Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthesis and Chemistry of 1,2,4,3-Triazaphosphole Derivatives

Author(s): Tarik E. Ali*, Noha M. Hassanin, Mohammed A. Assiri and Somaia M. Abdel-Kariem

Volume 27, Issue 8, 2023

Published on: 03 August, 2023

Page: [692 - 709] Pages: 18

DOI: 10.2174/1385272827666230626160328

Price: $65

Open Access Journals Promotions 2
Abstract

This review describes the progress made during the last fifty years in the synthesis and chemistry of 1,2,4,3 triazaphospholes. This class of compounds has attracted tremendous homogeneous catalysis and interest in molecular materials science. These fascinating phosphorus heterocycles have conjugated π systems with high degrees of aromaticity. 1,2,4,3- Triazaphospholes can be designed through [3+2] cyclocondensation between functionalized hydrazines with phosphonoimidates that allow the incorporation of additional donor substituents into specific positions of the phosphorus heterocycle. In addition, [4+1] cyclocondensation between functionalized amidrazones and active phosphorus reagents is the most synthetically accessible method. The used strategies facilitated synthetic access to a completely new set of triazaphospholes leading to a much broader scope for potential applications. 1,2,4,3-triazaphospholes displayed reactivity towards a variety of reagents. The phosphorus is particularly prone to undergo oxidative 1,1-addition. Protic reagents such as alcohols, phenols, and amines can be added across the P=N bond of 2H-1,2,4,3-triazaphospholes to yield the dihydro-1,2,4,3-triazaphosphole derivatives. 1H- and 2H-1,2,4,3- triazaphospholes reacted with alcohols, ammonia and amines in the presence of sulfur or selenium to form dihydro- 1,2,4,3-triazaphosphole 3-chalcogenides. The appropriate difunctional reagents such as glycols, 2-azido alcohols and phenol with a heterodiene function in the ortho position reacted with 2H-1,2,4,3-triazaphospholes to yield products formed via 1,2-addition on P=N bond. Similar behavior is shown by 2-hydroxyacetophenone and 2- hydroxy-benzophenone. 2H-1,2,4,3-Triazaphospholes reacted with acetylenes to form [3+2] cycloadducts; the latter change to 1,2,3-diazaphospholes. [4+1] Cycloadditions occurred with α-diimines, azodicarboxylic esters, and 1,2-diketones; in the latter two cases, the resulting products dimerize.

Keywords: Synthesis, reactions, cycloadditions, organophosphorus, compounds, triazaphosphole.

Graphical Abstract
[1]
Mukherjee, S.; Huang, C.; Guerra, F.; Wang, K.; Oldfield, E. Thermodynamics of bisphosphonates binding to human bone: A two-site model. J. Am. Chem. Soc., 2009, 131(24), 8374-8375.
[http://dx.doi.org/10.1021/ja902895p] [PMID: 19489581]
[2]
Moonen, K.; Laureyn, I.; Stevens, C.V. Synthetic methods for azaheterocyclic phosphonates and their biological activity. Chem. Rev., 2004, 104(12), 6177-6216.
[http://dx.doi.org/10.1021/cr030451c] [PMID: 15584699]
[3]
Iaroshenko, V.; Mkrtchyan, S. Phosphorus Heterocycles.Organophosphorus Chem; Wiley Online Books, 2019, pp. 295-456.
[4]
Keglevich, G. Newer developments in the synthesis of P-Heterocycles. Curr. Org. Chem., 2019, 23(12), 1342-1355.
[http://dx.doi.org/10.2174/1385272823666190726093322]
[5]
Gülçin, İ.; Trofimov, B.; Kaya, R.; Taslimi, P.; Sobenina, L.; Schmidt, E.; Petrova, O.; Malysheva, S.; Gusarova, N.; Farzaliyev, V.; Sujayev, A.; Alwasel, S.; Supuran, C.T. Synthesis of nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds – Determination of their carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibition properties. Bioorg. Chem., 2020, 103, 104171-104179.
[http://dx.doi.org/10.1016/j.bioorg.2020.104171] [PMID: 32891857]
[6]
Hudson, H.R.; Keglevich, G. The preparation and anticancer activity of some phosphorus heterocycles. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183(9), 2256-2261.
[http://dx.doi.org/10.1080/10426500801938592]
[7]
Abdou, W.M.; Barghash, R.F.; Khidre, R.E. Antineoplastic activity of fused nitrogen-phosphorus heterocycles and derived phosphonates. Monatsh. Chem., 2013, 144(8), 1233-1242.
[http://dx.doi.org/10.1007/s00706-013-0950-6]
[8]
Gilard, V.; Martino, R.; Malet-Martino, M.; Niemeyer, U.; Pohl, J. Chemical stability and fate of the cytostatic drug ifosfamide and its N-dechloroethylated metabolites in acidic aqueous solutions. J. Med. Chem., 1999, 42(14), 2542-2560.
[http://dx.doi.org/10.1021/jm980587g] [PMID: 10411475]
[9]
Smith, B.R.; Eastman, C.M.; Njardarson, J.T.; Beyond, C. H, O, and N! analysis of the elemental composition of U.S. FDA approved drug architectures. J. Med. Chem., 2014, 57(23), 9764-9773.
[http://dx.doi.org/10.1021/jm501105n] [PMID: 25255063]
[10]
Storr, R.C.; Gilchrist, T.L. Category 2, Hetarenes and related ring systems. Science of Synthesis; Georg Thieme Verlag: Stuttgart, 2004, p. 16.
[11]
Bates, J.I.; Dugal-Tessier, J.; Gates, D.P. Phospha-organic chemistry: From molecules to polymers. Dalton Trans., 2010, 39(13), 3151-3159.
[http://dx.doi.org/10.1039/B918938F] [PMID: 20449439]
[12]
Breit, B.; Winde, R.; Mackewitz, T.; Paciello, R.; Harms, K. Phosphabenzenes as monodentate π-acceptor ligands for rhodium-catalyzed hydroformylation. Chemistry, 2001, 7(14), 3106-3121.
[http://dx.doi.org/10.1002/1521-3765(20010716)7:14<3106:AID-CHEM3106>3.0.CO;2-Y] [PMID: 11495438]
[13]
Floch, P. Phosphaalkene, phospholyl and phosphinine ligands: New tools in coordination chemistry and catalysis. Coord. Chem. Rev., 2006, 250(5-6), 627-681.
[http://dx.doi.org/10.1016/j.ccr.2005.04.032]
[14]
Müller, C.; Sklorz, J.A.W.; de Krom, I.; Loibl, A.; Habicht, M.; Bruce, M.; Pfeifer, G.; Wiecko, J. Recent developments in the chemistry of pyridylfunctionalized, low-coordinate phosphorus heterocycles. Chem. Lett., 2014, 43(9), 1390-1404.
[http://dx.doi.org/10.1246/cl.140553]
[15]
Abdel-Rahman, R.M. Synthesis of New phosphaheterobicyclic systems containing 1,2,4-triazine moiety part IX; straightforward synthesis of new fluorine bearing 5-phospha-1,2,4-triazine/1,2,4-triazepine-3-thions-part X. Trends Heterocycl. Chem, 2002, 8, 187-195.
[16]
Ali, T.E.S. Synthesis and antibacterial activity of some new thiadiaza/triazaphospholes, thiadiaza/triaza/tetrazaphosphinines and thiadiaza/tetrazaphosphepines containing 1,2,4-triazinone moiety. Eur. J. Med. Chem., 2009, 44(11), 4539-4546.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.022] [PMID: 19615792]
[17]
Schmidpeter, A.; Bansal, R.K.; Karaghiosoff, K.; Steinmüller, F.; Spindler, C. Azaphospholes 1,2: State and Advances. Phosphorus Sulfur Silicon Relat. Elem., 1990, 49-50(1-4), 349-354.
[http://dx.doi.org/10.1080/10426509008038977]
[18]
Charbonnel, Y.; Barrans, J. Synthesis and reactivity of a novel heterocycle with aromatic character. 1,2,4,3-Triazaphosphole. Action of alcohols and of amines. C. R. Hebd. Seances Acad. Sci., Ser. C, Sci. Chim., 1974, 278, 355-358.
[19]
Charbonnel, Y.; Barrans, J. derivatives of new heterocycles, 1,3,4,2-triazaphosphole-4-ene. Comptes C. R. Hebdo. Séances Acad. Sci. Ser. C. Sci. Chim, 1971, 272, 1675-1677.
[20]
Charbonnel, Y.; Barrans, J. 1,2,4,3-Triazaphosphole. Tetrahedron, 1976, 32(16), 2039-2043.
[http://dx.doi.org/10.1016/0040-4020(76)80101-9]
[21]
Haddad, M.; Boisdon, M.T.; Barrans, J. 1,5-Substituted 1,2,4,3-triazaphospholes. J. Soc. Chim. Tunis, 1991, 3, 75-88.
[22]
Panova, Y.S.; Sheyanova, A.V.; Zolotareva, N.V.; Sushev, V.V.; Arapova, A.V.; Novikov, A.S.; Baranov, E.V.; Fukin, G.K.; Kornev, A.N. 2,2′‐azobispyridine in phosphorus coordination chemistry: A new approach to 1,2,4,3‐triazaphosphole derivatives. Eur. J. Inorg. Chem., 2018, 2018(38), 4245-4254.
[http://dx.doi.org/10.1002/ejic.201800831]
[23]
Buzykin, B.I.; Eliseenkova, R.M.; Zyablikova, T.A. 1,2-Disubstituted 1,2-dihydro-1,2,4,3-triazaphospholo[4,5-a]quinolines. Russ. J. Gen. Chem., 1996, 66, 526.
[24]
Eliseenkova, R.M.; Buzykin, B.I.; Azancheev, N.M. Reactions of three-coordinate phosphorus derivates with (2-R-hydrazino)quinolines and 4-chloro-1,2-dihydrophthalazin-1-one hydrazone. Russ. J. Gen. Chem., 1998, 68, 1507-1510.
[25]
Zhang, J.L.; Xu, W. The chemistry of fused dicyclotriazaphosphole I. The synthesis and conformation of 2-substituted-3-dialkylamino-5,6-disubstituted thiazolo-2,3-dihydro-l,2,4,3-triazaphosphole. Phosphorus Sulfur Silicon Relat. Elem., 1990, 47(1-2), 173-180.
[http://dx.doi.org/10.1080/10426509008046858]
[26]
a) Zhang, J.L.; Xu, W.; Ma, X.B.; Lu, H.Y.; Lu, J.Q. The chemistry of fused cyclotriazaphosphole – Synthesis, reactions, mechanism and conformation. Phosphorus Sulfur Silicon Relat. Elem., 1990, 49-50(1-4), 105-108.
[http://dx.doi.org/10.1080/10426509008038918];
b) Zhang, J.; Cao, Z. Chemistry of fused tricyclic triazaphosphole. II. Reaction of 2-phenyl-3-N,N-dialkylamino-benzothiazolo[2,3-d]-2,3-dihydro- 1,2,4,3-triazaphosphole with phenols and alcohols. Huaxue Xuebao, 1986, 44, 51-56.
[27]
Zhang, J.; Cao, Z. Preparation and structure investigation of 2,3-dihydro-1,3-benzothiazolo[3,2-d]-1,2,4,3-triazaphosphol. Phosphorus Sulfur Silicon Relat. Elem., 1987, 30, 531-534.
[http://dx.doi.org/10.1080/03086648708080637]
[28]
Moustafa, H.M.; Mohamed, M.A.A. Studies on organophosphorus compounds: Synthesis and reactions of [1,2,4,3]triaza‐phospholo[4,5‐ a]quinoxaline derivative. Heteroatom Chem., 2008, 19(5), 520-529.
[http://dx.doi.org/10.1002/hc.20473]
[29]
Abdel-Kariem, S.M.; Ali, T.E. The reaction of phosphorus decasulfide with some hydrazides and their hydrazones: New route for construction of four-membered, five-membered, and six-membered phosphorus heterocycles. J. Heterocycl. Chem., 2017, 54(5), 2916-2921.
[http://dx.doi.org/10.1002/jhet.2902]
[30]
Rodi, Y.K.; Lopez, L.; Malavaud, C.; Boisdon, M.T.; Barrans, J. 5-Thioxo- or 5-oxo-dihydro-1,2,4,3-triazaphosphole: Novel and stable cyclic dicoordinated phosphorus compounds: Synthesis and properties. J. Chem. Soc. Chem. Commun., 1991, 1(1), 23-24.
[http://dx.doi.org/10.1039/c39910000023]
[31]
Ševčík, R.; Příhoda, J.; Nečas, M. On the reactions of chlorodithiophosphoric acid pyridiniumbetaine with polyfunctional nucleophiles. Part III: Reactions with monoalkylderivatives of thiosemicarbazide. Polyhedron, 2005, 24(14), 1855-1860.
[http://dx.doi.org/10.1016/j.poly.2005.06.024]
[32]
Ševčík, R.; Příhoda, J. On the reactions of chlorodithiophosphoric acid pyridiniumbetaine with polyfunctional nucleophiles. Part IV: Reactions with thiosemicarbazide monoaryl derivatives. Polyhedron, 2015, 85, 161-164.
[http://dx.doi.org/10.1016/j.poly.2014.08.022]
[33]
Rodi, Y.K.; Lopez, L.; Malavaud, C.; Boisdon, M.T.; Fayet, J.P. Synthesis and properties of novel triazaphospholes: Methylthio-1,2,4,3-triazaphospholes. Can. J. Chem., 1993, 71, 1200-1208.
[http://dx.doi.org/10.1139/v93-155]
[34]
Majoral, J.P.; Revel, M.; Kraemer, R.; Germa, H.; Navech, J. Heterocycles containing phosphorus. XXXII. Study of the reaction of phosphorus hydrazides with ortho esters, acetic anhydride and formic acid. J. Heterocycl. Chem., 1977, 14, 749-755.
[http://dx.doi.org/10.1002/jhet.5570140508]
[35]
Ali, T.E.; Abdel-Kariem, S.M. Vilsmeier-haack reaction of phosphonic dihydrazide: synthesis of 4-{[(dimethyl)azanylidenonium chloride]methyl} amino-2,3-dihydro-3-oxo-4H-1,2,4,3-triazaphosphole. Int. J. Mater. Chem, 2012, 2, 192-196.
[http://dx.doi.org/10.5923/j.ijmc.20120205.02]
[36]
Charbonnel, Y.; Barrans, J. Action of aminophosphines on some amidrazones. C. R. Hebd. Seances Acad. Sci., Ser. C, Sci. Chim., 1972, 274, 2209-2211.
[37]
Haddad, M.; Dahan, F.; Legros, J.P.; Lopez, L.; Boisdon, M.T.; Barrans, J. Dicoordinated phosphorus compounds: Novel 4.5-disubstituted1.2.4,3-triazaphosphole. X-ray molecular structures of a 2-N-BF3 complex of 4.5-diisopropyl-1,2,4,3-triazaphosphole and of its tetramer. Conformation in the crystalline form and in solution. J. Chem. Soc. Perkin Trans, 1992, 4, 671-678.
[http://dx.doi.org/10.1039/p29920000671]
[38]
Majoral, J.P.; Kraemer, R.; Navech, J. Dithiaphospholanes(III)-1,3,2, new precursors of penta and dicoordine phosphorus derivatives. Tetrahedron Lett., 1980, 21, 1307-1310.
[http://dx.doi.org/10.1016/S0040-4039(00)74562-X]
[39]
Smadhi, M.; Abderrahim, R. An efficient route to new1,2,4,3-triazaphosphole-3-oxide derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2010, 185(11), 2229-2232.
[http://dx.doi.org/10.1080/10426500903567521]
[40]
Heubach, G. Synthese neuer 2,5-Dihydro-1,2,3,5-thiatriazol-1-oxide und 3,4-Dihydro-2H-1,2,4,3-triazaphosphol-3-oxide. Liebigs Ann. Chem., 1980, 1980(9), 1376-1383.
[http://dx.doi.org/10.1002/jlac.198019800905]
[41]
Tien, C.H.; Adams, M.R.; Ferguson, M.J.; Johnson, E.R.; Speed, A.W.H. Hydroboration catalyzed by 1,2,4,3-triazaphospholenes. Org. Lett., 2017, 19(20), 5565-5568.
[http://dx.doi.org/10.1021/acs.orglett.7b02695] [PMID: 28994602]
[42]
Omran, O.A.; Amer, A.A.; Khodairy, A. New route for the synthesis of Pyrazole, Triazole, Triazine, and Triazepine derivatives. Synth. Commun., 2006, 36(24), 3647-3653.
[http://dx.doi.org/10.1080/00397910600945894]
[43]
Mosbah, M.B.; Kossentini, M.; Salem, M. Action du Tris(Dimethylamino)phosphine et de l’Oxyde de P,P-dichlorophenyl-phosphine sur les N1-tosylamidrazones: Obtention des 3-(dimethylamino)-1,2,4,3-triazaphospholines et des 3-Oxo-1,2,4,3-triazaphospholines. Phosphorus Sulfur Silicon Relat. Elem., 2006, 181, 1315-1321.
[http://dx.doi.org/10.1080/10426500500326883]
[44]
Chouaieb, H.; Mosbah, M.B.; Kossentini, M.; Salem, M. Condensation of N′-tosyl-amidrazones with oxalyl dichloride and dichlorophosphorus derivatives. Heterocycl. Commun., 2007, 13(4), 247-250.
[http://dx.doi.org/10.1515/HC.2007.13.4.247]
[45]
Kossentini, M.; Ben Mosbah, M.; Chouaieb, H.; Salem, M. Synthesis of 1,2,4‐Triazinediones, 1,2,4,3‐triazaphospholines, and 1,2,4,3‐triazaphos-pholine‐3‐oxide derivatives. Synth. Commun., 2006, 36(17), 2533-2541.
[http://dx.doi.org/10.1080/00397910600781422]
[46]
Mosbah, M.B.; Chouaib, H.; Kossentini, M.; Salem, M. Reactivite des N′-tosylamidrazones vis-` a-vis du chlorure de thionyle et du reactif de lawesson: Obtention des thiatriazoles et des triazaphospholines. Phosphorus Sulfur Silicon Relat. Elem., 2003, 178(7), 1433-1440.
[http://dx.doi.org/10.1080/10426500307873]
[47]
Ahmed, A.M.; Abdel-Ghany, H.; Moustafa, H.M.; Khodairy, A. New route for the synthesis of hetaryl-1,5-benzodiazepines: Part 2. J. Heterocycl. Chem., 2019, 56(2), 464-469.
[http://dx.doi.org/10.1002/jhet.3420]
[48]
Hamzaoui, S.; Ben Salah, B.; Hamden, K.; Rekik, A.; Kossentini, M. Synthesis and evaluation of new bis-1,3,4,2-triazaphospholinoalkane derivatives as in vitro α-amylase and lipase inhibitors. Arch. Pharm., 2015, 348(3), 188-193.
[http://dx.doi.org/10.1002/ardp.201400283] [PMID: 25676018]
[49]
Haddad, M.; Legros, J.P.; Lopez, L.; Boisdon, M.T.; Barrans, J. Synthesis selective de En 1,5. Structure cristalline moleculaire 1,2,4,3-triazaphospholes substitues Du l-methyl-5-benzyl-4-trifluoroboron-1,2,4,3-triazaphosphol. Phosphorus Sulfur Silicon Relat. Elem., 1992, 69, 189-196.
[http://dx.doi.org/10.1080/10426509208036869]
[50]
Lopez, L.; Majoral, J.P.; Meriem, A.; M’Pondo, T.N.G.; Navech, J.; Barrans, J. Synthesis of the first examples of 1H- and 4H-1,2,4,3λ 3 -triazaphospholes via unexpected ring-contraction reactions. J. Chem. Soc. Chem. Commun., 1984, 3(3), 183-185.
[http://dx.doi.org/10.1039/C39840000183]
[51]
Schmidpeter, A.; Tautz, H. Four- and five membered Phosphorus Heterocycles: Tautomerism and Substitution at 5-Dimethylamino-l,2,4,3λ3-triazaphosphole. Z. Naturforsch. C, 1980, 35b, 1222-1228.
[http://dx.doi.org/10.1515/znb-1980-1010]
[52]
Schmidpeter, A.; Luber, J.; Tautz, H. Four- and five-membered phosphorus heterocycles: 1,2,4,3λ3-Triazaphospholes via reductive (s4 s2)-elimination at the phosphorus. Angew. Chem., 1977, 89, 554-555.
[http://dx.doi.org/10.1002/ange.19770890812]
[53]
Schmidpeter, A.; Tautz, H.; Schreiber, F. Phosphazenes. LXXV. Four- and five-membered phosphorus heterocycles: Monomeric and dimeric1,2,4,3λ5-triazaphospholes. Z. Anorg. Allg. Chem., 1981, 475, 211-231.
[http://dx.doi.org/10.1002/zaac.19814750424]
[54]
Schmidpeter, A.; Nayibi, M.; Mayer, P.; Tautz, H. Phosphazenes. 77. Four- and five-membered phosphorus heterocycles: Phosphazene/azaphosphetidine tautomerism of 3,3′-spirobi[1,2,4,3λ5-triazaphosphole]derivatives. Chem. Ber., 1983, 116, 1468-1478.
[http://dx.doi.org/10.1002/cber.19831160422]
[55]
Bansal, R.K.; Gandhi, N.; Schmidpeter, A.; Karaghiosoff, K. 1,2,4,3-Triazaphospholo[1,5- a]pyridines. Phosphorus Sulfur Silicon Relat. Elem., 1994, 93(1-4), 381-382.
[http://dx.doi.org/10.1080/10426509408021866]
[56]
Bansal, R.K.; Gandhi, N.; Schmidpeter, A.; Karaghiosoff, K. Synthesis of [1,2,4,3]Triazaphospholo[1,5-a]pyridines +. Z. Naturforsch. B. J. Chem. Sci., 1995, 50(4), 558-562.
[http://dx.doi.org/10.1515/znb-1995-0414]
[57]
Schmidpeter, A.; Steinmueller, F.; Zabotina, E.Y. Four- and five-membered phosphorus heterocycles: [1,5]-Annelated 1,2,4,3-triazaphospholes. J. Prakt. Chem. Chem. Ztg, 1993, 335, 458-460.
[http://dx.doi.org/10.1002/prac.19933350512]
[58]
Assiri, M.A.; Abdel-Kariem, S.M.; Ali, T.E.; Yahia, I.S. A convenient route to novel fluorinated 1,2,4,3-triazaphospholo[1,5-a]pyridines and pyrido[1,2-b][1,2,4,5]triazaphosphinines. ARKIVOC, 2018, 2018(5), 240-253.
[http://dx.doi.org/10.24820/ark.5550190.p010.478]
[59]
El-Sayed, H.A.; Said, S.A.; Abd El-Hamid, A.M. An efficient and metal-free synthetic protocol for mono-, bis-, and spiro[1,2,4]triazolo[1,5- a]pyridines utilizing 1,2-diaminopyridine derivative via C–N bond formation. Synth. Commun., 2021, 51(20), 3116-3124.
[http://dx.doi.org/10.1080/00397911.2021.1961276]
[60]
Abderrahim, R.; Boujlel, K. Synthèse de [, 17]quinazolo-1,2,4,3triazaphosphole-4-oxide. Phosphorus Sulfur Silicon Relat. Elem., 2005, 180(1), 79-84.
[http://dx.doi.org/10.1080/104265090507731]
[61]
Abderrahim, R. Convenient Synthesis of [1,5-c]Quinazolo-2,3-dihydro-1,2,4,3-triazaphospholes and [1,5-C]Quinazolo-2,3-Dihydro-1,2,4,3-triazaphosphole-3-sulfides. Phosphorus Sulfur Silicon Relat. Elem., 2007, 182(4), 893-897.
[http://dx.doi.org/10.1080/10426500601087426]
[62]
Ali, T.E.; Assiri, M.A.; Zahran, H.Y.; Yahia, I.S.; Hussien, M.S.A. Facile synthesis of some novel 1,3,4,2-oxa(thia)diazaphospholo[5,4- b]quinazolinones and 1,2,4,3-triazaphospholo[5,1- b]quinazolinones. Synth. Commun., 2021, 51(2), 302-307.
[http://dx.doi.org/10.1080/00397911.2020.1825745]
[63]
Bakhotmah, D.A.; Ali, T.E. Four-component domino reaction for the synthesis of novel 8-methyl-9-substituted-2,10-diaryl-2,3-dihydro-10H-pyrano[3,2-e][1,2,4,3]triazaphospholo [1,5-c]pyrimidines. Heterocycles, 2020, 100, 1914-1919.
[http://dx.doi.org/10.3987/COM-20-14329]
[64]
Ali, T.E.; Halacheva, S.S. Synthetic approach for novel bis(α-aminophosphonic acid) derivatives of chromone containing 1,2,4,3-triazaphosphole moieties. Heteroatom Chem., 2009, 20(3), 117-122.
[http://dx.doi.org/10.1002/hc.20520]
[65]
Schmidpeter, A.; Weinmaier, J.H. Intramolecular oxidative addition of azopyridine to phosphorus(III). Angew. Chem. Int. Ed. Engl., 1977, 16(12), 865-866.
[http://dx.doi.org/10.1002/anie.197708651]
[66]
Castan, F.; Granier, M.; Baceiredo, A.; Bertrand, G.; Straw, T.A.; Dillon, K.B. Stable N‐phosphanyl nitrilimines: Reactivity on the periphery of the nitrilimine skeleton. Chem. Ber., 1991, 124(8), 1739-1746.
[http://dx.doi.org/10.1002/cber.19911240812]
[67]
Bansal, R.K.; Neelima, G. Triazaphospholes. Sci. Synth, 2004, 13, 743-752.
[68]
Zhang, J.; Xu, W. The chemistry of fused dicyclotriazaphosphole. II. The reaction selectivities of fused dicyclotriazaphosphole containing two kinds of phosphorus. Phosphorus Sulfur Silicon Relat. Elem., 1989, 46, 7-24.
[69]
Zhang, J.; Lu, H. Tricyclotriazaphosphole Chemistry. Part VII. Reactive selectivity of the derivatives of fused tricyclotriazaphosphole containing two phosphorus atoms. Youji Huaxue, 1991, 11, 35-43.
[70]
Zhang, J.; Lu, H. Chemistry of fused tricyclotriazaphosphole. VIII. Synthesis and conformation of 2-(O,O-dialkylphosphino)-3-alkoxy-1,2-dihydrobenzothiazolo[2,3-d]-1,2,4,3-triazaphosphole. Huazhong Shifan Daxue Xuebao Ziran Kexue Ban, 1989, 23, 521-527.
[71]
Schmidpeter, A.; Steinmüller, F.; Karaghiosoff, K. Sulfur derivatives of 3-methyl-5-phenyl-1,2,4,3-triazaphosphole. Heteroatom Chem., 1994, 5(4), 385-390.
[http://dx.doi.org/10.1002/hc.520050410]
[72]
Schmidpeter, A.; Steinmüller, F. A Cyclotriphosphazane-Trisulfide from the Sulfuration of a 1,2,4,3-Triazaphosphole. Phosphorus Sulfur Silicon Relat. Elem., 1994, 93(1-4), 383-384.
[http://dx.doi.org/10.1080/10426509408021867]
[73]
Marre, M.R.; Boisdon, M.T.; Sanchez, M. Phosphazene spirannique a partir de derives du phophore dicoordine. Tetrahedron Lett., 1982, 23(8), 853-856.
[http://dx.doi.org/10.1016/S0040-4039(00)86966-X]
[74]
Boisdon, M.T.; Lopez, L.; Malavaud, C.; Barrans, J.; Chabane, A.; Mathis, R. Composés du phosphore dicoordonné: Action des amines sur les triazaphospholes-1,2,4,3 substitués en 2,5. Étude thermodynamique de l’équilibre de formation des triazaphospholines et caractérisation de leurs dérivés tétracoordonnés. Can. J. Chem., 1986, 64(9), 1725-1732.
[http://dx.doi.org/10.1139/v86-285]
[75]
Diallo, O.S.; Lopez, L.; Rodi, Y.K.; Barrans, J. New synthetic route to Phosphazenes from Triazaphospholes. Phosphorus Sulfur Silicon Relat. Elem., 1991, 56(1-4), 17-20.
[http://dx.doi.org/10.1080/10426509108038061]
[76]
Diallo, O.; Boisdon, M.T.; Malavaud, C.; Lopez, L.; Haddad, M.; Barrans, J. Action of dicarbonyl-1,2 compounds on phosphorus compounds with P=N link and on their oligomers. Tetrahedron Lett., 1984, 25, 5521-5524.
[http://dx.doi.org/10.1016/S0040-4039(01)81615-4]
[77]
Schmidpeter, A.; Junius, M.; Weinmaier, J.H.; Barrans, J.; Charbonnel, Y. Four- and five-member phosphorus heterocycles: Combined 3,3- and 3,4-addition to a 1,2,4,3λ3- triazaphosphole yielding tricyclic phosphoranes. Z. Naturforsch. C, 1977, 32B, 841-844.
[http://dx.doi.org/10.1515/znb-1977-0801]
[78]
Schmidpeter, A.; Klehr, H. Four- and five-membered phosphorus heterocycles: Conversion of triazaphospholes into diazaphospholes by acetylene addition/nitrile elimination. Z. Naturforsch. C, 1983, 38B, 1484-1487.
[http://dx.doi.org/10.1515/znb-1983-1126]
[79]
Tautz, H.; Schmidpeter, A. Four- and five-membered phosphorus heterocycles: Pentacyclic diphosphoranes from the reaction 2H-1,2,4,3λ3-triazaphosphole/azodi-carboxylic acid esters. Chem. Ber., 1981, 114, 825-828.
[http://dx.doi.org/10.1002/cber.19811140244]
[80]
Schmidpeter, A.; Tautz, H.; Steinmüller, F. Oligocyclic derivatives from the partial bromination of 2-Methyl-5-Phenyl-1,2,4,3-triazaphosphole. Phosphorus Sulfur Silicon Relat. Elem., 1996, 118(1), 129-143.
[http://dx.doi.org/10.1080/10426509608038807]
[81]
Day, R.O.; Schmidpeter, A.; Holmes, R.R. Pentacoordinated molecules. 46. Bridgehead phosphorane structure of a chlorodiazadiphosphetidine with fused five-membered rings. Inorg. Chem., 1982, 21(11), 3916-3919.
[http://dx.doi.org/10.1021/ic00141a012]
[82]
Schmidpeter, A.; Steinmüller, F.; Nöth, H. The interlocking of salicylic aldehydes and ketones with a 2H-1,2,4,3-triazaphosphole. Chem. Ber., 1996, 129(12), 1493-1495.
[http://dx.doi.org/10.1002/cber.19961291215]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy