Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

PIWIL1通过诱导EVA1A表达促进甲状腺乳头状癌的恶性进展

卷 24, 期 2, 2024

发表于: 12 July, 2023

页: [192 - 203] 页: 12

弟呕挨: 10.2174/1568009623666230703140510

价格: $65

Open Access Journals Promotions 2
摘要

介绍:甲状腺乳头状癌(PTC)是最常见的甲状腺癌亚型。先前的研究已经报道了p元素诱导的pimp睾丸配体1 (PIWIL1)在各种人类癌症中的异位表达,但尚未研究其在PTC进展中的作用。 方法:在本研究中,我们使用qPCR和WB检测了PIWIL1和Eva-1同源物A (EVA1A)在PTC中的表达水平。我们用活力测定法评估PTC细胞的增殖,用流式细胞术研究PTC细胞的凋亡。此外,我们进行了Transwell侵袭试验,以量化细胞侵袭,并使用异种移植肿瘤模型评估PTC在体内的生长。 结果:我们的研究结果表明,PIWIL1在PTC中高表达,促进细胞增殖、细胞周期活性和细胞侵袭,同时抑制细胞凋亡。此外,PIWIL1通过调节EVA1A的表达加速PTC异种移植物的肿瘤生长。 结论:我们的研究表明,PIWIL1通过EVA1A信号传导促进PTC的进展,表明其作为PTC治疗靶点的潜在作用。这些结果为了解PIWIL1的功能提供了有价值的见解,并可能导致更有效的PTC治疗。

关键词: 甲状腺乳头状癌,PIWIL1, EVA1A, qPCR,流式细胞术,细胞凋亡。

图形摘要
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[2]
Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; Schuff, K.G.; Sherman, S.I.; Sosa, J.A.; Steward, D.L.; Tuttle, R.M.; Wartofsky, L. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid, 2016, 26(1), 1-133.
[http://dx.doi.org/10.1089/thy.2015.0020] [PMID: 26462967]
[3]
Saiselet, M.; Gacquer, D.; Spinette, A.; Craciun, L.; Decaussin-Petrucci, M.; Andry, G.; Detours, V.; Maenhaut, C. New global analysis of the microRNA transcriptome of primary tumors and lymph node metastases of papillary thyroid cancer. BMC Genomics, 2015, 16(1), 828.
[http://dx.doi.org/10.1186/s12864-015-2082-3] [PMID: 26487287]
[4]
Lundgren, C.I.; Hall, P.; Dickman, P.W.; Zedenius, J. Clinically significant prognostic factors for differentiated thyroid carcinoma. Cancer, 2006, 106(3), 524-531.
[http://dx.doi.org/10.1002/cncr.21653] [PMID: 16369995]
[5]
Xing, M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer, 2013, 13(3), 184-199.
[http://dx.doi.org/10.1038/nrc3431] [PMID: 23429735]
[6]
Tan, Y.; Liu, L.; Liao, M.; Zhang, C.; Hu, S.; Zou, M.; Gu, M.; Li, X. Emerging roles for PIWI proteins in cancer. Acta Biochim. Biophys. Sin. (Shanghai), 2015, 47(5), 315-324.
[http://dx.doi.org/10.1093/abbs/gmv018] [PMID: 25854579]
[7]
Liu, L.; Ren, L.; Shen, L.; Zhang, C.; Zhu, H.; Gu, M.; Li, X. Decreased expression of piR-35413 in human papillary thyroid cancer. Acta Biochim. Biophys. Sin., 2019, 51(12), 1293-1295.
[http://dx.doi.org/10.1093/abbs/gmz117] [PMID: 31774911]
[8]
Soukup, S.F.; Verstreken, P. PIWIL1 protein power targets tau therapy. Nat. Neurosci., 2014, 17(3), 334-335.
[http://dx.doi.org/10.1038/nn.3659] [PMID: 24569826]
[9]
Shen, S.; Yu, H.; Liu, X.; Liu, Y.; Zheng, J.; Wang, P.; Gong, W.; Chen, J.; Zhao, L.; Xue, Y. PIWIL1/piRNA-DQ593109 regulates the permeability of the blood-tumor barrier via the MEG3/miR-330-5p/RUNX3 axis. Mol. Ther. Nucleic Acids, 2018, 10, 412-425.
[http://dx.doi.org/10.1016/j.omtn.2017.12.020] [PMID: 29499952]
[10]
Van Tongelen, A.; Loriot, A.; De Smet, C. Oncogenic roles of DNA hypomethylation through the activation of cancer-germline genes. Cancer Lett., 2017, 396, 130-137.
[http://dx.doi.org/10.1016/j.canlet.2017.03.029] [PMID: 28342986]
[11]
Burger, K.; Schlackow, M.; Potts, M.; Hester, S.; Mohammed, S.; Gullerova, M. Nuclear phosphorylated Dicer processes double-stranded RNA in response to DNA damage. J. Cell Biol., 2017, 216(8), 2373-2389.
[http://dx.doi.org/10.1083/jcb.201612131] [PMID: 28642363]
[12]
Lu, L.; Katsaros, D.; Risch, H.A.; Canuto, E.M.; Biglia, N.; Yu, H. MicroRNA let-7a modifies the effect of self-renewal gene HIWI on patient survival of epithelial ovarian cancer. Mol. Carcinog., 2016, 55(4), 357-365.
[http://dx.doi.org/10.1002/mc.22285] [PMID: 25630839]
[13]
Chattopadhyay, T.; Biswal, P.; Lalruatfela, A.; Mallick, B. Emerging roles of PIWI-interacting RNAs (piRNAs) and PIWI proteins in head and neck cancer and their potential clinical implications. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(5), 188772.
[http://dx.doi.org/10.1016/j.bbcan.2022.188772] [PMID: 35931391]
[14]
Wang, L.; Yu, C.; Lu, Y.; He, P.; Guo, J.; Zhang, C.; Song, Q.; Ma, D.; Shi, T.; Chen, Y. TMEM166, a novel transmembrane protein, regulates cell autophagy and apoptosis. Apoptosis, 2007, 12(8), 1489-1502.
[http://dx.doi.org/10.1007/s10495-007-0073-9] [PMID: 17492404]
[15]
Chang, Y.; Li, Y.; Hu, J.; Guo, J.; Xu, D.; Xie, H.; Lv, X.; Shi, T.; Chen, Y. Adenovirus vector-mediated expression of TMEM166 inhibits human cancer cell growth by autophagy and apoptosis in vitro and in vivo. Cancer Lett., 2013, 328(1), 126-134.
[http://dx.doi.org/10.1016/j.canlet.2012.08.032] [PMID: 22960574]
[16]
Xie, H.; Hu, J.; Pan, H.; Lou, Y.; Lv, P.; Chen, Y. Adenovirus vector-mediated FAM176A overexpression induces cell death in human H1299 non-small cell lung cancer cells. BMB Rep., 2014, 47(2), 104-109.
[http://dx.doi.org/10.5483/BMBRep.2014.47.2.090] [PMID: 24257118]
[17]
Ren, W.W.; Li, D.D.; Chen, X.; Li, X.L.; He, Y.P.; Guo, L.H.; Liu, L.N.; Sun, L.P.; Zhang, X.P. MicroRNA-125b reverses oxaliplatin resistance in hepatocellular carcinoma by negatively regulating EVA1A mediated autophagy. Cell Death Dis., 2018, 9(5), 547.
[http://dx.doi.org/10.1038/s41419-018-0592-z] [PMID: 29749374]
[18]
Lin, B.Y.; Wen, J.L.; Zheng, C.; Lin, L.Z.; Chen, C.Z.; Qu, J.M. Eva‐1 homolog A promotes papillary thyroid cancer progression and epithelial‐mesenchymal transition via the Hippo signalling pathway. J. Cell. Mol. Med., 2020, 24(22), 13070-13080.
[http://dx.doi.org/10.1111/jcmm.15909] [PMID: 32969138]
[19]
Yoon, S.G.; Yi, J.W.; Seong, C.Y.; Kim, J.K.; Kim, S.J.; Chai, Y.J.; Choi, J.Y.; Lee, K.E. Clinical characteristics of papillary thyroid carcinoma arising from the pyramidal lobe. Ann. Surg. Treat. Res., 2017, 92(3), 123-128.
[http://dx.doi.org/10.4174/astr.2017.92.3.123] [PMID: 28289665]
[20]
Qiu, J.; Zhang, W.; Xia, Q.; Liu, F.; Li, L.; Zhao, S.; Gao, X.; Zang, C.; Ge, R.; Sun, Y. RNA sequencing identifies crucial genes in papillary thyroid carcinoma (PTC) progression. Exp. Mol. Pathol., 2016, 100(1), 151-159.
[http://dx.doi.org/10.1016/j.yexmp.2015.12.011] [PMID: 26708423]
[21]
Qiao, D.; Zeeman, A.M.; Deng, W.; Looijenga, L.H.J.; Lin, H. Molecular characterization of hiwi, a human member of the piwi gene family whose overexpression is correlated to seminomas. Oncogene, 2002, 21(25), 3988-3999.
[http://dx.doi.org/10.1038/sj.onc.1205505] [PMID: 12037681]
[22]
Yousefi, B.; Sadoughi, F.; Asemi, Z.; Mansournia, M.A.; Hallajzadeh, J. Novel perspectives for the diagnosis and treatment of gynecological cancers using dysregulation of PIWI protein and PiRNAs as biomarkers. Curr. Med. Chem., 2023.
[PMID: 36786140]
[23]
Wang, N.; Tan, H.Y.; Lu, Y.; Chan, Y.T.; Wang, D.; Guo, W.; Xu, Y.; Zhang, C.; Chen, F.; Tang, G.; Feng, Y. PIWIL1 governs the crosstalk of cancer cell metabolism and immunosuppressive microenvironment in hepatocellular carcinoma. Signal Transduct. Target. Ther., 2021, 6(1), 86.
[http://dx.doi.org/10.1038/s41392-021-00485-8] [PMID: 33633112]
[24]
Shen, X.; Kan, S.; Liu, Z.; Lu, G.; Zhang, X.; Chen, Y.; Bai, Y. EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis. Exp. Cell Res., 2017, 352(1), 130-138.
[http://dx.doi.org/10.1016/j.yexcr.2017.02.003] [PMID: 28185834]
[25]
Tao, M.; Shi, X.Y.; Yuan, C.H.; Hu, J.; Ma, Z.L.; Jiang, B.; Xiu, D.R.; Chen, Y.Y. Expression profile and potential roles of EVA1A in normal and neoplastic pancreatic tissues. Asian Pac. J. Cancer Prev., 2015, 16(1), 373-376.
[http://dx.doi.org/10.7314/APJCP.2015.16.1.373] [PMID: 25640383]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy