Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Pharmacokinetics, Mass Balance, Tissue Distribution, and Metabolism of [3H]Catalpol in Rats: the Main Bioactive Component of Rehmannia glutinosa for the Treatment of Ischemic Stroke

Author(s): Xinyu Ge, Yuandong Zheng, Yifei He, Chong Chen, Chen Yang, Saiwei Lu, Zhenyu Xuan*, Dafang Zhong* and Xingxing Diao*

Volume 24, Issue 6, 2023

Published on: 17 July, 2023

Page: [448 - 457] Pages: 10

DOI: 10.2174/1389200224666230705142901

Price: $65

Abstract

Background: Catalpol, one of the main bioactive components isolated from Rehmannia glutinosa, was developed by Suzhou Youseen for the treatment of ischemic stroke; however, preclinical information about its absorption, distribution, metabolism, and excretion (ADME) in animals is inadequate.

Objective: This study aimed to illuminate the pharmacokinetics (PK), mass balance (MB), tissue distribution (TD), and metabolism of catalpol after a single intragastric administration of 30 mg/kg (300 μCi/kg) [3H]catalpol in rats.

Methods: Radioactivity in plasma, urine, feces, bile, and tissues was measured by liquid scintillation counting (LSC), and metabolite profiling was characterized by UHPLC-β-ram and UHPLC-Q-Exactive plus MS.

Results: The radio pharmacokinetic results showed that catalpol was rapidly absorbed by Sprague‒Dawley (SD) rats, with a median Tmax of 0.75 h and an arithmetic mean half-life (t1/2) of the total radioactivity of approximately 1.52 h in plasma. The mean recovery of the total radioactive dose was 94.82%±1.96% over 168 h postdose (57.52%±12.50% in the urine and 37.30%±12.88% in the feces). The parent drug catalpol was the predominant drugrelated substance in rat plasma and urine, while M1 and M2, two unidentified metabolites, were detected in feces. When [3H]catalpol was incubated with β-glucosidase and rat intestinal flora, we found that the same metabolites M1 and M2 were produced in both incubation systems.

Conclusions: Catalpol was excreted mainly through the urine. The drug-related substances were primarily concentrated in the stomach, large intestine, bladder, and kidney. Only the parent drug was detected in the plasma and urine, and M1 and M2 were detected in the feces. We speculate that the metabolism of catalpol in rats was mainly mediated by the intestinal flora, resulting in an aglycone-containing hemiacetal hydroxyl structure.

Keywords: [3h]catalpol, rehmannia glutinosa, mass balance, tissue distribution, metabolism, intestinal flora, ischemic stroke.

Graphical Abstract
[1]
Johnson, W.; Onuma, O.; Owolabi, M.; Sachdev, S. Stroke: a global response is needed. Bull. World Health Organ., 2016, 94(9), 634-634A.
[http://dx.doi.org/10.2471/BLT.16.181636] [PMID: 27708464]
[2]
Xu, M.; Wu, R.X.; Li, X.L.; Zeng, Y.S.; Liang, J.Y.; Fu, K.; Liang, Y.; Wang, Z. Traditional medicine in China for ischemic stroke: bioactive components, pharmacology, and mechanisms J. Integr. Neurosci., 2022, 21(1), 026.
[http://dx.doi.org/10.31083/j.jin2101026] [PMID: 35164462]
[3]
Hankey, G.J. Potential new risk factors for ischemic stroke: what is their potential? Stroke, 2006, 37(8), 2181-2188.
[http://dx.doi.org/10.1161/01.STR.0000229883.72010.e4] [PMID: 16809576]
[4]
Li, M.; Jiang, H.; Hao, Y.; Du, K.; Du, H.; Ma, C.; Tu, H.; He, Y. A systematic review on botany, processing, application, phytochemistry and pharmacological action of Radix rehmnniae. J. Ethnopharmacol., 2022, 285, 114820.
[http://dx.doi.org/10.1016/j.jep.2021.114820] [PMID: 34767834]
[5]
Liu, C.; Ma, R.; Wang, L.; Zhu, R.; Liu, H.; Guo, Y.; Zhao, B.; Zhao, S.; Tang, J.; Li, Y.; Niu, J.; Fu, M.; Zhang, D.; Gao, S. Rehmanniae Ra-dix in osteoporosis: A review of traditional Chinese medicinal uses, phytochemistry, pharmacokinetics and pharmacology. J. Ethnopharmacol., 2017, 198, 351-362.
[http://dx.doi.org/10.1016/j.jep.2017.01.021] [PMID: 28111216]
[6]
Wang, C.; Gong, X.; Bo, A.; Zhang, L.; Zhang, M.; Zang, E.; Zhang, C.; Li, M. Iridoids: Research advances in their phytochemistry, biological activities, and pharmacokinetics. Molecules, 2020, 25(2), 287.
[http://dx.doi.org/10.3390/molecules25020287] [PMID: 31936853]
[7]
Wang, Q.; Xing, M.; Chen, W.; Zhang, J.; Qi, H.; Xu, X. HPLC–APCI–MS/MS method for the determination of catalpol in rat plasma and cerebrospinal fluid: Application to an in vivo pharmacokinetic study. J. Pharm. Biomed. Anal., 2012, 70, 337-343.
[http://dx.doi.org/10.1016/j.jpba.2012.05.016] [PMID: 22677654]
[8]
Nemmar, A.; Beegam, S.; Zaaba, N.E.; Alblooshi, S.; Alseiari, S.; Ali, B.H. The salutary effects of catalpol on diesel exhaust particles-induced thrombogenic changes and cardiac oxidative stress, inflammation and apoptosis. Biomedicines, 2022, 10(1), 99.
[http://dx.doi.org/10.3390/biomedicines10010099] [PMID: 35052780]
[9]
Wang, Z.; Liu, Q.; Zhang, R.; Liu, S.; Xia, Z.; Hu, Y. Catalpol ameliorates beta amyloid–induced degeneration of cholinergic neurons by ele-vating brain-derived neurotrophic factors. Neuroscience, 2009, 163(4), 1363-1372.
[http://dx.doi.org/10.1016/j.neuroscience.2009.07.041] [PMID: 19635525]
[10]
Xia, Z.; Zhang, R.; Wu, P.; Xia, Z.; Hu, Y. Memory defect induced by β-amyloid plus glutamate receptor agonist is alleviated by catalpol and donepezil through different mechanisms. Brain Res., 2012, 1441, 27-37.
[http://dx.doi.org/10.1016/j.brainres.2012.01.008] [PMID: 22305339]
[11]
Jiang, B.; Shen, R.F.; Bi, J.; Tian, X.S.; Hinchliffe, T.; Xia, Y. Catalpol: a potential therapeutic for neurodegenerative diseases. Curr. Med. Chem., 2015, 22(10), 1278-1291.
[http://dx.doi.org/10.2174/0929867322666150114151720] [PMID: 25620103]
[12]
Zhu, H.F.; Wan, D.; Luo, Y.; Zhou, J.L.; Chen, L.; Xu, X.Y. Catalpol increases brain angiogenesis and up-regulates VEGF and EPO in the rat after permanent middle cerebral artery occlusion. Int. J. Biol. Sci., 2010, 6(5), 443-453.
[http://dx.doi.org/10.7150/ijbs.6.443] [PMID: 20827397]
[13]
Wang, H.; Ran, H.; Yin, Y.; Xu, X.; Jiang, B.; Yu, S.; Chen, Y.; Ren, H.; Feng, S.; Zhang, J.; Chen, Y.; Xue, Q.; Xu, X. Catalpol improves impaired neurovascular unit in ischemic stroke rats via enhancing VEGF-PI3K/AKT and VEGF-MEK1/2/ERK1/2 signaling. Acta Pharmacol. Sin., 2022, 43(7), 1670-1685.
[http://dx.doi.org/10.1038/s41401-021-00803-4] [PMID: 34795412]
[14]
Xue, B.; Ma, B.; Zhang, Q.; Li, X.; Zhu, J.; Liu, M.; Wu, X.; Wang, C.; Wu, Z. Pharmacokinetics and tissue distribution of Aucubin, Ajugol and Catalpol in rats using a validated simultaneous LC–ESI-MS/MS assay. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 1002, 245-253.
[http://dx.doi.org/10.1016/j.jchromb.2015.08.026] [PMID: 26342167]
[15]
Tao, J.; Zhao, M.; Wang, D.; Yang, C.; Chen, G.; Zhao, X.; Pu, X.; Jiang, S. UPLC-Q-TOF/MS-based screening and identification of two major bioactive components and their metabolites in normal and CKD rat plasma, urine and feces after oral administration of Rehmannia glutinosa Libosch extract. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 1001, 98-106.
[http://dx.doi.org/10.1016/j.jchromb.2015.07.035] [PMID: 26262601]
[16]
Xiang, Z.; Wang, S.; Li, H.; Dong, P.; Dong, F.; Li, Z.; Dai, L.; Zhang, J. Detection and identification of catalpol metabolites in the rat plasma, urine and faeces using ultra-high performance liquid chromatography-q exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry. Curr. Drug Metab., 2021, 22(3), 173-184.
[http://dx.doi.org/10.2174/18755453MTEx0ODUew] [PMID: 33243112]
[17]
Zheng, Y.; Zhang, H.; Zhan, Y.; Bian, Y.; Ma, S.; Gan, H.; Lai, X.; Liu, Y.; Gong, Y.; Liu, X.; Sun, H.; Li, Y.; Zhong, D.; Miao, L.; Diao, X. Pharmacokinetics, mass balance, and metabolism of [14C]vicagrel, a novel irreversible P2Y12 inhibitor in humans. Acta Pharmacol. Sin., 2021, 42(9), 1535-1546.
[http://dx.doi.org/10.1038/s41401-020-00547-7] [PMID: 33244163]
[18]
Yu, J.; Zhang, H.; Zhang, Y.; Zhan, Y.; Ma, S.; Hu, T.; Zhang, N.; Lou, Y.; Bao, H.; Xu, Z.; Zhong, D.; Miao, L.; Diao, X. Absorption, me-tabolism, and excretion of [14C]YY-20394, a highly selective PI3K-Delta inhibitor in humans. Xenobiotica, 2022, 52(3), 254-264.
[http://dx.doi.org/10.1080/00498254.2022.2062581] [PMID: 35373704]
[19]
He, Y.F.; Liu, Y.; Yu, J.H.; Cheng, H.; Odilov, A.; Yang, F.P.; Tian, G.H.; Yao, X.M.; Duan, H.Q.; Yu, C.Y.; Yu, C.; Liu, Y.M.; Liu, G.Y.; Shen, J.S.; Wang, Z.; Diao, X.X. Pharmacokinetics, mass balance, and metabolism of [(14)C]TPN171, a novel PDE5 inhibitor, in humans for the treatment of pulmonary arterial hypertension. Acta Pharmacol. Sin., 2022.
[PMID: 35676531]
[20]
Dalvie, D. Recent advances in the applications of radioisotopes in drug metabolism, toxicology and pharmacokinetics. Curr. Pharm. Des., 2000, 6(10), 1009-1028.
[http://dx.doi.org/10.2174/1381612003399941] [PMID: 10828299]
[21]
Cheng, H.; Yu, J.; Yang, C.; Zhang, N.; Fan, Z.; Zhang, X.; Wang, J.; Wang, Z.; Zhong, D.; He, J.X.; Yan, S.; Diao, X. Absorption, distribu-tion, metabolism, and excretion of [14C]TPN729 after oral administration to rats. Xenobiotica, 2022, 52(1), 79-90.
[http://dx.doi.org/10.1080/00498254.2022.2030504] [PMID: 35038952]
[22]
Tian, J.; Lei, P.; He, Y.; Zhang, N.; Ge, X.; Luo, L.; Yan, S.; Diao, X. Absorption, distribution, metabolism, and excretion of [14C]NBP (3-n-butylphthalide) in rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2021, 1181, 122915.
[http://dx.doi.org/10.1016/j.jchromb.2021.122915] [PMID: 34500404]
[23]
Hop, C.E.C.A.; Wang, Z.; Chen, Q.; Kwei, G. Plasma-pooling methods to increase throughput for in vivo pharmacokinetic screening. J. Pharm. Sci., 1998, 87(7), 901-903.
[http://dx.doi.org/10.1021/js970486q] [PMID: 9649361]
[24]
Hamilton, R.A.; Garnett, W.R.; Kline, B.J. Determination of mean valproic acid serum level by assay of a single pooled sample. Clin. Pharmacol. Ther., 1981, 29(3), 408-413.
[http://dx.doi.org/10.1038/clpt.1981.56] [PMID: 6781809]
[25]
Felgines, C.; Texier, O.; Morand, C.; Manach, C.; Scalbert, A.; Régerat, F.; Rémésy, C. Bioavailability of the flavanone naringenin and its glycosides in rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 279(6), G1148-G1154.
[http://dx.doi.org/10.1152/ajpgi.2000.279.6.G1148] [PMID: 11093936]
[26]
van Duynhoven, J.; Vaughan, E.E.; Jacobs, D.M.; Kemperman, R.A.; van Velzen, E.J.; Gross, G.; Roger, L.C.; Possemiers, S.; Smilde, A.K.; Doré, J.; Westerhuis, J.A.; Van de Wiele, T. Metabolic fate of polyphenols in the human superorganism. Proc. Natl. Acad. Sci.U.S.A., 2011, 108((Suppl. 1)), 4531-4538.
[http://dx.doi.org/10.1073/pnas.1000098107] [PMID: 20615997]
[27]
Zhang, X.; Liu, S.; Pi, Z.; Liu, Z.; Song, F. Simultaneous quantification method for comparative pharmacokinetics studies of two major me-tabolites from geniposide and genipin by online mircrodialysis-UPLC–MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1041-1042, 11-18.
[http://dx.doi.org/10.1016/j.jchromb.2016.12.010] [PMID: 27992786]
[28]
Xu, J.; Chen, H.B.; Li, S.L. Understanding the molecular mechanisms of the interplay between herbal medicines and gut microbiota. Med. Res. Rev., 2017, 37(5), 1140-1185.
[http://dx.doi.org/10.1002/med.21431] [PMID: 28052344]
[29]
J, W.; S, B.-M.; T, H.; Schwedhelm, E. Pharmacokinetic of 3H-deacetylasperulosidic acid in mice. Funct. Food Health Dis., 2016, 8(6), 478-492.
[30]
Avioli, L.V.; Lee, S.W.; McDonald, J.E.; Lund, J.; DeLuca, H.F. Metabolism of vitamin D3-3H in human subjects: distribution in blood, bile, feces, and urine. J. Clin. Invest., 1967, 46(6), 983-992.
[http://dx.doi.org/10.1172/JCI105605] [PMID: 4290687]
[31]
Kim, D.H.; Kim, B.R.; Kim, J.Y.; Jeong, Y.C. Mechanism of covalent adduct formation of aucubin to proteins. Toxicol. Lett., 2000, 114(1-3), 181-188.
[http://dx.doi.org/10.1016/S0378-4274(99)00295-7] [PMID: 10713483]
[32]
Xue, S.; Fu, Y.; Sun, X.; Chen, S. Changes in the chemical components of processed rehmanniae radix distillate during different steaming times. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-15.
[http://dx.doi.org/10.1155/2022/3382333] [PMID: 35222668]
[33]
Pesez, M. 2:4-Dinitrophenylhydrazine, a suitable reagent for the colorimetric determination of carbonyl compounds. J. Pharm. Pharmacol., 2011, 11(1), 475-476.
[http://dx.doi.org/10.1111/j.2042-7158.1959.tb12584.x] [PMID: 14432131]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy