Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

A Rationalized Approach to Design and Discover Novel Non-steroidal Derivatives through Computational Aid for the Treatment of Prostate Cancer

Author(s): Shubham Kumar, Pinky Arora, Pankaj Wadhwa* and Paranjeet Kaur*

Volume 20, Issue 5, 2024

Published on: 19 July, 2023

Page: [575 - 589] Pages: 15

DOI: 10.2174/1573409919666230626113346

Price: $65

Abstract

Background: Prostate cancer is one of the most prevalent cancers in men, leading to the second most common cause of death in men. Despite the availability of multiple treatments, the prevalence of prostate cancer remains high. Steroidal antagonists are associated with poor bioavailability and side effects, while non-steroidal antagonists show serious side effects, such as gynecomastia. Therefore, there is a need for a potential candidate for the treatment of prostate cancer with better bioavailability, good therapeutic effects, and minimal side effects.

Objective: This current research work focused on identifying a novel non-steroidal androgen receptor antagonist through computational tools, such as docking and in silico ADMET analysis.

Methods: Molecules were designed based on a literature survey, followed by molecular docking of all designed compounds and ADMET analysis of the hit compounds.

Results: A library of 600 non-steroidal derivatives (cis and trans) was designed, and molecular docking was performed in the active site of the androgen receptor (PDBID: 1Z95) using Auto- Dock Vina 1.5.6. Docking studies resulted in 15 potent hits, which were then subjected to ADME analysis using SwissADME. ADME analysis predicted three compounds (SK-79, SK-109, and SK-169) with the best ADME profile and better bioavailability. Toxicity studies using Protox-II were performed on the three best compounds (SK-79, SK-109, and SK-169), which predicted ideal toxicity for these lead compounds.

Conclusion: This research work will provide ample opportunities to explore medicinal and computational research areas. It will facilitate the development of novel androgen receptor antagonists in future experimental studies.

Keywords: Androgen receptors, non-steroidal derivatives, prostate cancer, docking studies, ADME, toxicity.

Graphical Abstract
[1]
Rawla, P. Epidemiology of prostate cancer. World J. Oncol., 2019, 10(2), 63-89.
[http://dx.doi.org/10.14740/wjon1191] [PMID: 31068988]
[2]
Available From: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed 15 nov 2022).
[3]
Hammerich, K.H.; Ayala, G.E.; Wheeler, T.M. Anatomy of the prostate gland and surgical pathology of prostate cancer; Cambridge University: Cambridge, 2009, pp. 1-10.
[4]
Yasuoka, S.; Kimura, G.; Toyama, Y.; Moriya, K.; Takahashi, K.; Matsuoka, R.; Shibayama, K.; Obayashi, K.; Inoue, Y.; Shindo, T.; Iigaya, S.; Endo, Y.; Akatsuka, J.; Hayashi, T.; Nakayama, S.; Hamasaki, T.; Inokuchi, K.; Kondo, Y. A case of primary malignant lymphoma of the prostate gland presenting as right lower back pain and dysuria. J. Nippon Med. Sch., 2018, 85(4), 236-240.
[http://dx.doi.org/10.1272/jnms.JNMS.2018_85-37] [PMID: 30259894]
[5]
Keyes, M.; Crook, J.; Morton, G.; Vigneault, E.; Usmani, N.; Morris, W.J. Treatment options for localized prostate cancer. Can. Fam. Physician, 2013, 59(12), 1269-1274.
[PMID: 24336537]
[6]
Saman, D.M.; Lemieux, A.M.; Nawal Lutfiyya, M.; Lipsky, M.S. A review of the current epidemiology and treatment options for prostate cancer. Dis. Mon., 2014, 60(4), 150-154.
[http://dx.doi.org/10.1016/j.disamonth.2014.02.003] [PMID: 24726082]
[7]
Dunn, M.W.; Kazer, M.W. Prostate cancer overview. Seminars in oncology nursing; Elsevier, 2011, 1, pp. (4)241-250.
[8]
Holmboe, E.S.; Concato, J. Treatment decisions for localized prostate cancer. J. Gen. Intern. Med., 2000, 15(10), 694-701.
[http://dx.doi.org/10.1046/j.1525-1497.2000.90842.x] [PMID: 11089712]
[9]
Okada, K.; Oishi, K.; Yoshida, O.; Sudo, K.; Kawase, M.; Nakayama, R. Study of the effect of an anti-androgen (Oxendolone) on experimentally induced canine prostatic hyperplasia. Urol. Res., 1988, 16(2), 73-78.
[http://dx.doi.org/10.1007/BF00261959] [PMID: 2453093]
[10]
Goldenberg, S.L.; Bruchovsky, N. Use of cyproterone acetate in prostate cancer. Urol. Clin. North Am., 1991, 18(1), 111-122.
[http://dx.doi.org/10.1016/S0094-0143(21)01398-7] [PMID: 1825143]
[11]
Beckmann, K.; Garmo, H.; Lindahl, B.; Holmberg, L.; Stattin, P.; Adolfsson, J.; Cruickshank, J.K.; Van Hemelrijck, M. Spironolactone use is associated with lower prostate cancer risk: A population-wide case-control study. Prostate Cancer Prostatic Dis., 2020, 23(3), 527-533.
[http://dx.doi.org/10.1038/s41391-020-0220-8] [PMID: 32123316]
[12]
Dhondt, B.; Buelens, S.; Van Besien, J.; Beysens, M.; De Bleser, E.; Ost, P.; Lumen, N. Abiraterone and spironolactone in prostate cancer: A combination to avoid. Acta Clin. Belg., 2019, 74(6), 439-444.
[http://dx.doi.org/10.1080/17843286.2018.1543827] [PMID: 30477405]
[13]
Gao, W.; Kim, J.; Dalton, J.T. Pharmacokinetics and pharmacodynamics of nonsteroidal androgen receptor ligands. Pharm. Res., 2006, 23(8), 1641-1658.
[http://dx.doi.org/10.1007/s11095-006-9024-3] [PMID: 16841196]
[14]
Maurice-Dror, C.; Le Moigne, R.; Vaishampayan, U.; Montgomery, R.B.; Gordon, M.S.; Hong, N.H.; DiMascio, L.; Perabo, F.; Chi, K.N. A phase 1 study to assess the safety, pharmacokinetics, and anti-tumor activity of the androgen receptor n-terminal domain inhibitor epi-506 in patients with metastatic castration-resistant prostate cancer. Invest. New Drugs, 2022, 40(2), 322-329.
[http://dx.doi.org/10.1007/s10637-021-01202-6] [PMID: 34843005]
[15]
Mahler, C.; Verhelst, J.; Denis, L. Clinical pharmacokinetics of the antiandrogens and their efficacy in prostate cancer. Clin. Pharmacokinet., 1998, 34(5), 405-417.
[http://dx.doi.org/10.2165/00003088-199834050-00005] [PMID: 9592622]
[16]
Ishioka, T.; Kubo, A.; Koiso, Y.; Nagasawa, K.; Itai, A.; Hashimoto, Y. Novel non-steroidal/non-anilide type androgen antagonists with an isoxazolone moiety. Bioorg. Med. Chem., 2002, 10(5), 1555-1566.
[http://dx.doi.org/10.1016/S0968-0896(01)00421-7] [PMID: 11886817]
[17]
Kaur, P.; Khatik, G.L. Advancements in non-steroidal antiandrogens as potential therapeutic agents for the treatment of prostate cancer. Mini Rev. Med. Chem., 2016, 16(7), 531-546.
[http://dx.doi.org/10.2174/1389557516666160118112448] [PMID: 26776222]
[18]
Stanisławska, I.J.; Piwowarski, J.P.; Granica, S.; Kiss, A.K. The effects of urolithins on the response of prostate cancer cells to non-steroidal antiandrogen bicalutamide. Phytomedicine, 2018, 46, 176-183.
[http://dx.doi.org/10.1016/j.phymed.2018.03.054] [PMID: 30097116]
[19]
Kandil, S.B.; McGuigan, C.; Westwell, A.D. Synthesis and biological evaluation of bicalutamide analogues for the potential treatment of prostate cancer. Molecules, 2020, 26(1), 56.
[http://dx.doi.org/10.3390/molecules26010056] [PMID: 33374450]
[20]
Kandil, S.; Lee, K.Y.; Davies, L.; Rizzo, S.A.; Dart, D.A.; Westwell, A.D. Discovery of deshydroxy bicalutamide derivatives as androgen receptor antagonists. Eur. J. Med. Chem., 2019, 167, 49-60.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.054] [PMID: 30743097]
[21]
Gomha, S.M.; Abdel-aziz, H.M.; Badrey, M.G.; Abdulla, M.M. efficient synthesis of some new 1, 3, 4‐thiadiazoles and 1, 2, 4‐triazoles linked to pyrazolylcoumarin ring system as potent 5α‐reductase inhibitors. J. Heterocycl. Chem., 2019, 56(4), 1275-1282.
[http://dx.doi.org/10.1002/jhet.3487]
[22]
Mochona, B.; Qi, X.; Euynni, S.; Sikazwi, D.; Mateeva, N.; Soliman, K.F. Design and evaluation of novel oxadiazole derivatives as potential prostate cancer agents. Bioorg. Med. Chem. Lett., 2016, 26(12), 2847-2851.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.058] [PMID: 27156770]
[23]
Gamal El-Din, M. M.; El-Gamal, M. I.; Abdel-Maksoud, M. S.; Yoo, K. H.; Oh, C.-H. Synthesis and broad-spectrum antiproliferative activity of diarylamides and diarylureas possessing 1,3,4-oxadiazole derivatives. Bioorg. Med. Chem. Let., 2015, 25(8), 1692-1699.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.001] [PMID: 25801936]
[24]
Kharlyngdoh, J.B.; Asnake, S.; Pradhan, A.; Olsson, P.E. TBECH, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane, alters androgen receptor regulation in response to mutations associated with prostate cancer. Toxicol. Appl. Pharmacol., 2016, 307, 91-101.
[http://dx.doi.org/10.1016/j.taap.2016.07.018] [PMID: 27473015]
[25]
Kumar, S.; Khatik, G.L.; Mittal, A. In silico molecular docking study to search new SGLT2 inhibitor based on dioxabicyclo [3.2. 1] octane scaffold. Curr. Computeraided Drug Des., 2020, 16(2), 145-154.
[http://dx.doi.org/10.2174/1573409914666181019165821] [PMID: 30345926]
[26]
Liu, H.; An, X.; Li, S.; Wang, Y.; Li, J.; Liu, H. Interaction mechanism exploration of R-bicalutamide/S-1 with WT/W741L AR using molecular dynamics simulations. Mol. Biosyst., 2015, 11(12), 3347-3354.
[http://dx.doi.org/10.1039/C5MB00499C] [PMID: 26442831]
[27]
Bohl, C.E.; Wu, Z.; Miller, D.D.; Bell, C.E.; Dalton, J.T. Crystal structure of the T877A human androgen receptor ligand-binding domain complexed to cyproterone acetate provides insight for ligand-induced conformational changes and structure-based drug design. J. Biol. Chem., 2007, 282(18), 13648-13655.
[http://dx.doi.org/10.1074/jbc.M611711200] [PMID: 17311914]
[28]
Dorice, M.H.C.; Khurana, N.; Sharma, N.; Khatik, G.L. Identification of possible molecular targets of potential anti-parkinson drugs by predicting their binding affinities using molecular docking. Asian J. Pharm. Clin. Res., 2018, 11(14), 28-32.
[http://dx.doi.org/10.22159/ajpcr.2018.v11s2.28512]
[29]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[30]
Pharmacophore and ligand-based design with Biovia Discovery Studio. Dassault systemes, 2014. Available from: https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/BIOVIA/PDF/Pharmacophore-Ligand-based-Design-with-BIOVIA-Discover y-Studio.pdf
[31]
Yuan, S.; Chan, H.C.S.; Hu, Z. Using PYMOL as a platform for computational drug design. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2017, 7(2), e1298.
[http://dx.doi.org/10.1002/wcms.1298]
[32]
Jejurikar, B.L.; Rohane, S.H. Drug designing in discovery studio. Asian J. Res. Chem, 2021, 14(2), 135-138.
[33]
Mishra, S.; Dahima, R. In vitro ADME studies of TUG-891, a GPR-120 inhibitor using SWISS ADME predictor. J. Drug Deliv. Ther., 2019, 9(2-s), 366-369.
[34]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[35]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[36]
(a) Banerjee, P.; Dehnbostel, F.O.; Preissner, R. Prediction is a balancing act: Importance of sampling methods to balance sensitivity and specificity of predictive models based on imbalanced chemical data sets. Front Chem., 2018, 6, 362.
[http://dx.doi.org/10.3389/fchem.2018.00362] [PMID: 30271769];
(b) Pires, D. E.; Blundell, T. L.; Ascher, D. B. PKCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy