Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Inhibition of Xanthine Oxidase by 4-nitrocinnamic Acid: In Vitro and In Vivo Investigations and Docking Simulations

Author(s): Jianmin Chen*, Sijin Yu, Zemin He, Danhong Zhu, Xiaozhen Cai, Zhipeng Ruan and Nan Jin

Volume 25, Issue 4, 2024

Published on: 28 August, 2023

Page: [477 - 487] Pages: 11

DOI: 10.2174/1389201024666230621141014

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Cinnamic acid and its derivatives have gained significant attention in recent medicinal research due to their broad spectrum of pharmacological properties. However, the effects of these compounds on xanthine oxidase (XO) have not been systematically investigated, and the inhibitory mechanism remains unclear.

Objectives: The objective of this study was to screen 18 compounds and identify the XO inhibitor with the strongest inhibitory effect. Furthermore, we aimed to study the inhibitory mechanism of the identified compound.

Methods: The effects of the inhibitors on XO were evaluated using kinetic analysis, docking simulations, and in vivo study. Among the compounds tested, 4-NA was discovered as the first XO inhibitor and exhibited the most potent inhibitory effects, with an IC50 value of 23.02 ± 0.12 μmol/L. The presence of the nitro group in 4-NA was found to be essential for enhancing XO inhibition. The kinetic study revealed that 4-NA inhibited XO in a reversible and noncompetitive manner. Moreover, fluorescence spectra analysis demonstrated that 4-NA could spontaneously form complexes with XO, referred to as 4-NA–XO complexes, with the negative values of △H and ΔS.

Results: This suggests that hydrogen bonds and van der Waals forces play crucial roles in the binding process. Molecular docking studies further supported the kinetic analysis and provided insight into the optimal binding conformation, indicating that 4-NA is located at the bottom outside the catalytic center through the formation of three hydrogen bonds. Furthermore, animal studies confirmed that the inhibitory effects of 4-NA on XO resulted in a significant reduction of serum uric acid level in hyperuricemia mice.

Conclusion: This work elucidates the mechanism of 4-NA inhibiting XO, paving the way for the development of new XO inhibitors.

Keywords: Xanthine oxidase, 4-nitrocinnamic acid, cinnamic acid, derivatives, uric acid, hyperuricemia.

Graphical Abstract
[1]
Abooali, M.; Lall, G.S.; Coughlan, K.; Lall, H.S.; Gibbs, B.F.; Sumbayev, V.V. Crucial involvement of xanthine oxidase in the intracellular signalling networks associated with human myeloid cell function. Sci. Rep., 2014, 4(1), 6307.
[http://dx.doi.org/10.1038/srep06307] [PMID: 25200751]
[2]
Chen, J.; Li, Q.; Ye, Y.; Ran, M.; Ruan, Z.; Jin, N. Inhibition of xanthine oxidase by theaflavin: Possible mechanism for anti-hyperuricaemia effect in mice. Process Biochem., 2020, 97, 11-18.
[http://dx.doi.org/10.1016/j.procbio.2020.06.024]
[3]
Kumar, D.; Kaur, G.; Negi, A.; Kumar, S.; Singh, S.; Kumar, R. Synthesis and xanthine oxidase inhibitory activity of 5,6-dihydropyrazolo/pyrazolo[1,5-c]quinazoline derivatives. Bioorg. Chem., 2014, 57, 57-64.
[http://dx.doi.org/10.1016/j.bioorg.2014.08.007] [PMID: 25222504]
[4]
Cheng, J.H.; Huang, A.M.; Hour, T.C.; Yang, S.C.; Pu, Y.S.; Lin, C.N. Antioxidant xanthone derivatives induce cell cycle arrest and apoptosis and enhance cell death induced by cisplatin in NTUB1 cells associated with ROS. Eur. J. Med. Chem., 2011, 46(4), 1222-1231.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.043] [PMID: 21345544]
[5]
Fais, A.; Era, B.; Asthana, S.; Sogos, V.; Medda, R.; Santana, L.; Uriarte, E.; Matos, M.J.; Delogu, F.; Kumar, A. Coumarin derivatives as promising xanthine oxidase inhibitors. Int. J. Biol. Macromol., 2018, 120(Pt A), 1286-1293.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.001] [PMID: 30189275]
[6]
Zhang, C.; Wang, R.; Zhang, G.; Gong, D. Mechanistic insights into the inhibition of quercetin on xanthine oxidase. Int. J. Biol. Macromol., 2018, 112, 405-412.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.190] [PMID: 29410028]
[7]
Gunia-Krzyżak, A.; Słoczyńska, K.; Popiół, J.; Koczurkiewicz, P.; Marona, H.; Pękala, E. Cinnamic acid derivatives in cosmetics: current use and future prospects. Int. J. Cosmet. Sci., 2018, 40(4), 356-366.
[http://dx.doi.org/10.1111/ics.12471] [PMID: 29870052]
[8]
Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev. Med. Chem., 2012, 12(8), 749-767.
[http://dx.doi.org/10.2174/138955712801264792] [PMID: 22512578]
[9]
Ruwizhi, N.; Aderibigbe, B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci., 2020, 21(16), 5712.
[http://dx.doi.org/10.3390/ijms21165712] [PMID: 32784935]
[10]
Zang, L.Y.; Cosma, G.; Gardner, H.; Shi, X.; Castranova, V.; Vallyathan, V. Effect of antioxidant protection by p -coumaric acid on low-density lipoprotein cholesterol oxidation. Am. J. Physiol. Cell Physiol., 2000, 279(4), C954-C960.
[http://dx.doi.org/10.1152/ajpcell.2000.279.4.C954] [PMID: 11003575]
[11]
Pontiki, E.; Hadjipavlou-Litina, D.; Geromichalos, G.; Papageorgiou, A. Anticancer activity and quantitative-structure activity relationship (QSAR) studies of a series of antioxidant/anti-inflammatory aryl-acetic and hydroxamic acids. Chem. Biol. Drug Des., 2009, 74(3), 266-275.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00864.x] [PMID: 19703028]
[12]
Bisogno, F.; Mascoti, L.; Sanchez, C.; Garibotto, F.; Giannini, F.; Kurina-Sanz, M.; Enriz, R. Structure-antifungal activity relationship of cinnamic acid derivatives. J. Agric. Food Chem., 2007, 55(26), 10635-10640.
[http://dx.doi.org/10.1021/jf0729098] [PMID: 18038998]
[13]
Naz, S.; Ahmad, S.; Ajaz Rasool, S.; Asad Sayeed, S.; Siddiqi, R. Antibacterial activity directed isolation of compounds from Onosma hispidum. Microbiol. Res., 2006, 161(1), 43-48.
[http://dx.doi.org/10.1016/j.micres.2005.05.001] [PMID: 16338589]
[14]
Pontiki, E.; Hadjipavlou-Litina, D.; Litinas, K.; Geromichalos, G. Novel cinnamic acid derivatives as antioxidant and anticancer agents: design, synthesis and modeling studies. Molecules, 2014, 19(7), 9655-9674.
[http://dx.doi.org/10.3390/molecules19079655] [PMID: 25004073]
[15]
Prakash, S.; Maji, D.; Samanta, S.; Sinha, R. Design, synthesis and antidiabetic, cardiomyopathy studies of cinnamic acid-amino acid hybrid analogs. Med. Chem., 2014, 4(2), 345-350.
[16]
Chen, J.; Ran, M.; Wang, M.; Liu, X.; Liu, S.; Yu, Y. Structure–activity relationships of antityrosinase and antioxidant activities of cinnamic acid and its derivatives. Biosci. Biotechnol. Biochem., 2021, 85(7), 1697-1705.
[http://dx.doi.org/10.1093/bbb/zbab084] [PMID: 33974002]
[17]
Mnafgui, K.; Derbali, A.; Sayadi, S.; Gharsallah, N.; Elfeki, A.; Allouche, N. Anti-obesity and cardioprotective effects of cinnamic acid in high fat diet- induced obese rats. J. Food Sci. Technol., 2015, 52(7), 4369-4377.
[http://dx.doi.org/10.1007/s13197-014-1488-2] [PMID: 26139902]
[18]
Szwajgier, D.; Borowiec, K.; Pustelniak, K. The neuroprotective effects of phenolic acids: molecular mechanism of action. Nutrients, 2017, 9(5), 477.
[http://dx.doi.org/10.3390/nu9050477] [PMID: 28489058]
[19]
Lee, E.J.; Kim, S.R.; Kim, J.; Kim, Y.C. Hepatoprotective phenylpropanoids from Scrophularia buergeriana roots against CCl(4)-induced toxicity: action mechanism and structure-activity relationship. Planta Med., 2002, 68(5), 407-411.
[http://dx.doi.org/10.1055/s-2002-32081] [PMID: 12058315]
[20]
Ngoc, T.M.; Khoi, N.M.; Ha, D.T.; Nhiem, N.X.; Tai, B.H.; Don, D.V.; Luong, H.V.; Son, D.C.; Bae, K. Xanthine oxidase inhibitory activity of constituents of Cinnamomum cassia twigs. Bioorg. Med. Chem. Lett., 2012, 22(14), 4625-4628.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.051] [PMID: 22677314]
[21]
Nguyen, M.T.; Awale, S.; Tezuka, Y.; Ueda, J.; Tran, Q.L.; Kadota, S. Xanthine oxidase inhibitors from the flowers of Chrysanthemum sinense. Planta Med., 2006, 72(1), 46-51.
[http://dx.doi.org/10.1055/s-2005-873181] [PMID: 16450295]
[22]
Chang, Y.C.; Lee, F.W.; Chen, C.S.; Huang, S.T.; Tsai, S.H.; Huang, S.H.; Lin, C.M. Structure-activity relationship of C6-C3 phenylpropanoids on xanthine oxidase-inhibiting and free radical-scavenging activities. Free Radic. Biol. Med., 2007, 43(11), 1541-1551.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.08.018] [PMID: 17964425]
[23]
Wan, Y.; Wang, F.; Zou, B.; Shen, Y.; Li, Y.; Zhang, A.; Fu, G. Molecular mechanism underlying the ability of caffeic acid to decrease uric acid levels in hyperuricemia rats. J. Funct. Foods, 2019, 57, 150-156.
[http://dx.doi.org/10.1016/j.jff.2019.03.038]
[24]
Wang, Y.; Zhang, G.; Pan, J.; Gong, D. Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase. J. Agric. Food Chem., 2015, 63(2), 526-534.
[http://dx.doi.org/10.1021/jf505584m] [PMID: 25539132]
[25]
Enroth, C.; Eger, B.T.; Okamoto, K.; Nishino, T.; Nishino, T.; Pai, E.F. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: Structure-based mechanism of conversion. Proc. Natl. Acad. Sci. USA, 2000, 97(20), 10723-10728.
[http://dx.doi.org/10.1073/pnas.97.20.10723] [PMID: 11005854]
[26]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel., 1995, 8(2), 127-134.
[http://dx.doi.org/10.1093/protein/8.2.127] [PMID: 7630882]
[27]
Wang, S.Y.; Yang, C.W.; Liao, J.W.; Zhen, W.W.; Chu, F.H.; Chang, S.T. Essential oil from leaves of Cinnamomum osmophloeum acts as a xanthine oxidase inhibitor and reduces the serum uric acid levels in oxonate-induced mice. Phytomedicine, 2008, 15(11), 940-945.
[http://dx.doi.org/10.1016/j.phymed.2008.06.002]
[28]
Carroll, J.J.; Coburn, H.; Douglass, R.; Babson, A.L. A simplified alkaline phosphotungstate assay for uric acid in serum. Clin. Chem., 1971, 17(3), 158-160.
[http://dx.doi.org/10.1093/clinchem/17.3.158] [PMID: 5543187]
[29]
Singh, H.; Sharma, S.; Ojha, R.; Gupta, M.K.; Nepali, K.; Bedi, P.M.S. Synthesis and evaluation of naphthoflavones as a new class of non purine xanthine oxidase inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(17), 4192-4197.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.041] [PMID: 25106887]
[30]
Wang, Z.J.; Lee, J.; Si, Y.X.; Oh, S.; Yang, J.M.; Shen, D.; Qian, G.Y.; Yin, S.J. Toward the inhibitory effect of acetylsalicylic acid on tyrosinase: Integrating kinetics studies and computational simulations. Process Biochem., 2013, 48(2), 260-266.
[http://dx.doi.org/10.1016/j.procbio.2012.12.019]
[31]
Nguyen, M.T.T.; Awale, S.; Tezuka, Y.; Tran, Q.L.; Kadota, S. Xanthine oxidase inhibitors from the heartwood of Vietnamese Caesalpinia sappan. Chem. Pharm. Bull., 2005, 53(8), 984-988.
[http://dx.doi.org/10.1248/cpb.53.984] [PMID: 16079532]
[32]
Fan, Q.; Jiang, H.; Yuan, E.; Zhang, J.; Ning, Z.; Qi, S.; Wei, Q. Tyrosinase inhibitory effects and antioxidative activities of novel cinnamoyl amides with amino acid ester moiety. Food Chem., 2012, 134(2), 1081-1087.
[http://dx.doi.org/10.1016/j.foodchem.2012.03.021] [PMID: 23107731]
[33]
Sheng, Z.; Ge, S.; Xu, X.; Zhang, Y.; Wu, P.; Zhang, K.; Xu, X.; Li, C.; Zhao, D.; Tang, X. Design, synthesis and evaluation of cinnamic acid ester derivatives as mushroom tyrosinase inhibitors. MedChemComm, 2018, 9(5), 853-861.
[http://dx.doi.org/10.1039/C8MD00099A] [PMID: 30108974]
[34]
Gou, L.; Lee, J.; Yang, J.M.; Park, Y.D.; Zhou, H.M.; Zhan, Y.; Lü, Z.R. Inhibition of tyrosinase by fumaric acid: Integration of inhibition kinetics with computational docking simulations. Int. J. Biol. Macromol., 2017, 105(Pt 3), 1663-1669.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.013] [PMID: 27940340]
[35]
Arancibia-Avila, P.; Toledo, F.; Werner, E.; Suhaj, M.; Leontowicz, H.; Leontowicz, M.; Martinez-Ayala, A.L. Paśko, P.; Gorinstein, S. Partial characterization of a new kind of Chilean Murtilla-like berries. Food Res. Int., 2011, 44(7), 2054-2062.
[http://dx.doi.org/10.1016/j.foodres.2011.01.016]
[36]
Dong, Y.; Huang, H.; Zhao, M.; Sun-Waterhouse, D.; Lin, L.; Xiao, C. Mechanisms underlying the xanthine oxidase inhibitory effects of dietary flavonoids galangin and pinobanksin. J. Funct. Foods, 2016, 24, 26-36.
[http://dx.doi.org/10.1016/j.jff.2016.03.021]
[37]
Yan, J.; Zhang, G.; Hu, Y.; Ma, Y. Effect of luteolin on xanthine oxidase: Inhibition kinetics and interaction mechanism merging with docking simulation. Food Chem., 2013, 141(4), 3766-3773.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.092] [PMID: 23993547]
[38]
Zhao, J.; Huang, L.; Sun, C.; Zhao, D.; Tang, H. Studies on the structure-activity relationship and interaction mechanism of flavonoids and xanthine oxidase through enzyme kinetics, spectroscopy methods and molecular simulations. Food Chem., 2020, 323, 126807.
[http://dx.doi.org/10.1016/j.foodchem.2020.126807] [PMID: 32330646]
[39]
Abou-Zied, O.K.; Al-Shihi, O.I.K. Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. J. Am. Chem. Soc., 2008, 130(32), 10793-10801.
[http://dx.doi.org/10.1021/ja8031289] [PMID: 18642807]
[40]
Wang, Y.; Zhang, G.; Yan, J.; Gong, D. Inhibitory effect of morin on tyrosinase: Insights from spectroscopic and molecular docking studies. Food Chem., 2014, 163, 226-233.
[http://dx.doi.org/10.1016/j.foodchem.2014.04.106] [PMID: 24912720]
[41]
Shaikh, S.M.T.; Seetharamappa, J.; Kandagal, P.B.; Ashoka, S. Binding of the bioactive component isothipendyl hydrochloride with bovine serum albumin. J. Mol. Struct., 2006, 786(1), 46-52.
[http://dx.doi.org/10.1016/j.molstruc.2005.10.021]
[42]
Rasoulzadeh, F.; Jabary, H.N.; Naseri, A.; Rashidi, M.R. Fluorescence quenching study of quercetin interaction with bovine milk xanthine oxidase. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 72(1), 190-193.
[http://dx.doi.org/10.1016/j.saa.2008.09.021] [PMID: 19028136]
[43]
Cao, W.; Fang, Y.; Wu, T.; Liang, F.; Cheng, Y.; Salah, M.; Pan, S.; Xu, X. Insights from multispectral and molecular docking investigation on the xanthine oxidase inhibition by 1,4-dicaffeoylquinic acid. J. Mol. Struct., 2020, 1219, 128475.
[http://dx.doi.org/10.1016/j.molstruc.2020.128475]
[44]
Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry, 1981, 20(11), 3096-3102.
[http://dx.doi.org/10.1021/bi00514a017] [PMID: 7248271]
[45]
Zhang, Q.; Xie, J.; Li, G.; Wang, F.; Lin, J.; Yang, M.; Du, A.; Zhang, D.; Han, L. Psoriasis treatment using Indigo Naturalis: Progress and strategy. J. Ethnopharmacol., 2022, 297, 115522.
[http://dx.doi.org/10.1016/j.jep.2022.115522] [PMID: 35872288]
[46]
Jayaraj, P.; Mathew, B.; Parimaladevi, B.; Ramani, V.A.; Govindarajan, R. Isolation of a bioactive flavonoid from Spilanthes calva D.C. in vitro xanthine oxidase assay and in silico study. Biomedicine & Preventive Nutrition, 2014, 4(4), 481-484.
[http://dx.doi.org/10.1016/j.bionut.2014.07.005]
[47]
Ou, R.; Lin, L.; Zhao, M.; Xie, Z. Action mechanisms and interaction of two key xanthine oxidase inhibitors in galangal: Combination of in vitro and in silico molecular docking studies. Int. J. Biol. Macromol., 2020, 162, 1526-1535.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.297] [PMID: 32777423]
[48]
Thakur, M.; Thakur, A.; Balasubramanian, K. QSAR and SAR studies on the reduction of some aromatic nitro compounds by xanthine oxidase. J. Chem. Inf. Model., 2006, 46(1), 103-110.
[http://dx.doi.org/10.1021/ci050478s] [PMID: 16426045]
[49]
Tatsumi, K.; Kitamura, S.; Yoshimura, H.; Kawazoe, Y. Susceptibility of aromatic nitro compounds to xanthine oxidase-catalyzed reduction. Chem. Pharm. Bull. (Tokyo), 1978, 26(6), 1713-1717.
[http://dx.doi.org/10.1248/cpb.26.1713] [PMID: 568038]
[50]
Kong, L.D.; Yang, C.; Ge, F.; Wang, H.D.; Guo, Y.S. A Chinese herbal medicine Ermiao wan reduces serum uric acid level and inhibits liver xanthine dehydrogenase and xanthine oxidase in mice. J. Ethnopharmacol., 2004, 93(2-3), 325-330.
[http://dx.doi.org/10.1016/j.jep.2004.04.008] [PMID: 15234772]
[51]
Feng, L.; Ou, W.; Yang, Y.; Qi, Y.; Qi, Z.; Zhang, J. Black rice anthocyanins alleviate hyperuricemia in mice: Possible inhibitory effects on xanthine oxidase activity by cyanidin 3-O-glucoside. J. Cereal Sci., 2022, 104, 103406.
[http://dx.doi.org/10.1016/j.jcs.2021.103406]
[52]
Qin, Z.; Wang, S.; Lin, Y.; Zhao, Y.; Yang, S.; Song, J.; Xie, T.; Tian, J.; Wu, S.; Du, G. Antihyperuricemic effect of mangiferin aglycon derivative J99745 by inhibiting xanthine oxidase activity and urate transporter 1 expression in mice. Acta Pharm. Sin. B, 2018, 8(2), 306-315.
[http://dx.doi.org/10.1016/j.apsb.2017.05.004] [PMID: 29719791]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy