 2016; 594(2): 203-10.
[http://dx.doi.org/10.1016/j.gene.2016.09.003] [PMID: 27601257]
[61]
Cheng T, Cao J, Wu T, et al. Study on osteoinductive activity of biotin film by low-energy electron beam deposition. Biomater Adv 2022; 135: 212730.
[62]
Muñiz Moreno MM, Brault V, Birling MC, Pavlovic G, Herault Y. Modeling Down syndrome in animals from the early stage to the 4.0 models and next. Prog Brain Res 2020; 251: 91-143.
[http://dx.doi.org/10.1016/bs.pbr.2019.08.001] [PMID: 32057313]
[63]
Hiranniramol K, Chen Y, Wang X. CRISPR/Cas9 guide RNA design rules for predicting activity. Methods Mol Biol 2020; 2115: 351-64.
[http://dx.doi.org/10.1007/978-1-0716-0290-4_19]
[64]
Agarwal M, Radosavljevic A, Tyagi M, et al. Sympathetic ophthalmia-an overview. Ocul Immunol Inflamm 2023; 31(4): 793-809.
[http://dx.doi.org/10.1080/09273948.2022.2058554] [PMID: 35579612]
[65]
Sawant L, Wijesekera N, Jones C. Pioneer transcription factors, progesterone receptor and Krüppel like transcription factor 4, cooperatively stimulate the bovine herpesvirus 1 ICP0 early promoter and productive late protein expression. Virus Res 2020; 288: 198115.
[http://dx.doi.org/10.1016/j.virusres.2020.198115] [PMID: 32795492]
[66]
Quitterer U,. AbdAlla S. Improvements of symptoms of Alzheimer’s disease by inhibition of the angiotensin system. Pharmacol Res 2020; 154: 104230.
[http://dx.doi.org/10.1016/j.phrs.2019.04.014] [PMID: 30991105]
[67]
Wagner L, Gómez-Requeni P, Moazzami AA, et al. 1H NMR-based metabolomics and lipid analyses revealed the effect of dietary replacement of microbial extracts or mussel meal with fish meal to arctic charr (Salvelinus alpinus). Fishes 2019; 4(3): 46.
[http://dx.doi.org/10.3390/fishes4030046]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy