Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Mini-Review Article

Non-wood Plants as Sources of Cellulose for Paper and Biodegradable Composite Materials: An Updated Review

Author(s): Farrah Mathura* and Rohanie Maharaj

Volume 17, Issue 4, 2024

Published on: 24 July, 2023

Page: [321 - 335] Pages: 15

DOI: 10.2174/2666145417666230701000240

Price: $65

conference banner
Abstract

Background: Non-wood plant parts provide unique opportunities for cellulose for paper manufacture and offer advantages over wood, such as less harsh chemicals and lower lignin content.

Objective: This review examined several cellulose extraction procedures from non-wood sources, such as leaves, stems, grass, straw, fruit peels, and husks.

Methods: Acid and alkali extraction, oxidation, and bleaching were the main techniques used. Corresponding mechanical properties of cellulose derivatives were also reviewed, with tensile strength being the most reported property, with variability among the species and products. Additives were also explored to improve the properties of non-wood paper.

Results: Further processing of cellulose into nanocrystalline cellulose enabled the manufacture of biodegradable composites with a wide range of utilities in wastewater treatment, reinforcing materials, alternatives to plastics and circuit boards for nanotechnology applications. Various methods now available for cellulose extraction provide scientists with several efficient options for different plant materials with beneficial properties.

Conclusion: Non-wood cellulose has found its uses in several industries, but further research may consolidate these attempts.

Keywords: Non-wood, cellulose, paper, mechanical strength, additives, composite.

Graphical Abstract
[1]
Kamoga OLM, Byaruhanga JK, Kirabira JB. A review on pulp manufacture from non wood plant materials. Int J Chem Eng Appl 2013; 4: 144-8.
[http://dx.doi.org/10.7763/IJCEA.2013.V4.281]
[2]
Karimah A, Ridho MR, Munawar SS, et al. A review on natural fibers for development of eco-friendly bio-composite: Characteristics, and utilizations. J Mater Res Technol 2021; 13: 2442-58.
[http://dx.doi.org/10.1016/j.jmrt.2021.06.014]
[3]
Abd El-Sayed ES, El-Sakhawy M, El-Sakhawy MAM. Non-wood fibers as raw material for pulp and paper industry. Nord Pulp Paper Res J 2020; 35(2): 215-30.
[http://dx.doi.org/10.1515/npprj-2019-0064]
[4]
Jardim JM, Hart PW, Lucia LA, Jameel H, Chang H. The effect of the kraft pulping process, wood species, and ph on lignin recovery from black liquor. Fibers 2022; 10(2): 16.
[http://dx.doi.org/10.3390/fib10020016]
[5]
Liu Z, Wang H, Hui L. Pulping and papermaking of non-wood fibers. Pulp Paper Process 2017; 1: 3.
[6]
Furszyfer Del Rio DD, Sovacool BK, Griffiths S, et al. Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options. Renew Sustain Energy Rev 2022; 167: 112706.
[http://dx.doi.org/10.1016/j.rser.2022.112706]
[7]
Chandra G, Bhaisa P, Eds. Pulp and Paper Market - Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2022-2030. Canada: Precedence Research 2022.
[8]
Malek EJ, Abdul Rahim AR. A thematic review of forest certification publications from 2017 to 2021: Analysis of pattern and trends for future studies. Trees. Forests and People 2022; 10: 100331.
[http://dx.doi.org/10.1016/j.tfp.2022.100331]
[9]
He M, Smidt M, Li W, Zhang Y. Logging industry in the United States: Employment and profitability. Forests 2021; 12(12): 1720.
[http://dx.doi.org/10.3390/f12121720]
[10]
González-García S, Teresa Moreira M, Artal G, Maldonado L, Feijoo G. Environmental impact assessment of non-wood based pulp production by soda-anthraquinone pulping process. J Clean Prod 2010; 18(2): 137-45.
[http://dx.doi.org/10.1016/j.jclepro.2009.10.008]
[11]
Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 2005; 44(22): 3358-93.
[http://dx.doi.org/10.1002/anie.200460587] [PMID: 15861454]
[12]
Pennells J, Godwin ID, Amiralian N, Martin DJ. Trends in the production of cellulose nanofibers from non-wood sources. Cellulose 2020; 27(2): 575-93.
[http://dx.doi.org/10.1007/s10570-019-02828-9]
[13]
Nozieana Khairuddin MB, Mohammad SM, Nurul HCH, Dayangku NAW. Nano-cellulosic fibers from agricultural wastes. Cellulose Sci Deriv 2021; 1: 1.
[14]
Khurana S, Grover Y, Agarwal A, Tripathi AD, Kumari A. Green packaging and utilization of fruit fibres: A Review. green persp. Food Process 2021; 1: 163.
[15]
Leminen A, Johansson AL, Gullichsen J, Yilmaz Y. Non-wood fibres in papermaking: Literature review. Espoo. VTT Technical Research Centre of Finland 1996; 1: 1.
[16]
Tarasov D, Leitch M, Fatehi P. Lignin–carbohydrate complexes: Properties, applications, analyses, and methods of extraction: A review. Biotechnol Biofuels 2018; 11(1): 269.
[http://dx.doi.org/10.1186/s13068-018-1262-1] [PMID: 30288174]
[17]
Kumar Biswal A, Sahoo M, Kumar Suna P, Panda L, Lenka C, Kumari Misra P. Exploring the adsorption efficiency of a novel cellulosic material for removal of food dye from water. J Mol Liq 2022; 350: 118577.
[http://dx.doi.org/10.1016/j.molliq.2022.118577]
[18]
Darmawan A, Irawan B, Ni’mah H, Roesyadi A, Kurniawansyah F. Delignification of Abaca Fiber (Musa textilis) as Potential Substitute for Eucalyptus pellita. IOP Conf Series: Mat Sci Eng.
[http://dx.doi.org/10.1088/1757-899X/857/1/012021]
[19]
Fiallos-Cárdenas M, Ramirez AD, Pérez-Martínez S, et al. Bacterial nanocellulose derived from banana leaf extract: yield and variation factors. Resources 2021; 10(12): 121.
[http://dx.doi.org/10.3390/resources10120121]
[20]
Hájková K, Bouček J, Procházka P, Kalous P, Budský D. Nitrate-alkaline pulp from non-wood plants. materials 2021; 14(13): 3673.
[http://dx.doi.org/10.3390/ma14133673] [PMID: 34279243]
[21]
Jeetah P, Jaffur N. coconut husk, a lignocellulosic biomass, as a promising engineering material for non-wood paper production. J Nat Fibers 2021; 1: 1.
[22]
Rovera C, Carullo D, Bellesia T, et al. Extraction of high-quality grade cellulose and cellulose nanocrystals from different lignocellulosic agri-food wastes. Front Sustain Food Syst 2023; 6: 1087867.
[http://dx.doi.org/10.3389/fsufs.2022.1087867]
[23]
Penjumras P, Rahman RBA, Talib RA, Abdan K. extraction and characterization of cellulose from durian rind. Agric Agric Sci Procedia 2014; 2: 237-43.
[http://dx.doi.org/10.1016/j.aaspro.2014.11.034]
[24]
Gonzalez M, Pereira-Rojas J, Villanueva I, et al. Preparation and characterization of cellulose fibers from Meghatyrsus maximus: Applications in its chemical derivatives. Carbohydr Polym 2022; 296: 119918.
[http://dx.doi.org/10.1016/j.carbpol.2022.119918] [PMID: 36088021]
[25]
Barbash VA, Yashchenko OV. Preparation and application of nanocellulose from non-wood plants to improve the quality of paper and cardboard. Appl Nanosci 2020; 10(8): 2705-16.
[http://dx.doi.org/10.1007/s13204-019-01242-8]
[26]
Jayaramudu J, Guduri BR, Varada Rajulu A. Characterization of new natural cellulosic fabric Grewia tilifolia. Carbohydr Polym 2010; 79(4): 847-51.
[http://dx.doi.org/10.1016/j.carbpol.2009.10.046]
[27]
Reddy N, Yang Y. Properties of natural cellulose fibers from hop stems. Carbohydr Polym 2009; 77(4): 898-902.
[http://dx.doi.org/10.1016/j.carbpol.2009.03.013]
[28]
Beluns S, Gaidukovs S, Platnieks O, et al. From wood and hemp biomass wastes to sustainable nanocellulose foams. Ind Crops Prod 2021; 170: 113780.
[http://dx.doi.org/10.1016/j.indcrop.2021.113780]
[29]
Etale A, Nhlane DS, Mosai AK, et al. Synthesis and application of cationised cellulose for removal of Cr(VI) from acid mine-drainage contaminated water. AAS Open Res 2021; 4: 4.
[http://dx.doi.org/10.12688/aasopenres.13182.1] [PMID: 33623862]
[30]
Rohadi TNT, Ridzuan MJM, Majid MSA, Khasri A, Sulaiman MH. Isolation and characterisation of cellulose from cortex, pith and whole of the Pennisetum purpureum: Effect of sodium hydroxide concentration. J Mater Res Technol 2020; 9(6): 15057-71.
[http://dx.doi.org/10.1016/j.jmrt.2020.10.102]
[31]
Amanuel L. Palm leaf sheath fiber extraction and surface modification. J Eng Fibers Fabrics 2020; 15.
[http://dx.doi.org/10.1177/1558925020950724]
[32]
Sibaly S, Jeetah P. Production of paper from pineapple leaves. J Environ Chem Eng 2017; 5(6): 5978-86.
[http://dx.doi.org/10.1016/j.jece.2017.11.026]
[33]
Liu Y, Liu A, Ibrahim SA, Yang H, Huang W. Isolation and characterization of microcrystalline cellulose from pomelo peel. Int J Biol Macromol 2018; 111: 717-21.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.098] [PMID: 29358134]
[34]
Ono Y, Takeuchi M, Isogai A. Characterization of solid-state structures, molar masses, and microfibril structures of cellulose in never-dried cotton fibers and ramie bast fibers. Cellulose 2022; 29(17): 9105-19.
[http://dx.doi.org/10.1007/s10570-022-04835-9]
[35]
Luo K, Wang Y, Xiao H, Song G, Cheng Q, Fan G. Preparation of convertible cellulose from rice straw using combined organosolv fractionation and alkaline bleaching. IOP Conf Ser Earth Environ Sci 2019; 237: 052053.
[http://dx.doi.org/10.1088/1755-1315/237/5/052053]
[36]
Sathishkumar TP. Comparison of Sansevieria ehrenbergii fiber-reinforced polymer composites with wood and wood fiber composites. J Reinf Plast Compos 2014; 33(18): 1704-16.
[http://dx.doi.org/10.1177/0731684414542991]
[37]
Assefa EG, Kiflie Z, Demsash HD. Valorization of abundantly available ethiopian teff (Eragrostis Tef) Straw for the isolation of cellulose fibrils by alkaline hydrogen peroxide treatment method. J Polym Environ 2023; 31(3): 900-12.
[http://dx.doi.org/10.1007/s10924-022-02646-4]
[38]
Qasim U, Ali Z, Nazir MS, et al. isolation of cellulose from wheat straw using alkaline hydrogen peroxide and acidified sodium chlorite treatments: Comparison of yield and properties. Adv Polym Technol 2020; 2020: 1-7.
[http://dx.doi.org/10.1155/2020/9765950]
[39]
Manimaran P, Saravanan SP, Sanjay MR, Siengchin S, Jawaid M, Khan A. Characterization of new cellulosic fiber: Dracaena reflexa as a reinforcement for polymer composite structures. J Mater Res Technol 2019; 8(2): 1952-63.
[http://dx.doi.org/10.1016/j.jmrt.2018.12.015]
[40]
Ibarra D, Köpcke V, Ek M. Exploring enzymatic treatments for the production of dissolving grade pulp from different wood and non-wood paper grade pulps. Holzforschung 2009; 63(6): 721-30.
[41]
Owonubi SJ, Agwuncha SC, Malima NM, Shombe GB, Makhatha EM, Revaprasadu N. Non-woody biomass as sources of nanocellulose particles: A review of extraction procedures. Front Energy Res 2021; 9: 608825.
[http://dx.doi.org/10.3389/fenrg.2021.608825]
[42]
Isogai A. TEMPO-catalyzed oxidation of polysaccharides. Polym J 2022; 54(4): 387-402.
[http://dx.doi.org/10.1038/s41428-021-00580-1]
[43]
Chávez-Guerrero L, Toxqui-Terán A, Pérez-Camacho O. One-pot isolation of nanocellulose using pelagic Sargassum spp. from the Caribbean coastline. J Appl Phycol 2022; 34(1): 637-45.
[http://dx.doi.org/10.1007/s10811-021-02643-5]
[44]
Etale A, Onyianta AJ, Turner SR, Eichhorn SJ. Cellulose: A review of water interactions, applications in composites, and water treatment. Chem Rev 2023; 123(5): 2016-48.
[http://dx.doi.org/10.1021/acs.chemrev.2c00477] [PMID: 36622272]
[45]
Puangsin B, Chitbanyong K, Yimlamai P, Khantayanuwong S, Pisutpiched S, Isogai A. Silver-nanoparticle-containing handsheets for antimicrobial applications. Cellulose 2022; 29(3): 2005-16.
[http://dx.doi.org/10.1007/s10570-021-04403-7]
[46]
Pennells J, Chaléat C, Martin DJ. Benchmarking the production of cellulose nanofibres: Biomass feedstock, mechanical processing, and Nanopaper performance. J Polym Environ 2022; 1: 1.
[47]
Sharma A, Mandal T, Goswami S. Dispersibility and stability studies of cellulose nanofibers: Implications for nanocomposite preparation. J Polym Environ 2021; 29(5): 1516-25.
[http://dx.doi.org/10.1007/s10924-020-01974-7]
[48]
Isogai A. Cellulose nanofibers: Recent progress and future prospects. J Fiber Sci Technol 2020; 76(10): 310-26.
[http://dx.doi.org/10.2115/fiberst.2020-0039]
[49]
Ren F, Wu T, Zhang J, et al. Realization of water resistant, durable and self-cleaning on oriented cellulose nanocomposite packaging films. J Polym Res 2023; 30(1): 3.
[http://dx.doi.org/10.1007/s10965-022-03366-y]
[50]
Hou G, Zhao S, Li Y, Fang Z, Isogai A. Mechanically robust, flame-retardant phosphorylated cellulose films with tunable optical properties for light management in LEDs. Carbohydr Polym 2022; 298: 120129.
[http://dx.doi.org/10.1016/j.carbpol.2022.120129] [PMID: 36241330]
[51]
Chandrasekaran S, Sotenko M, Cruz-Izquierdo A, et al. Preparation of printable and biodegradable cellulose-laponite composite for electronic device application. J Polym Environ 2021; 29(1): 17-27.
[http://dx.doi.org/10.1007/s10924-020-01854-0]
[52]
Niihara K, Noguchi T, Makise T, Kashima W, Endo M, Isogai A. Cellulose nanofibril/polypropylene composites prepared under elastic kneading conditions. Cellulose 2022; 29(9): 4993-5006.
[http://dx.doi.org/10.1007/s10570-022-04584-9]
[53]
Binoj JS, Edwin Raj R, Daniel BSS. Comprehensive characterization of industrially discarded fruit fiber, Tamarindus indica L. as a potential eco-friendly bio-reinforcement for polymer composite. J Clean Prod 2017; 142: 1321-31.
[http://dx.doi.org/10.1016/j.jclepro.2016.09.179]
[54]
Soloi S, Hou EKZ. The potential of oil palm leaf fibre in papermaking industry. J Phys Conf ser 2019; 1: 1.
[55]
Khan A, Vijay R, Lenin Singaravelu D, et al. Extraction and characterization of vetiver grass (Chrysopogon zizanioides) and kenaf fiber (Hibiscus cannabinus) as reinforcement materials for epoxy based composite structures. J Mater Res Technol 2020; 9(1): 773-8.
[http://dx.doi.org/10.1016/j.jmrt.2019.11.017]
[56]
Sreenivasan VS, Somasundaram S, Ravindran D, Manikandan V, Narayanasamy R. Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres – An exploratory investigation. Mater Des 2011; 32(1): 453-61.
[http://dx.doi.org/10.1016/j.matdes.2010.06.004]
[57]
Li A, Shi Y, Zhang J, Zhang Y. Comparative analysis of the physical and mechanical properties of kraft paper and watercolor paper. Maderas Cienc Tecnol 2021; 23: 1.
[http://dx.doi.org/10.4067/S0718-221X2021000100456]
[58]
Judt M. Non-wood plant fibres, will there be a come-back in paper-making? Ind Crops Prod 1993; 2(1): 51-7.
[http://dx.doi.org/10.1016/0926-6690(93)90011-W]
[59]
Jusner P, Barbini S, Schiehser S, et al. Impact of residual extractives on the thermal stability of softwood Kraft pulp. Cellulose 2022; 29(16): 8797-810.
[http://dx.doi.org/10.1007/s10570-022-04807-z]
[60]
Mukherjee AK, Barar P, Chakraborty KL, Sood AC, Sarkar MC. Wet Strength Papers. IPPTA 1990; 2(4): 30-8.
[61]
Naser AZ, Deiab I, Darras BM. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review. RSC Advances 2021; 11(28): 17151-96.
[http://dx.doi.org/10.1039/D1RA02390J] [PMID: 35479695]
[62]
Park JY, Melani L, Lee H, Kim HJ. Effect of chemical additives on softness components of hygiene paper. Nord Pulp Paper Res J 2019; 34(2): 173-81.
[http://dx.doi.org/10.1515/npprj-2019-0002]
[63]
Long H, Gu J, Jiang J, et al. Mechanically strong and biodegradable holocellulose films prepared from Camellia oleifera shells. Carbohydr Polym 2023; 299: 120189.
[http://dx.doi.org/10.1016/j.carbpol.2022.120189] [PMID: 36876804]
[64]
Frydrych E, Foltynowicz Z, Kowalak S, Janiszewska E. Oxygen scavengers for packing system based on zeolite adsorbed organic compounds. Proceedings of the 15th International Zeolite Conference 1597.
[http://dx.doi.org/10.1016/S0167-2991(07)81036-6]
[65]
Qin L, Zhang Y, Fan Y, Li L. Cellulose nanofibril reinforced functional chitosan biocomposite films. Polym Test 2023; 120: 107964.
[http://dx.doi.org/10.1016/j.polymertesting.2023.107964]
[66]
Strand A, Sundberg A, Retulainen E, et al. The effect of chemical additives on the strength, stiffness and elongation potential of paper. Nord Pulp Paper Res J 2017; 32(3): 324-35.
[http://dx.doi.org/10.3183/npprj-2017-32-03-p324-335]
[67]
Lee D, Shayan M, Gwon J, Picha DH, Wu Q. Effectiveness of cellulose and chitosan nanomaterial coatings with essential oil on post-harvest strawberry quality. Carbohydr Polym 2022; 298: 120101.
[http://dx.doi.org/10.1016/j.carbpol.2022.120101] [PMID: 36241324]
[68]
Xia G, Ji X, Xu Z, Ji X. Transparent cellulose-based bio-hybrid films with enhanced anti-ultraviolet, antioxidant and antibacterial performance. Carbohydr Polym 2022; 298: 120118.
[http://dx.doi.org/10.1016/j.carbpol.2022.120118] [PMID: 36241328]
[69]
Pitpisutkul V, Prachayawarakorn J. Hydroxypropyl methylcellulose/carboxymethyl starch/zinc oxide porous nanocomposite films for wound dressing application. Carbohydr Polym 2022; 298: 120082.
[http://dx.doi.org/10.1016/j.carbpol.2022.120082] [PMID: 36241320]
[70]
Wang S, Zhang Y, Jiang X. High-performance cellulose nanofibers derived from sugarcane bagasse for supercapacitors. J Mater Sci 2018; 53(17): 12058-68.
[71]
Valdebenito F, García R, Cruces K, Ciudad G, Chinga-Carrasco G, Habibi Y. CO2 adsorption of surface-modified cellulose Nanofibril films derived from agricultural wastes. ACS Sustain Chem Eng 2018; 6(10): 12603-12.
[http://dx.doi.org/10.1021/acssuschemeng.8b00771]
[72]
Eichhorn SJ, Dufresne A, Aranguren M, et al. Review: Current international research into cellulose nanofibres and nanocomposites. J Mater Sci 2010; 45(1): 1-33.
[http://dx.doi.org/10.1007/s10853-009-3874-0] [PMID: 32836382]
[73]
Li YY, Wang B, Ma MG, Wang B. Review of recent development on preparation, properties, and applications of cellulose-based functional materials. Int J Polym Sci 2018; 2018: 1-18.
[http://dx.doi.org/10.1155/2018/8973643]
[74]
Shojaeiarani J, Bajwa DS, Chanda S. Cellulose nanocrystal-based composites: A Review. Composites Part C 2021; 5: 100164.
[75]
Luo H, Yang Z, Yao F, Li W, Wan Y. Improved properties of corn fiber-reinforced polylactide composites by incorporating silica nanoparticles at interfaces. Polym Polymer Compos 2020; 28(3): 170-9.
[http://dx.doi.org/10.1177/0967391119867236]
[76]
Sambusiti C, Licari A, Solhy A, Aboulkas A, Cacciaguerra T, Barakat A. One-Pot dry chemo-mechanical deconstruction for bioethanol production from sugarcane bagasse. Bioresour Technol 2015; 181: 200-6.
[http://dx.doi.org/10.1016/j.biortech.2015.01.058] [PMID: 25656863]
[77]
Xie S, Zhang X, Walcott MP, Lin H. Applications of cellulose nanocrystals: A Review. Eng Sci 2018; 2: 4-16.
[78]
Perumal AB, Nambiar RB, Moses JA, Anandharamakrishnan C. Nanocellulose: Recent trends and applications in the food industry. Food Hydrocoll 2022; 127: 107484.
[http://dx.doi.org/10.1016/j.foodhyd.2022.107484]
[79]
Gupta PK, Raghunath SS, Prasanna DV, et al. An update on overview of cellulose, its structure and applications. In: Cellulose intake. 2019.
[80]
Kadir NH, Mohammad M, Alam M, Torkashvand M, Silvaragi TGB, Gururuloo SL. Utilization of nanocellulose fibers, nanocrystal-line cellulose and bacterial cellulose in biomedical and pharmaceutical applications. Nanotechnology in Paper and Wood Eng. 2022; pp. 409-70.
[http://dx.doi.org/10.1016/B978-0-323-85835-9.00025-8]
[81]
Aziz T, Farid A, Haq F, et al. A review on the modification of cellulose and its applications. Polymers 2022; 14(15): 3206.
[http://dx.doi.org/10.3390/polym14153206] [PMID: 35956720]
[82]
Chaka KT. Extraction of cellulose nanocrystals from agricultural by-products: A review. Green Chem Lett Rev 2022; 15(3): 582-97.
[http://dx.doi.org/10.1080/17518253.2022.2121183]
[83]
Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cheminform abstract: Cellulose nanomaterials review: Structure, properties and nanocomposites. ChemInform 2011; 42(42) no.
[http://dx.doi.org/10.1002/chin.201142280]
[84]
Yasim-Anuar TA, Ariffin H, Padzil FN, et al. Nanocellulose applications in packaging materials. Indus Applic of Nanocellulose Its Nanocomposites. 2022; pp. 289-310.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy