Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Transcriptomic Analysis of lncRNAs and their mRNA Networks in Cerebral Ischemia in Young and Aged Mice

Author(s): Yuanyuan Zeng, Tengteng Xue, Dayong Zhang and Manhua Lv*

Volume 27, Issue 6, 2024

Published on: 19 July, 2023

Page: [823 - 833] Pages: 11

DOI: 10.2174/1386207326666230619091603

Price: $65

conference banner
Abstract

Background: Ischemic stroke comprises 75% of all strokes and it is associated with a great frailty and casualty rate. Certain data suggest multiple long non-coding Ribonucleic Acids (lncRNAs) assist the transcriptional, post-transcriptional, and epigenetic regulation of genes expressed in the CNS (Central Nervous System). However, these studies generally focus on differences in the expression patterns of lncRNAs and Messenger Ribonucleic Acids (mRNAs) in tissue samples before and after cerebral ischemic injury, ignoring the effects of age.

Methods: In this study, differentially expressed lncRNA analysis was performed based on RNAseq data from the transcriptomic analysis of murine brain microglia related to cerebral ischemia injury in mice at different ages (10 weeks and 18 months).

Results: The results showed that the number of downregulate differentially expressed genes (DEGs) in aged mice was 37 less than in young mice. Among them, lncRNA Gm-15987, RP24- 80F7.5, XLOC_379730, XLOC_379726 were significantly down-regulated. Then, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that these specific lncRNAs were mainly related to inflammation. Based on the lncRNA/mRNA coexpression network, the mRNA co-expressed with lncRNA was mainly enriched in pathways, such as immune system progression, immune response, cell adhesion, B cell activation, and T cell differentiation. Our results indicate that the downregulation of lncRNA, such as Gm-15987, RP24- 80F7.5, XLOC_379730, and XLOC_379726 in aged mice may attenuate microglial-induced inflammation via the progress of immune system progression immune response, cell adhesion, B cell activation, and T cell differentiation.

Conclusion: The reported lncRNAs and their target mRNA during this pathology have potentially key regulatory functions in the cerebral ischemia in aged mice while being important for diagnosing and treating cerebral ischemia in the elderly.

Keywords: Ischemic stroke, age, lncRNA (long non-coding ribonucleic acid), RNA-seq (ribonucleic acid Sequencing), DEGs (differentially expressed genes), inflammation.

Graphical Abstract
[1]
Zhong, S.; Sun, K.; Zuo, X.; Chen, A. Monitoring and prognostic analysis of severe cerebrovascular diseases based on multi-scale dynamic brain imaging. Front. Neurosci., 2021, 15, 684469.
[http://dx.doi.org/10.3389/fnins.2021.684469] [PMID: 34276294]
[2]
Yoshimura, S.; Sakai, N.; Uchida, K.; Yamagami, H.; Ezura, M.; Okada, Y.; Kitagawa, K.; Kimura, K.; Sasaki, M.; Tanahashi, N.; Toyoda, K.; Furui, E.; Matsumaru, Y.; Minematsu, K.; Morimoto, T.; Kuwayama, N.; Ogasawara, K.; Iihara, K.; Takeuchi, M.; Morimoto, M.; Onda, T.; Shibata, M.; Ohta, T.; Imai, K.; Itabashi, R.; Yamashita, T.; Fukawa, N.; Kimura, N.; Doijiri, R.; Ohta, H.; Enomoto, Y.; Kanbayashi, C.; Yamaura, I.; Ishihara, H.; Kamiya, Y.; Hayase, M.; Nii, K.; Kobayashi, J.; Yasuda, H.; Kondo, R.; Yamamoto, D.; Sakaguchi, M.; Satomi, J.; Yagita, Y.; Handa, A.; Shindo, A.; Hiyama, N.; Toma, N.; Tsumoto, T.; Tsuruta, W.; Matsumoto, K.; Kiura, Y.; Yamazaki, T.; Hatano, T.; Matsumoto, Y.; Kojima, T.; Ikeda, N.; Sakamoto, S.; Ohnishi, H.; Haraguchi, K.; Uchiyama, N. Endovascular therapy in ischemic stroke with acute large‐vessel occlusion: recovery by endovascular salvage for cerebral ultra‐acute embolism japan registry 2. J. Am. Heart Assoc., 2018, 7(9), e008796.
[http://dx.doi.org/10.1161/JAHA.118.008796] [PMID: 29695384]
[3]
Wang, Z.; Yang, T.; Fu, H. Prevalence of diabetes and hypertension and their interaction effects on cardio-cerebrovascular diseases: A cross-sectional study. BMC Public Health, 2021, 21(1), 1224.
[http://dx.doi.org/10.1186/s12889-021-11122-y] [PMID: 34172039]
[4]
Wani-Parekh, P.; Blanco-Garcia, C.; Mendez, M.; Mukherjee, D. Guide of hypertensive crisis pharmacotherapy. Cardiovasc. Hematol. Disord. Drug Targets, 2017, 17(1), 52-57.
[PMID: 28000548]
[5]
Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; de Ferranti, S.D.; Ferguson, J.F.; Fornage, M.; Gillespie, C.; Isasi, C.R.; Jiménez, M.C.; Jordan, L.C.; Judd, S.E.; Lackland, D.; Lichtman, J.H.; Lisabeth, L.; Liu, S.; Longenecker, C.T.; Lutsey, P.L.; Mackey, J.S.; Matchar, D.B.; Matsushita, K.; Mussolino, M.E.; Nasir, K.; O’Flaherty, M.; Palaniappan, L.P.; Pandey, A.; Pandey, D.K.; Reeves, M.J.; Ritchey, M.D.; Rodriguez, C.J.; Roth, G.A.; Rosamond, W.D.; Sampson, U.K.A.; Satou, G.M.; Shah, S.H.; Spartano, N.L.; Tirschwell, D.L.; Tsao, C.W.; Voeks, J.H.; Willey, J.Z.; Wilkins, J.T.; Wu, J.H.Y.; Alger, H.M.; Wong, S.S.; Muntner, P. Heart disease and stroke statistics—2018 update: A report from the american heart association. Circulation, 2018, 137(12), e67-e492.
[http://dx.doi.org/10.1161/CIR.0000000000000558] [PMID: 29386200]
[6]
Carandang, R.; Seshadri, S.; Beiser, A.; Kelly-Hayes, M.; Kase, C.S.; Kannel, W.B.; Wolf, P.A. Trends in incidence, lifetime risk, severity, and 30-day mortality of stroke over the past 50 years. JAMA, 2006, 296(24), 2939-2946.
[http://dx.doi.org/10.1001/jama.296.24.2939] [PMID: 17190894]
[7]
Jiang, X.; Suenaga, J.; Pu, H.; Wei, Z.; Smith, A.D.; Hu, X.; Shi, Y.; Chen, J. Post-stroke administration of omega-3 polyunsaturated fatty acids promotes neurovascular restoration after ischemic stroke in mice: Efficacy declines with aging. Neurobiol. Dis., 2019, 126, 62-75.
[http://dx.doi.org/10.1016/j.nbd.2018.09.012] [PMID: 30218758]
[8]
Shi, L.; Rocha, M.; Leak, R.K.; Zhao, J.; Bhatia, T.N.; Mu, H.; Wei, Z.; Yu, F.; Weiner, S.L.; Ma, F.; Jovin, T.G.; Chen, J. A new era for stroke therapy: Integrating neurovascular protection with optimal reperfusion. J. Cereb. Blood Flow Metab., 2018, 38(12), 2073-2091.
[http://dx.doi.org/10.1177/0271678X18798162] [PMID: 30191760]
[9]
Suenaga, J.; Hu, X.; Pu, H.; Shi, Y.; Hassan, S.H.; Xu, M.; Leak, R.K.; Stetler, R.A.; Gao, Y.; Chen, J. White matter injury and microglia/macrophage polarization are strongly linked with age-related long-term deficits in neurological function after stroke. Exp. Neurol., 2015, 272, 109-119.
[http://dx.doi.org/10.1016/j.expneurol.2015.03.021] [PMID: 25836044]
[10]
Evans, J.R.; Feng, F.Y.; Chinnaiyan, A.M. The bright side of dark matter: lncRNAs in cancer. J. Clin. Invest., 2016, 126(8), 2775-2782.
[http://dx.doi.org/10.1172/JCI84421] [PMID: 27479746]
[11]
Wang, P.; Xue, Y.; Han, Y.; Lin, L.; Wu, C.; Xu, S.; Jiang, Z.; Xu, J.; Liu, Q.; Cao, X. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science, 2014, 344(6181), 310-313.
[http://dx.doi.org/10.1126/science.1251456] [PMID: 24744378]
[12]
Chang, C.P.; Han, P. Epigenetic and lncRNA regulation of cardiac pathophysiology. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(7)(7 Pt B), 1767-1771.
[http://dx.doi.org/10.1016/j.bbamcr.2016.03.005] [PMID: 26969820]
[13]
Jin, F.; Wang, N.; Zhu, Y.; You, L.; Wang, L.; De, W.; Tang, W. Downregulation of long noncoding RNA Gas5 affects cell cycle and insulin secretion in mouse pancreatic β cells. Cell. Physiol. Biochem., 2017, 43(5), 2062-2073.
[http://dx.doi.org/10.1159/000484191] [PMID: 29232661]
[14]
Jiang, C.Y.; Gao, Y.; Wang, X.J.; Ruan, Y.; Bei, X.Y.; Wang, X.H.; Jing, Y.F.; Zhao, W.; Jiang, Q.; Li, J.; Han, B.M.; Xia, S.J.; Zhao, F.J. Long non-coding RNA lnc-MX1-1 is associated with poor clinical features and promotes cellular proliferation and invasiveness in prostate cancer. Biochem. Biophys. Res. Commun., 2016, 470(3), 721-727.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.056] [PMID: 26797523]
[15]
Dempsey, J.L.; Cui, J.Y. Long Non-Coding RNAs: A novel paradigm for toxicology. Toxicol. Sci., 2017, 155(1), 3-21.
[http://dx.doi.org/10.1093/toxsci/kfw203] [PMID: 27864543]
[16]
Ang, C.E.; Trevino, A.E.; Chang, H.Y. Diverse lncRNA mechanisms in brain development and disease. Curr. Opin. Genet. Dev., 2020, 65, 42-46.
[http://dx.doi.org/10.1016/j.gde.2020.05.006] [PMID: 32554106]
[17]
Lou, M.M.; Tang, X.Q.; Wang, G.M.; He, J.; Luo, F.; Guan, M.F.; Wang, F.; Zou, H.; Wang, J.Y.; Zhang, Q.; Xu, M.J.; Shi, Q.L.; Shen, L.B.; Ma, G.M.; Wu, Y.; Zhang, Y.Y.; Liang, A.; Wang, T.H.; Xiong, L.L.; Wang, J.; Xu, J.; Wang, W.Y. Long noncoding RNA BS-DRL1 modulates the DNA damage response and genome stability by interacting with HMGB1 in neurons. Nat. Commun., 2021, 12(1), 4075.
[http://dx.doi.org/10.1038/s41467-021-24236-z] [PMID: 34210972]
[18]
Yan, H.; Yuan, J.; Gao, L.; Rao, J.; Hu, J. Long noncoding RNA MEG3 activation of p53 mediates ischemic neuronal death in stroke. Neuroscience, 2016, 337, 191-199.
[http://dx.doi.org/10.1016/j.neuroscience.2016.09.017] [PMID: 27651151]
[19]
Xu, Q.; Deng, F.; Xing, Z.; Wu, Z.; Cen, B.; Xu, S.; Zhao, Z.; Nepomuceno, R.; Bhuiyan, M.I.H.; Sun, D.; Wang, Q.J.; Ji, A. Long non-coding RNA C2dat1 regulates CaMKIIδ expression to promote neuronal survival through the NF-κB signaling pathway following cerebral ischemia. Cell Death Dis., 2016, 7(3), e2173.
[http://dx.doi.org/10.1038/cddis.2016.57] [PMID: 27031970]
[20]
Zhong, Y.; Yu, C.; Qin, W. LncRNA SNHG14 promotes inflammatory response induced by cerebral ischemia/reperfusion injury through regulating miR-136-5p/ROCK1. Cancer Gene Ther., 2019, 26(7-8), 234-247.
[http://dx.doi.org/10.1038/s41417-018-0067-5] [PMID: 30546117]
[21]
Vemuganti, R. All’s well that transcribes well: Non-coding RNAs and post-stroke brain damage. Neurochem. Int., 2013, 63(5), 438-449.
[http://dx.doi.org/10.1016/j.neuint.2013.07.014] [PMID: 23954844]
[22]
Shi, L.; Rocha, M.; Zhang, W.; Jiang, M.; Li, S.; Ye, Q.; Hassan, S.H.; Liu, L.; Adair, M.N.; Xu, J.; Luo, J.; Hu, X.; Wechsler, L.R.; Chen, J.; Shi, Y. Genome-wide transcriptomic analysis of microglia reveals impaired responses in aged mice after cerebral ischemia. J. Cereb. Blood Flow Metab., 2020, 40(Suppl. 1), S49-S66.
[http://dx.doi.org/10.1177/0271678X20925655] [PMID: 32438860]
[23]
Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol., 2010, 11(10), R106.
[http://dx.doi.org/10.1186/gb-2010-11-10-r106] [PMID: 20979621]
[24]
Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1), 139-140.
[http://dx.doi.org/10.1093/bioinformatics/btp616] [PMID: 19910308]
[25]
Liu, S.; Wang, Z.; Chen, D.; Zhang, B.; Tian, R.R.; Wu, J.; Zhang, Y.; Xu, K.; Yang, L.M.; Cheng, C.; Ma, J.; Lv, L.; Zheng, Y.T.; Hu, X.; Zhang, Y.; Wang, X.; Li, J. Annotation and cluster analysis of spatiotemporal- and sex-related lncRNA expression in rhesus macaque brain. Genome Res., 2017, 27(9), 1608-1620.
[http://dx.doi.org/10.1101/gr.217463.116] [PMID: 28687705]
[26]
Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc., 2012, 7(3), 562-578.
[http://dx.doi.org/10.1038/nprot.2012.016] [PMID: 22383036]
[27]
Yavorska, O.O.; Burgess, S. Mendelian Randomization: An R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol., 2017, 46(6), 1734-1739.
[http://dx.doi.org/10.1093/ije/dyx034] [PMID: 28398548]
[28]
Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics, 2016, 32(18), 2847-2849.
[http://dx.doi.org/10.1093/bioinformatics/btw313] [PMID: 27207943]
[29]
Li, W. Volcano plots in analyzing differential expressions with mRNA microarrays. J. Bioinform. Comput. Biol., 2012, 10(6), 1231003.
[http://dx.doi.org/10.1142/S0219720012310038] [PMID: 23075208]
[30]
Bentsen, L.; Christensen, L.; Christensen, A.; Christensen, H. Outcome and risk factors presented in old patients above 80 years of age versus younger patients after ischemic stroke. J. Stroke Cerebrovasc. Dis., 2014, 23(7), 1944-1948.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.02.002] [PMID: 24794945]
[31]
Hu, X.; Leak, R.K.; Shi, Y.; Suenaga, J.; Gao, Y.; Zheng, P.; Chen, J. Microglial and macrophage polarization—new prospects for brain repair. Nat. Rev. Neurol., 2015, 11(1), 56-64.
[http://dx.doi.org/10.1038/nrneurol.2014.207] [PMID: 25385337]
[32]
Cao, G.; Clark, R.S.B.; Pei, W.; Yin, W.; Zhang, F.; Sun, F.Y.; Graham, S.H.; Chen, J. Translocation of apoptosis-inducing factor in vulnerable neurons after transient cerebral ischemia and in neuronal cultures after oxygen-glucose deprivation. J. Cereb. Blood Flow Metab., 2003, 23(10), 1137-1150.
[http://dx.doi.org/10.1097/01.WCB.0000087090.01171.E7] [PMID: 14526224]
[33]
Wu, C.; Fujihara, H.; Yao, J.; Qi, S.; Li, H.; Shimoji, K.; Baba, H. Different expression patterns of Bcl-2, Bcl-xl, and Bax proteins after sublethal forebrain ischemia in C57Black/Crj6 mouse striatum. Stroke, 2003, 34(7), 1803-1808.
[http://dx.doi.org/10.1161/01.STR.0000077255.15597.69] [PMID: 12791942]
[34]
Li, X.; Li, Y.; Yu, X.; Jin, F. Identification and validation of stemness-related lncRNA prognostic signature for breast cancer. J. Transl. Med., 2020, 18(1), 331.
[http://dx.doi.org/10.1186/s12967-020-02497-4] [PMID: 32867770]
[35]
Galatro, T.F.; Holtman, I.R.; Lerario, A.M.; Vainchtein, I.D.; Brouwer, N.; Sola, P.R.; Veras, M.M.; Pereira, T.F.; Leite, R.E.P.; Möller, T.; Wes, P.D.; Sogayar, M.C.; Laman, J.D.; den Dunnen, W.; Pasqualucci, C.A.; Oba-Shinjo, S.M.; Boddeke, E.W.G.M.; Marie, S.K.N.; Eggen, B.J.L. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat. Neurosci., 2017, 20(8), 1162-1171.
[http://dx.doi.org/10.1038/nn.4597] [PMID: 28671693]
[36]
Schlomann, U.; Rathke-Hartlieb, S.; Yamamoto, S.; Jockusch, H.; Bartsch, J.W. Tumor necrosis factor alpha induces a metalloprotease-disintegrin, ADAM8 (CD 156): implications for neuron-glia interactions during neurodegeneration. J. Neurosci., 2000, 20(21), 7964-7971.
[http://dx.doi.org/10.1523/JNEUROSCI.20-21-07964.2000] [PMID: 11050116]
[37]
Zeiner, P.S.; Preusse, C.; Blank, A.E.; Zachskorn, C.; Baumgarten, P.; Caspary, L.; Braczynski, A.K.; Weissenberger, J.; Bratzke, H.; Reiß, S.; Pennartz, S.; Winkelmann, R.; Senft, C.; Plate, K.H.; Wischhusen, J.; Stenzel, W.; Harter, P.N.; Mittelbronn, M. MIF receptor CD74 is restricted to microglia/macrophages, associated with a M1-polarized immune milieu and prolonged patient survival in gliomas. Brain Pathol., 2015, 25(4), 491-504.
[http://dx.doi.org/10.1111/bpa.12194] [PMID: 25175718]
[38]
Chang, H.H.; Miaw, S.C.; Tseng, W.; Sun, Y.W.; Liu, C.C.; Tsao, H.W.; Ho, I.C. PTPN22 modulates macrophage polarization and susceptibility to dextran sulfate sodium-induced colitis. J. Immunol., 2013, 191(5), 2134-2143.
[http://dx.doi.org/10.4049/jimmunol.1203363] [PMID: 23913970]
[39]
Wolf, S.A.; Boddeke, H.W.G.M.; Kettenmann, H. Microglia in physiology and disease. Annu. Rev. Physiol., 2017, 79(1), 619-643.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034406] [PMID: 27959620]
[40]
Pérez, R.; López, M.; Barjadequiroga, G. Aging and lung antioxidant enzymes, glutathione, and the lipid peroxidation in the rat. Free Radic. Biol. Med., 1991, 10(1), 35-39.
[http://dx.doi.org/10.1016/0891-5849(91)90019-Y] [PMID: 1646750]
[41]
Luo, J.; Mills, K.; le Cessie, S.; Noordam, R.; van Heemst, D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res. Rev., 2020, 57, 100982.
[http://dx.doi.org/10.1016/j.arr.2019.100982] [PMID: 31733333]
[42]
Matthe, D.M.; Thoma, O.M.; Sperka, T.; Neurath, M.F.; Waldner, M.J. Telomerase deficiency reflects age-associated changes in CD4+ T cells. Immun. Ageing, 2022, 19(1), 16.
[http://dx.doi.org/10.1186/s12979-022-00273-0] [PMID: 35321714]
[43]
Singh, V.; Sadler, R.; Heindl, S.; Llovera, G.; Roth, S.; Benakis, C.; Liesz, A. The gut microbiome primes a cerebroprotective immune response after stroke. J. Cereb. Blood Flow Metab., 2018, 38(8), 1293-1298.
[http://dx.doi.org/10.1177/0271678X18780130] [PMID: 29846130]
[44]
Castle, S.C. Clinical relevance of age-related immune dysfunction. Clin. Infect. Dis., 2000, 31(2), 578-585.
[http://dx.doi.org/10.1086/313947] [PMID: 10987724]
[45]
Butcher, S.K.; Chahal, H.; Nayak, L.; Sinclair, A.; Henriquez, N.V.; Sapey, E.; O’Mahony, D.; Lord, J.M. Senescence in innate immune responses: Reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J. Leukoc. Biol., 2001, 70(6), 881-886.
[http://dx.doi.org/10.1189/jlb.70.6.881] [PMID: 11739550]
[46]
Fulop, T.; Le Page, A.; Fortin, C.; Witkowski, J.M.; Dupuis, G.; Larbi, A. Cellular signaling in the aging immune system. Curr. Opin. Immunol., 2014, 29, 105-111.
[http://dx.doi.org/10.1016/j.coi.2014.05.007] [PMID: 24934647]
[47]
Tian, J.; Liu, Y.; Wang, Z.; Zhang, S.; Yang, Y.; Zhu, Y.; Yang, C. LncRNA Snhg8 attenuates microglial inflammation response and blood–brain barrier damage in ischemic stroke through regulating miR‐425‐5p mediated SIRT1/NF‐κB signaling. J. Biochem. Mol. Toxicol., 2021, 35(5), e22724.
[http://dx.doi.org/10.1002/jbt.22724] [PMID: 33491845]
[48]
Chen, M.; Wang, F.; Wang, H. Silencing of lncRNA XLOC_035088 Protects Middle Cerebral Artery Occlusion-Induced Ischemic Stroke by Notch1 Signaling. J. Neuropathol. Exp. Neurol., 2021, 80(1), 60-70.
[http://dx.doi.org/10.1093/jnen/nlaa129] [PMID: 33236068]
[49]
Wen, Y.; Yu, Y.; Fu, X. LncRNA Gm4419 contributes to OGD/R injury of cerebral microglial cells via IκB phosphorylation and NF-κB activation. Biochem. Biophys. Res. Commun., 2017, 487(4), 923-929.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.005] [PMID: 28476620]
[50]
Daulatzai, M.A. Role of stress, depression, and aging in cognitive decline and Alzheimer’s disease. Curr. Top. Behav. Neurosci., 2014, 18, 265-296.
[http://dx.doi.org/10.1007/7854_2014_350] [PMID: 25167923]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy