Review Article

体外膜氧合患者的炎症进展

卷 24, 期 7, 2024

发表于: 16 August, 2023

页: [844 - 855] 页: 12

弟呕挨: 10.2174/1566524023666230619102723

价格: $65

Open Access Journals Promotions 2
摘要

体外膜氧合(ECMO)被认为是一种新的治疗策略,为人类心肺代谢提供短期支持。近年来,在世界范围内提供体外膜肺氧合的临床中心迅速增加。ECMO在日常临床实践中的适应症不断拓宽。然而,即使ECMO被广泛采用,其发病率和死亡率仍然很高,其潜在机制仍未阐明。值得注意的是,ECMO期间的一个重要并发症是体外循环中的炎症进展。通过炎症反应的发展,ECMO患者可能进一步出现全身性炎症反应综合征(SIRS),对人体健康构成严重风险。最近,越来越多的证据证实,通过血液暴露到ECMO回路可能导致免疫系统的刺激,从而促进炎症反应和全身损伤。在目前的综述中,ECMO患者炎症进展的病理发展被很好地列出。此外,本文还对免疫相关激活与炎症发生的关系进行了总结,这可能有助于我们在日常临床实践中确定治疗策略。

关键词: 体外膜氧合,炎症,治疗策略,全身炎症反应综合征,间充质间质细胞,炎症。

[1]
Napp LC, Kühn C, Bauersachs J. ECMO in cardiac arrest and cardiogenic shock. Herz 2017; 42(1): 27-44.
[http://dx.doi.org/10.1007/s00059-016-4523-4] [PMID: 28127638]
[2]
Millar JE, Fanning JP, McDonald CI, McAuley DF, Fraser JF. The inflammatory response to extracorporeal membrane oxygenation (ECMO): A review of the pathophysiology. Crit Care 2016; 20(1): 387.
[http://dx.doi.org/10.1186/s13054-016-1570-4] [PMID: 27890016]
[3]
Thomas J, Kostousov V, Teruya J. Bleeding and thrombotic complications in the use of extracorporeal membrane oxygenation. Semin Thromb Hemost 2018; 44(1): 020-9.
[http://dx.doi.org/10.1055/s-0037-1606179] [PMID: 28898902]
[4]
Paolone S. Extracorporeal membrane oxygenation (ECMO) for lung injury in severe acute respiratory distress syndrome (ARDS): review of the literature. Clin Nurs Res 2017; 26(6): 747-62.
[http://dx.doi.org/10.1177/1054773816677808] [PMID: 27836935]
[5]
Schechter MA, Ganapathi AM, Englum BR, et al. Spontaneously breathing extracorporeal membrane oxygenation support provides the optimal bridge to lung transplantation. Transplantation 2016; 100(12): 2699-704.
[http://dx.doi.org/10.1097/TP.0000000000001047] [PMID: 26910331]
[6]
Murphy DA, Hockings LE, Andrews RK, et al. Extracorporeal membrane oxygenation-hemostatic complications. Transfus Med Rev 2015; 29(2): 90-101.
[http://dx.doi.org/10.1016/j.tmrv.2014.12.001] [PMID: 25595476]
[7]
Bautista-Rodriguez C, Sanchez-de-Toledo J, Da Cruz EM. The role of echocardiography in neonates and pediatric patients on extracorporeal membrane oxygenation. Front Pediatr 2018; 6: 297.
[http://dx.doi.org/10.3389/fped.2018.00297] [PMID: 30416991]
[8]
Gray BW, Haft JW, Hirsch JC, Annich GM, Hirschl RB, Bartlett RH. Extracorporeal life support: Experience with 2,000 patients. ASAIO J 2015; 61(1): 2-7.
[http://dx.doi.org/10.1097/MAT.0000000000000150] [PMID: 25251585]
[9]
Tsai CW, Lin YF, Wu VC, et al. SAPS 3 at dialysis commencement is predictive of hospital mortality in patients supported by extracorporeal membrane oxygenation and acute dialysis. Eur J Cardiothorac Surg 2008; 34(6): 1158-64.
[http://dx.doi.org/10.1016/j.ejcts.2008.07.025] [PMID: 18757205]
[10]
Aubron C, Cheng AC, Pilcher D, et al. Factors associated with outcomes of patients on extracorporeal membrane oxygenation support: A 5-year cohort study. Crit Care 2013; 17(2): R73.
[http://dx.doi.org/10.1186/cc12681] [PMID: 23594433]
[11]
Clark JB, Wang S, Palanzo DA, et al. Current techniques and outcomes in extracorporeal life support. Artif Organs 2015; 39(11): 926-30.
[http://dx.doi.org/10.1111/aor.12527] [PMID: 26489868]
[12]
Margraf A, Ludwig N, Zarbock A, Rossaint J. Systemic inflammatory response syndrome after surgery: Mechanisms and protection. Anesth Analg 2020; 131(6): 1693-707.
[http://dx.doi.org/10.1213/ANE.0000000000005175] [PMID: 33186158]
[13]
Ki KK, Millar JE, Langguth D, et al. Current understanding of leukocyte phenotypic and functional modulation during extracorporeal membrane oxygenation: A narrative review. Front Immunol 2021; 11: 600684.
[http://dx.doi.org/10.3389/fimmu.2020.600684] [PMID: 33488595]
[14]
Rungatscher A, Tessari M, Stranieri C, et al. Oxygenator is the main responsible for leukocyte activation in experimental model of extracorporeal circulation: A cautionary tale. Mediators Inflamm 2015; 2015: 1-7.
[http://dx.doi.org/10.1155/2015/484979] [PMID: 26063972]
[15]
Wang S, Krawiec C, Patel S, et al. Laboratory evaluation of hemolysis and systemic inflammatory response in neonatal nonpulsatile and pulsatile extracorporeal life support systems. Artif Organs 2015; 39(9): 774-81.
[http://dx.doi.org/10.1111/aor.12466] [PMID: 25940752]
[16]
Al-Fares A, Pettenuzzo T, Del Sorbo L. Extracorporeal life support and systemic inflammation. Intensive Care Med Exp 2019; 7(S1) (Suppl. 1): 46.
[http://dx.doi.org/10.1186/s40635-019-0249-y] [PMID: 31346840]
[17]
Graulich J, Sonntag J, Marcinkowski M, et al. Complement activation by in vivo neonatal and in vitro extracorporeal membrane oxygenation. Mediators Inflamm 2002; 11(2): 69-73.
[http://dx.doi.org/10.1080/09629350220131908] [PMID: 12061426]
[18]
Oliver WC. Anticoagulation and coagulation management for ECMO. Semin Cardiothorac Vasc Anesth 2009; 13(3): 154-75.
[http://dx.doi.org/10.1177/1089253209347384] [PMID: 19767408]
[19]
He C, Yang S, Yu W, et al. Effects of continuous renal replacement therapy on intestinal mucosal barrier function during extracorporeal membrane oxygenation in a porcine model. J Cardiothorac Surg 2014; 9(1): 72.
[http://dx.doi.org/10.1186/1749-8090-9-72] [PMID: 24758270]
[20]
Shi J, Chen Q, Yu W, et al. Continuous renal replacement therapy reduces the systemic and pulmonary inflammation induced by venovenous extracorporeal membrane oxygenation in a porcine model. Artif Organs 2014; 38(3): 215-23.
[http://dx.doi.org/10.1111/aor.12154] [PMID: 24329567]
[21]
Yimin H, Wenkui Y, Jialiang S, et al. Effects of continuous renal replacement therapy on renal inflammatory cytokines during extracorporeal membrane oxygenation in a porcine model. J Cardiothorac Surg 2013; 8(1): 113.
[http://dx.doi.org/10.1186/1749-8090-8-113] [PMID: 23628149]
[22]
Thangappan K, Cavarocchi NC, Baram M, Thoma B, Hirose H. Systemic inflammatory response syndrome (SIRS) after extracorporeal membrane oxygenation (ECMO): Incidence, risks and survivals. Heart Lung 2016; 45(5): 449-53.
[http://dx.doi.org/10.1016/j.hrtlng.2016.06.004] [PMID: 27425197]
[23]
Landis RC, Brown JR, Fitzgerald D, et al. Attenuating the systemic inflammatory response to adult cardiopulmonary bypass: A critical review of the evidence base. J Extra Corpor Technol 2014; 46(3): 197-211.
[PMID: 26357785]
[24]
Balk RA. Systemic inflammatory response syndrome (SIRS). Virulence 2014; 5(1): 20-6.
[http://dx.doi.org/10.4161/viru.27135] [PMID: 24280933]
[25]
Wu Y. The plasma contact system as a modulator of innate immunity. Curr Opin Hematol 2018; 25(5): 389-94.
[http://dx.doi.org/10.1097/MOH.0000000000000448] [PMID: 30028742]
[26]
Didiasova M, Wujak L, Schaefer L, Wygrecka M. Factor XII in coagulation, inflammation and beyond. Cell Signal 2018; 51: 257-65.
[http://dx.doi.org/10.1016/j.cellsig.2018.08.006] [PMID: 30118759]
[27]
Maas C, Renné T. Coagulation factor XII in thrombosis and inflammation. Blood 2018; 131(17): 1903-9.
[http://dx.doi.org/10.1182/blood-2017-04-569111] [PMID: 29483100]
[28]
Long AT, Kenne E, Jung R, Fuchs TA, Renné T. Contact system revisited: An interface between inflammation, coagulation, and innate immunity. J Thromb Haemost 2016; 14(3): 427-37.
[http://dx.doi.org/10.1111/jth.13235] [PMID: 26707513]
[29]
de Maat S, Sanrattana W, Mailer RK, et al. Design and characterization of α1-antitrypsin variants for treatment of contact system–driven thromboinflammation. Blood 2019; 134(19): 1658-69.
[http://dx.doi.org/10.1182/blood.2019000481] [PMID: 31366623]
[30]
Mojcik CF, Levy JH. Aprotinin and the systemic inflammatory response after cardiopulmonary bypass. Ann Thorac Surg 2001; 71(2): 745-54.
[http://dx.doi.org/10.1016/S0003-4975(00)02218-9] [PMID: 11235755]
[31]
Wilbs J, Kong XD, Middendorp SJ, et al. Cyclic peptide FXII inhibitor provides safe anticoagulation in a thrombosis model and in artificial lungs. Nat Commun 2020; 11(1): 3890.
[http://dx.doi.org/10.1038/s41467-020-17648-w] [PMID: 32753636]
[32]
Naaldijk YM, Bittencourt MC, Sack U, Ulrich H. Kinins and microglial responses in bipolar disorder: A neuroinflammation hypothesis. Biol Chem 2016; 397(4): 283-96.
[http://dx.doi.org/10.1515/hsz-2015-0257] [PMID: 26859499]
[33]
Schmaier AH. The contact activation and kallikrein/kinin systems: Pathophysiologic and physiologic activities. J Thromb Haemost 2016; 14(1): 28-39.
[http://dx.doi.org/10.1111/jth.13194] [PMID: 26565070]
[34]
Yeh CH, Chen TP, Wang YC, Lin YM, Fang SW. Cardiomyo-cytic apoptosis limited by bradykinin via restoration of nitric oxide after cardioplegic arrest. J Surg Res 2010; 163(1): e1-9.
[http://dx.doi.org/10.1016/j.jss.2010.04.005] [PMID: 20638673]
[35]
Weitz JI, Chan NC. Novel antithrombotic strategies for treatment of venous thromboembolism. Blood 2020; 135(5): 351-9.
[http://dx.doi.org/10.1182/blood.2019000919] [PMID: 31917385]
[36]
Grover SP, Mackman N. Intrinsic pathway of coagulation and thrombosis. Arterioscler Thromb Vasc Biol 2019; 39(3): 331-8.
[http://dx.doi.org/10.1161/ATVBAHA.118.312130] [PMID: 30700128]
[37]
Visser M, van Oerle R, ten Cate H, et al. Plasma Kallikrein contributes to coagulation in the Absence of Factor XI by Activating Factor IX. Arterioscler Thromb Vasc Biol 2020; 40(1): 103-11.
[http://dx.doi.org/10.1161/ATVBAHA.119.313503] [PMID: 31766871]
[38]
Morgan EN, Pohlman TH, Vocelka C, et al. Nuclear factor κB mediates a procoagulant response in monocytes during extracorporeal circulation. J Thorac Cardiovasc Surg 2003; 125(1): 165-71.
[http://dx.doi.org/10.1067/mtc.2003.99] [PMID: 12539000]
[39]
Shibamiya A, Tabuchi N, Chung J, Sunamori M, Koyama T. Formation of tissue factor-bearing leukocytes during and after cardiopulmonary bypass. Thromb Haemost 2004; 92(7): 124-31.
[http://dx.doi.org/10.1160/TH03-12-0787] [PMID: 15213853]
[40]
Szotowski B, Antoniak S, Poller W, Schultheiss HP, Rauch U. Procoagulant soluble tissue factor is released from endothelial cells in response to inflammatory cytokines. Circ Res 2005; 96(12): 1233-9.
[http://dx.doi.org/10.1161/01.RES.0000171805.24799.fa] [PMID: 15920023]
[41]
Alvarez-Flores MP, Furlin D, Ramos OHP, Balan A, Konno K, Chudzinski-Tavassi AM. Losac, the first hemolin that exhibits procogulant activity through selective factor X proteolytic activation. J Biol Chem 2011; 286(9): 6918-28.
[http://dx.doi.org/10.1074/jbc.M110.167718] [PMID: 21177860]
[42]
Oulion B, Dobson JS, Zdenek CN, et al. Factor X activating Atractaspis snake venoms and the relative coagulotoxicity neutralising efficacy of African antivenoms. Toxicol Lett 2018; 288: 119-28.
[http://dx.doi.org/10.1016/j.toxlet.2018.02.020] [PMID: 29462691]
[43]
Lim CH, Puthia M, Butrym M, et al. Thrombin-derived host defence peptide modulates neutrophil rolling and migration in vitro and functional response in vivo. Sci Rep 2017; 7(1): 11201.
[http://dx.doi.org/10.1038/s41598-017-11464-x] [PMID: 28894159]
[44]
Bronicki RA, Hall M. Cardiopulmonary bypass-induced inflammatory response. Pediatr Crit Care Med 2016; 17(8) (Suppl. 1): S272-8.
[http://dx.doi.org/10.1097/PCC.0000000000000759] [PMID: 27490610]
[45]
Evora PRB, Tenório DF, Braile DM. Is the cardiopulmonary bypass systemic inflammatory response overestimated? Rev Bras Cir Cardiovasc 2018; 33(4): I-III.
[http://dx.doi.org/10.21470/1678-9741-2018-0605] [PMID: 30184025]
[46]
Weber CF, Dietrich W, Spannagl M, Hofstetter C, Jámbor C. A point-of-care assessment of the effects of desmopressin on impaired platelet function using multiple electrode whole-blood aggregometry in patients after cardiac surgery. Anesth Analg 2010; 110(3): 702-7.
[http://dx.doi.org/10.1213/ANE.0b013e3181c92a5c] [PMID: 20042444]
[47]
Cheung PY, Sawicki G, Salas E, Etches PC, Schulz R, Radomski MW. The mechanisms of platelet dysfunction during extracorporeal membrane oxygenation in critically ill neonates. Crit Care Med 2000; 28(7): 2584-90.
[http://dx.doi.org/10.1097/00003246-200007000-00067] [PMID: 10921599]
[48]
Jiritano F, Serraino GF, ten Cate H, et al. Platelets and extra-corporeal membrane oxygenation in adult patients: A systematic review and meta-analysis. Intensive Care Med 2020; 46(6): 1154-69.
[http://dx.doi.org/10.1007/s00134-020-06031-4] [PMID: 32328725]
[49]
Eriksson O, Mohlin C, Nilsson B, Ekdahl KN. The human platelet as an innate immune cell: Interactions between activated platelets and the complement system. Front Immunol 2019; 10: 1590.
[http://dx.doi.org/10.3389/fimmu.2019.01590] [PMID: 31354729]
[50]
Whiteheart SW. Platelet granules: Surprise packages. Blood 2011; 118(5): 1190-1.
[http://dx.doi.org/10.1182/blood-2011-06-359836] [PMID: 21816838]
[51]
Sills ES, Wood SH. Autologous activated platelet-rich plasma injection into adult human ovary tissue: Molecular mechanism, analysis, and discussion of reproductive response. Biosci Rep 2019; 39(6): BSR20190805.
[http://dx.doi.org/10.1042/BSR20190805] [PMID: 31092698]
[52]
Maugeri N, Brambilla M, Camera M, et al. Human polymorphonuclear leukocytes produce and express functional tissue factor upon stimulation. J Thromb Haemost 2006; 4(6): 1323-30.
[http://dx.doi.org/10.1111/j.1538-7836.2006.01968.x] [PMID: 16706978]
[53]
Datzmann T, Träger K. Extracorporeal membrane oxygenation and cytokine adsorption. J Thorac Dis 2018; 10(S5) (Suppl. 5): S653-60.
[http://dx.doi.org/10.21037/jtd.2017.10.128] [PMID: 29732183]
[54]
Liu CH, Kuo SW, Hsu LM, et al. Peroxiredoxin 1 induces inflammatory cytokine response and predicts outcome of cardiogenic shock patients necessitating extracorporeal membrane oxygenation: An observational cohort study and translational approach. J Transl Med 2016; 14(1): 114.
[http://dx.doi.org/10.1186/s12967-016-0869-x] [PMID: 27142532]
[55]
Diakos NA, Thayer K, Swain L, Goud M, Jain P, Kapur NK. Systemic inflammatory burden correlates with severity and predicts outcomes in patients with cardiogenic shock supported by a percutaneous mechanical assist device. J Cardiovasc Transl Res 2021; 14(3): 476-83.
[PMID: 33078375]
[56]
Liang Y, Li C, Liu B, et al. Protective effect of extracorporeal membrane oxygenation on intestinal mucosal injury after cardiopulmonary resuscitation in pigs. Exp Ther Med 2019; 18(6): 4347-55.
[http://dx.doi.org/10.3892/etm.2019.8087] [PMID: 31777541]
[57]
Moore FD Jr, Socher SH, Davis C. Tumor necrosis factor and endotoxin can cause neutrophil activation through separate pathways. Arch Surg 1991; 126(1): 70-3.
[http://dx.doi.org/10.1001/archsurg.1991.01410250076012] [PMID: 1985637]
[58]
Gao W, Liu H, Yuan J, et al. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF ‐α mediated NF ‐κB pathway. J Cell Mol Med 2016; 20(12): 2318-27.
[http://dx.doi.org/10.1111/jcmm.12923] [PMID: 27515767]
[59]
Wu DJ, Adamopoulos IE. Autophagy and autoimmunity. Clin Immunol 2017; 176: 55-62.
[http://dx.doi.org/10.1016/j.clim.2017.01.007] [PMID: 28095319]
[60]
Ranucci M, Baryshnikova E, Isgrò G, et al. Heparin-like effect in postcardiotomy extracorporeal membrane oxygenation patients. Crit Care 2014; 18(5): 504.
[http://dx.doi.org/10.1186/s13054-014-0504-2] [PMID: 25189998]
[61]
Hagiwara S, Kaushal E, Paruthiyil S, Pasricha PJ, Hasdemir B, Bhargava A. Gastric corticotropin-releasing factor influences mast cell infiltration in a rat model of functional dyspepsia. PLoS One 2018; 13(9): e0203704.
[http://dx.doi.org/10.1371/journal.pone.0203704] [PMID: 30192883]
[62]
McILwain RB, Timpa JG, Kurundkar AR, et al. Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine. Lab Invest 2010; 90(1): 128-39.
[http://dx.doi.org/10.1038/labinvest.2009.119] [PMID: 19901912]
[63]
Fortenberry JD, Bhardwaj V, Niemer P, Cornish JD, Wright JA, Bland L. Neutrophil and cytokine activation with neonatal extracorporeal membrane oxygenation. J Pediatr 1996; 128(5): 670-8.
[http://dx.doi.org/10.1016/S0022-3476(96)80133-8] [PMID: 8627440]
[64]
Tanaka T, Kishimoto T. The biology and medical implications of interleukin-6. Cancer Immunol Res 2014; 2(4): 288-94.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0022] [PMID: 24764575]
[65]
Delnoij TSR, Driessen R, Sharma AS, Bouman EA, Strauch U, Roekaerts PM. Venovenous extracorporeal membrane oxygenation in intractable pulmonary insufficiency: Practical issues and future directions. BioMed Res Int 2016; 2016: 1-13.
[http://dx.doi.org/10.1155/2016/9367464] [PMID: 27127794]
[66]
Mazzoni A, Salvati L, Maggi L, et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J Clin Invest 2020; 130(9): 4694-703.
[http://dx.doi.org/10.1172/JCI138554] [PMID: 32463803]
[67]
Risnes I, Wagner K, Ueland T, Mollnes TE, Aukrust P, Svennevig JL. Interleukin-6 may predict survival in extracorporeal membrane oxygenation treatment. Perfusion 2008; 23(3): 173-8.
[http://dx.doi.org/10.1177/0267659108097882] [PMID: 19029268]
[68]
Roumy A, Liaudet L, Rusca M, Marcucci C, Kirsch M. Pulmonary complications associated with veno-arterial extra-corporeal membrane oxygenation: A comprehensive review. Crit Care 2020; 24(1): 212.
[http://dx.doi.org/10.1186/s13054-020-02937-z] [PMID: 32393326]
[69]
Adrian K, Mellgren K, Skogby M, Friberg LG, Mellgren G, Wadenvik H. Cytokine release during long-term extracorporeal circulation in an experimental model. Artif Organs 1998; 22(10): 859-63.
[http://dx.doi.org/10.1046/j.1525-1594.1998.06121.x] [PMID: 9790084]
[70]
Delvino P, Monti S, Balduzzi S, Belliato M, Montecucco C, Caporali R. The role of extra-corporeal membrane oxygenation (ECMO) in the treatment of diffuse alveolar haemorrhage secondary to ANCA-associated vasculitis: Report of two cases and review of the literature. Rheumatol Int 2019; 39(2): 367-75.
[http://dx.doi.org/10.1007/s00296-018-4116-z] [PMID: 30074077]
[71]
Hong TH, Kuo SW, Hu FC, et al. Do interleukin-10 and superoxide ions predict outcomes of cardiac extracorporeal membrane oxygenation patients? Antioxid Redox Signal 2014; 20(1): 60-8.
[http://dx.doi.org/10.1089/ars.2013.5427] [PMID: 23786249]
[72]
Plötz FB, Oeveren W, Bartlett RH, Wildevuur CRH. Blood activation during neonatal extracorporeal life support. J Thorac Cardiovasc Surg 1993; 105(5): 823-32.
[http://dx.doi.org/10.1016/S0022-5223(19)34156-X] [PMID: 7683735]
[73]
Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res 2010; 20(1): 34-50.
[http://dx.doi.org/10.1038/cr.2009.139] [PMID: 20010915]
[74]
Noris M, Remuzzi G. Overview of complement activation and regulation. Semin Nephrol 2013; 33(6): 479-92.
[http://dx.doi.org/10.1016/j.semnephrol.2013.08.001] [PMID: 24161035]
[75]
Zhang L, Dai Y, Huang P, et al. Absence of complement component 3 does not prevent classical pathway–mediated hemolysis. Blood Adv 2019; 3(12): 1808-14.
[http://dx.doi.org/10.1182/bloodadvances.2019031591] [PMID: 31196848]
[76]
Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement system Part II: Role in immunity. Front Immunol 2015; 6: 257.
[http://dx.doi.org/10.3389/fimmu.2015.00257] [PMID: 26074922]
[77]
Ricklin D, Lambris JD. Complement in immune and inflammatory disorders: Pathophysiological mechanisms. J Immunol 2013; 190(8): 3831-8.
[http://dx.doi.org/10.4049/jimmunol.1203487] [PMID: 23564577]
[78]
Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD. The role of complement in biomaterial-induced inflammation. Mol Immunol 2007; 44(1-3): 82-94.
[http://dx.doi.org/10.1016/j.molimm.2006.06.020] [PMID: 16905192]
[79]
Wehlin L, Vedin J, Vaage J, Lundahl J. Activation of complement and leukocyte receptors during on- and off pump coronary artery bypass surgery. Eur J Cardiothorac Surg 2004; 25(1): 35-42.
[http://dx.doi.org/10.1016/S1010-7940(03)00652-3] [PMID: 14690730]
[80]
Wehlin L, Vedin J, Vaage J, Lundahl J. Peripheral blood monocyte activation during coronary artery bypass grafting with or without cardiopulmonary bypass. Scand Cardiovasc J 2005; 39(1-2): 78-86.
[http://dx.doi.org/10.1080/14017430410004623] [PMID: 16097419]
[81]
Moen O, Fosse E, Bråten J, et al. Roller and centrifugal pumps compared in vitro with regard to haemolysis, granulocyte and complement activation. Perfusion 1994; 9(2): 109-17.
[http://dx.doi.org/10.1177/026765919400900205] [PMID: 7919596]
[82]
Vallhonrat H, Swinford RD, Ingelfinger JR, et al. Rapid activation of the alternative pathway of complement by extracorporeal membrane oxygenation. ASAIO J 1999; 45(1): 113-4.
[http://dx.doi.org/10.1097/00002480-199901000-00025] [PMID: 9952020]
[83]
Hocker JR, Wellhausen SR, Ward RA, Simpson PM, Cook LN. Effect of extracorporeal membrane oxygenation on leukocyte function in neonates. Artif Organs 1991; 15(1): 23-8.
[http://dx.doi.org/10.1111/j.1525-1594.1991.tb00755.x] [PMID: 1998487]
[84]
Lindholm L, Westerberg M, Bengtsson A, Ekroth R, Jensen E, Jeppsson A. A closed perfusion system with heparin coating and centrifugal pump improves cardiopulmonary bypass biocompatibility in elderly patients. Ann Thorac Surg 2004; 78(6): 2131-8.
[http://dx.doi.org/10.1016/j.athoracsur.2004.06.011] [PMID: 15561050]
[85]
Morgan I, Codispoti M, Sanger K, Mankad PS. Superiority of centrifugal pump over roller pump in paediatric cardiac surgery: Prospective randomised trial. Eur J Cardiothorac Surg 1998; 13(5): 526-32.
[http://dx.doi.org/10.1016/S1010-7940(98)00067-0] [PMID: 9663533]
[86]
Hein E, Munthe-Fog L, Thiara AS, Fiane AE, Mollnes TE, Garred P. Heparin-coated cardiopulmonary bypass circuits selectively deplete the pattern recognition molecule ficolin-2 of the lectin complement pathway in vivo. Clin Exp Immunol 2015; 179(2): 294-9.
[http://dx.doi.org/10.1111/cei.12446] [PMID: 25174443]
[87]
Ozturk MB, Aksan T, Ozcelik IB, et al. Extracorporeal free flap perfusion using extracorporeal membrane oxygenation device. Ann Plast Surg 2019; 83(6): 702-8.
[http://dx.doi.org/10.1097/SAP.0000000000002014] [PMID: 31688101]
[88]
Duffy MJ, Mullan BA, Craig TR, et al. Impaired endothelium-dependent vasodilatation is a novel predictor of mortality in intensive care. Crit Care Med 2011; 39(4): 629-35.
[http://dx.doi.org/10.1097/CCM.0b013e318206bc4a] [PMID: 21242802]
[89]
Boyle EM Jr, Pohlman TH, Johnson MC, Verrier ED. Endothelial cell injury in cardiovascular surgery: The systemic inflammatory response. Ann Thorac Surg 1997; 63(1): 277-84.
[PMID: 8993292]
[90]
Fischetti F, Tedesco F. Cross-talk between the complement system and endothelial cells in physiologic conditions and in vascular diseases. Autoimmunity 2006; 39(5): 417-28.
[http://dx.doi.org/10.1080/08916930600739712] [PMID: 16923542]
[91]
Warren OJ, Smith AJ, Alexiou C, et al. The inflammatory response to cardiopulmonary bypass: Part 1-mechanisms of pathogenesis. J Cardiothorac Vasc Anesth 2009; 23(2): 223-31.
[http://dx.doi.org/10.1053/j.jvca.2008.08.007] [PMID: 18930659]
[92]
Perkins GD, Nathani N, McAuley DF, Gao F, Thickett DR. In vitro and in vivo effects of salbutamol on neutrophil function in acute lung injury. Thorax 2007; 62(1): 36-42.
[http://dx.doi.org/10.1136/thx.2006.059410] [PMID: 16928710]
[93]
Wachtfogel YT, Kucich U, Erik Hack C, et al. Aprotinin inhibits the contact, neutrophil, and platelet activation systems during simulated extracorporeal perfusion. J Thorac Cardiovasc Surg 1993; 106(1): 1-10.
[http://dx.doi.org/10.1016/S0022-5223(19)33735-3] [PMID: 7686593]
[94]
Rinder CS, Rinder HM, Smith MJ, et al. Selective blockade of membrane attack complex formation during simulated extracorporeal circulation inhibits platelet but not leukocyte activation. J Thorac Cardiovasc Surg 1999; 118(3): 460-6.
[http://dx.doi.org/10.1016/S0022-5223(99)70183-2] [PMID: 10469960]
[95]
Kruger P, Saffarzadeh M, Weber ANR, et al. Neutrophils: Between host defence, immune modulation, and tissue injury. PLoS Pathog 2015; 11(3): e1004651.
[http://dx.doi.org/10.1371/journal.ppat.1004651] [PMID: 25764063]
[96]
Kotani N, Hashimoto H, Sessler DI, et al. Neutrophil number and interleukin-8 and elastase concentrations in bronchoalveolar lavage fluid correlate with decreased arterial oxygenation after cardiopulmonary bypass. Anesth Analg 2000; 90(5): 1046-51.
[http://dx.doi.org/10.1097/00000539-200005000-00009] [PMID: 10781451]
[97]
Kiaii B, Fox S, Swinamer SA, et al. The early inflammatory response in a mini-cardiopulmonary bypass system: A prospective randomized study. Innovations 2012; 7(1): 23-32.
[http://dx.doi.org/10.1097/imi.0b013e3182552ade] [PMID: 22576032]
[98]
van der Meer PF, de Wildt-Eggen J. The effect of whole-blood storage time on the number of white cells and platelets in whole blood and in white cell-reduced red cells. Transfusion 2006; 46(4): 589-94.
[http://dx.doi.org/10.1111/j.1537-2995.2006.00778.x] [PMID: 16584435]
[99]
Hatami S, Hefler J, Freed DH. Inflammation and oxidative stress in the context of extracorporeal cardiac and pulmonary support. Front Immunol 2022; 13: 831930.
[http://dx.doi.org/10.3389/fimmu.2022.831930] [PMID: 35309362]
[100]
Rilinger J, Kern WV, Duerschmied D, et al. A prospective, randomised, double blind placebo-controlled trial to evaluate the efficacy and safety of tocilizumab in patients with severe COVID-19 pneumonia (TOC-COVID): A structured summary of a study protocol for a randomised controlled trial. Trials 2020; 21(1): 470.
[http://dx.doi.org/10.1186/s13063-020-04447-3] [PMID: 32493514]
[101]
Kenne E, Renné T, Factor X. Factor XII: A drug target for safe interference with thrombosis and inflammation. Drug Discov Today 2014; 19(9): 1459-64.
[http://dx.doi.org/10.1016/j.drudis.2014.06.024] [PMID: 24993156]
[102]
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143-7.
[http://dx.doi.org/10.1126/science.284.5411.143] [PMID: 10102814]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy