Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Osteoblast Biospecific Extraction Conjugated with HPLC Analysis for Screening Bone Regeneration Active Components from Moutan Cortex

Author(s): Fei Yao, Wei Chen, Weiwei Gu, Heng Xu, Wenyue Hou, Guoqiang Liang, Ruixian Zhang Zhu, Guorong Jiang and Lurong Zhang*

Volume 27, Issue 6, 2024

Published on: 10 July, 2023

Page: [834 - 844] Pages: 11

DOI: 10.2174/1386207326666230607155913

Price: $65

conference banner
Abstract

Introduction: The function of promoting bone regeneration of Moutan Cortex (MC), a traditional Chinese medicine, has been widely known but, the effective components of MC in promoting osteoblast-mediated bone regeneration were still unclear.

Objective: The method of osteoblast membrane bio-specific extraction conjugated with HPLC analysis was established to screen bone regeneration active components from MC.

Methods: The fingerprints, washing eluate and desorption eluate of MC extract were analyzed by the established HPLC-DAD method. The established MC3T3-E1 cells membrane chromatography method was used for the bio-specific extraction of MC. The isolated compounds were identified by MS spectrometry. The effects and possible mechanisms of the isolated compounds were evaluated by molecular docking, ALP activity, cell viability by MTT Assay and proteins expression by Western Blot Analysis.

Results: The active compound responsible for bone regeneration from MC was isolated using the established method of osteoblast membrane bio-specific extraction conjugated with HPLC analysis, and it was identified as 1,2,3,4,6-penta-O-β-galloyl-D-glucose (PGG) by MS spectrometry. It was further demonstrated through molecular docking that PGG could fit well into the functional ALP, BMP2, and Samd1 binding pocket. The proliferation of osteoblasts was promoted, the level of ALP was increased, and the protein expression of BMP2 and Smad1 was increased as shown by further pharmacological verification.

Conclusion: It was concluded that PGG, the bone regeneration active compound from MC, could stimulate the proliferation of osteoblasts to promote osteoblast differentiation, and its mechanism might be related to the BMP/Smad1 pathway.

Keywords: Osteoblast, cell membrane chromatography, moutan cortex, fracture healing, screening active components, bone regeneration.

Graphical Abstract
[1]
Chen, W.; Lv, H.; Liu, S.; Liu, B.; Zhu, Y.; Chen, X.; Yang, G.; Liu, L.; Zhang, T.; Wang, H.; Yin, B.; Guo, J.; Zhang, X.; Li, Y.; Smith, D.; Hu, P.; Sun, J.; Zhang, Y. National incidence of traumatic fractures in China: A retrospective survey of 512 187 individuals. Lancet Glob. Health, 2017, 5(8), e807-e817.
[http://dx.doi.org/10.1016/S2214-109X(17)30222-X] [PMID: 28666814]
[2]
Neagu, T.P. Ţigliş, M.; Cocoloş, I.; Jecan, C.R. The relationship between periosteum and fracture healing. Rom. J. Morphol. Embryol., 2016, 57(4), 1215-1220.
[PMID: 28174786]
[3]
Guo, T.; Xing, Y.; Chen, Z.; Wang, X.; Zhu, H.; Yang, L.; Yan, Y. Core-binding factor beta is required for osteoblast differentiation during fibula fracture healing. J. Orthop. Surg. Res., 2021, 16(1), 313.
[http://dx.doi.org/10.1186/s13018-021-02410-9] [PMID: 33990210]
[4]
Einhorn, T.A.; Gerstenfeld, L.C. Fracture healing: Mechanisms and interventions. Nat. Rev. Rheumatol., 2015, 11(1), 45-54.
[http://dx.doi.org/10.1038/nrrheum.2014.164] [PMID: 25266456]
[5]
An, J.; Yang, H.; Zhang, Q.; Liu, C.; Zhao, J.; Zhang, L.; Chen, B. Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci., 2016, 147, 46-58.
[http://dx.doi.org/10.1016/j.lfs.2016.01.024] [PMID: 26796578]
[6]
Tseng, C.Y.; Huang, C.W.; Huang, H.C.; Tseng, W.C. Utilization pattern of traditional chinese medicine among fracture patients: A Taiwan Hospital-Based Cross-Sectional Study. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/1706517] [PMID: 30363858]
[7]
Mukwaya, E.; Xu, F.; Wong, M.S.; Zhang, Y. Chinese herbal medicine for bone health. Pharm. Biol., 2014, 52(9), 1223-1228.
[http://dx.doi.org/10.3109/13880209.2014.884606] [PMID: 24963946]
[8]
Zhang, K.; Niu, L.C.; Yuan, F.J.; Liu, S.P. [Research on promotory effect of traditional Chinese medicine on fracture healing in cell and molecular level]. Zhongguo Gu Shang, 2017, 30(8), 777-782.
[http://dx.doi.org/10.3969/j.issn.1003-0034.2017.08.021] [PMID: 29455515]
[9]
Lu, Y.; Liu, W.; Zhang, M.; Deng, Y.; Jiang, M.; Bai, G. The Screening Research of NF- κ B Inhibitors from Moutan Cortex Based on Bioactivity-Integrated UPLC-Q/TOF-MS. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-7.
[http://dx.doi.org/10.1155/2019/6150357] [PMID: 30941197]
[10]
Xiao, C.; Wu, M.; Chen, Y.; Zhang, Y.; Zhao, X.; Zheng, X. Revealing metabolomic variations in Cortex Moutan from different root parts using HPLC-MS method. Phytochem. Anal., 2015, 26(1), 86-93.
[http://dx.doi.org/10.1002/pca.2539] [PMID: 25230378]
[11]
Park, K.R.; Lee, J.Y.; Cho, M.; Hong, J.T.; Yun, H.M. Paeonolide as a Novel regulator of core-binding factor subunit Alpha-1 in bone-forming cells. Int. J. Mol. Sci., 2021, 22(9), 4924.
[http://dx.doi.org/10.3390/ijms22094924] [PMID: 34066458]
[12]
Zheng, Z.G.; Duan, T.T.; He, B.; Tang, D.; Jia, X.B.; Wang, R.S.; Zhu, J.X.; Xu, Y.H.; Zhu, Q.; Feng, L. Macrophage biospecific extraction and HPLC–ESI-MSn analysis for screening immunological active components in Smilacis Glabrae Rhizoma. J. Pharm. Biomed. Anal., 2013, 77, 44-48.
[http://dx.doi.org/10.1016/j.jpba.2013.01.003] [PMID: 23384550]
[13]
Yan, X.; Wang, S.; Yu, A.; Shen, X.; Zheng, H.; Wang, L. Cell Chromatography-Based screening of the active components in buyang huanwu decoction promoting axonal regeneration. BioMed Res. Int., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/6970198] [PMID: 31662991]
[14]
Zheng, Z.; Xu, Y.; Liu, F.; Zhao, T. wang, R.; Huang, P.; Wang, R.; Yang, A.; Zhu, Q. Screening bioactive components of Glycyrrhiza uralensis Fisch. with isolated perfused lung extraction and HPLC-ESI-MSn analysis. J. Pharm. Biomed. Anal., 2019, 169, 127-132.
[http://dx.doi.org/10.1016/j.jpba.2019.03.007] [PMID: 30861404]
[15]
Hong, M.; Ma, H.Y.; Wu, X.R.; Hua, Y.Q.; Zhu, Q.; Fan, H.W. A method of hepatocyte extraction conjugated with HPLC is established for screening potential active components in Chinese medicines--probing Herba Artemisiae Scopariae as an exemplifying approach. Molecules, 2012, 17(2), 1468-1482.
[http://dx.doi.org/10.3390/molecules17021468] [PMID: 22310168]
[16]
He, L.C.; Wang, S.C.; Yang, G.D.; Zhang, Y.M.; Wang, C.H.; Yuan, B.X.; Hou, X.F. Progress in cell membrane chromatography. Drug Discov. Ther., 2007, 1(2), 104-107.
[PMID: 22504395]
[17]
Zhang, L.; Zhao, B.J.; Yuan, J.R.; Wang, C.F.; Feng, L.; Jia, X.B. Comparison of chemical compositions in Moutan Cortex, Paeoniae Rubra Radix and Paeoniae Alba Radix based on “component structure” theory. Zhongguo Zhongyao Zazhi, 2016, 41(10), 1835-1842.
[http://dx.doi.org/10.4268/cjcmm20161012] [PMID: 28895329]
[18]
Liu, Y.; Grimm, M.; Dai, W.; Hou, M.; Xiao, Z.X.; Cao, Y. CB-Dock: A web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacol. Sin., 2020, 41(1), 138-144.
[http://dx.doi.org/10.1038/s41401-019-0228-6] [PMID: 31263275]
[19]
Cao, Y.; Li, L. Improved protein–ligand binding affinity prediction by using a curvature-dependent surface-area model. Bioinformatics, 2014, 30(12), 1674-1680.
[http://dx.doi.org/10.1093/bioinformatics/btu104] [PMID: 24563257]
[20]
Siller, A.F.; Whyte, M.P. Alkaline Phosphatase: Discovery and naming of our favorite enzyme. J. Bone Miner. Res., 2018, 33(2), 362-364.
[http://dx.doi.org/10.1002/jbmr.3225] [PMID: 28727174]
[21]
Muljacić A.; Poljak-Guberina, R.; Zivković O.; Bilić V.; Guberina, M.; Crvenković D. Course and rate of post-fracture bone healing in correlation with bone-specific alkaline phosphatase and bone callus formation. Coll. Antropol., 2013, 37(4), 1275-1283.
[PMID: 24611345]
[22]
Lo, Y.C.; Chang, Y.H.; Wei, B.L.; Huang, Y.L.; Chiou, W.F. Betulinic acid stimulates the differentiation and mineralization of osteoblastic MC3T3-E1 cells: Involvement of BMP/Runx2 and beta-catenin signals. J. Agric. Food Chem., 2010, 58(11), 6643-6649.
[http://dx.doi.org/10.1021/jf904158k] [PMID: 20443623]
[23]
Sb, H.X.J.; Qh, Y.; Xr, Z.; Bb, Z.Kh.W.; Xy, S.; Yt, C.; Xr, R.; Jf, M.G.W.; Yh, P. The vicious circle between mitochondrial oxidative stress and dynamic abnormality mediates triethylene glycol dimethacrylate-induced preodontoblast apoptosis. Free Radic. Biol. Med., 2019, 134, 644-656.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.02.013] [PMID: 30776408]
[24]
Peck, W.A.; Birge, S.J., Jr; Fedak, S.A. Bone cells: Biochemical and biological studies after enzymatic isolation. Science, 1964, 146(3650), 1476-1477.
[http://dx.doi.org/10.1126/science.146.3650.1476] [PMID: 14208576]
[25]
Czekanska, E.M.; Stoddart, M.J.; Richards, R.G.; Hayes, J.S. In search of an osteoblast cell model for in vitro research. Eur. Cell. Mater., 2012, 24(4), 1-17.
[http://dx.doi.org/10.22203/eCM.v024a01] [PMID: 22777949]
[26]
Ma, W.; Wang, C.; Liu, R.; Wang, N.; Lv, Y.; Dai, B.; He, L. Advances in cell membrane chromatography. J. Chromatogr. A, 2021, 1639, 461916.
[http://dx.doi.org/10.1016/j.chroma.2021.461916] [PMID: 33548663]
[27]
Han, S.; Lv, Y.; Wei, F.; Fu, J.; Hu, Q.; Wang, S. Screening of bioactive components from traditional Chinese medicines using cell membrane chromatography coupled with mass spectrometry. Phytochem. Anal., 2018, 29(4), 341-350.
[http://dx.doi.org/10.1002/pca.2756] [PMID: 29573482]
[28]
Muhammad, S.; Han, S.; Xie, X.; Wang, S.; Aziz, M.M. Overview of online two-dimensional liquid chromatography based on cell membrane chromatography for screening target components from traditional Chinese medicines. J. Sep. Sci., 2017, 40(1), 299-313.
[http://dx.doi.org/10.1002/jssc.201600773] [PMID: 27506917]
[29]
Abe, Y.; Chiba, M.; Yaklai, S.; Pechayco, R.S.; Suzuki, H.; Takahashi, T. Increase in bone metabolic markers and circulating osteoblast-lineage cells after orthognathic surgery. Sci. Rep., 2019, 9(1), 20106.
[http://dx.doi.org/10.1038/s41598-019-56484-x] [PMID: 31882726]
[30]
Fennen, M.; Pap, T.; Dankbar, B. Smad-dependent mechanisms of inflammatory bone destruction. Arthritis Res. Ther., 2016, 18(1), 279.
[http://dx.doi.org/10.1186/s13075-016-1187-7] [PMID: 27906049]
[31]
Corrado, A.; Maruotti, N.; Cantatore, F. Osteoblast role in Rheumatic Diseases. Int. J. Mol. Sci., 2017, 18(6), 1272.
[http://dx.doi.org/10.3390/ijms18061272] [PMID: 28617323]
[32]
Chang, S.F.; Hsieh, R.Z.; Huang, K.C.; Chang, C.A.; Chiu, F.Y.; Kuo, H.C.; Chen, C.N.; Su, Y.P. Upregulation of bone morphogenetic protein-2 synthesis and consequent collagen II expression in leptin-stimulated human chondrocytes. PLoS One, 2015, 10(12), e0144252.
[http://dx.doi.org/10.1371/journal.pone.0144252] [PMID: 26636769]
[33]
Zhao, B. TNF and Bone Remodeling. Curr. Osteoporos. Rep., 2017, 15(3), 126-134.
[http://dx.doi.org/10.1007/s11914-017-0358-z] [PMID: 28477234]
[34]
Aquino-Martínez, R.; Artigas, N.; Gámez, B.; Rosa, J.L.; Ventura, F. Extracellular calcium promotes bone formation from bone marrow mesenchymal stem cells by amplifying the effects of BMP-2 on SMAD signalling. PLoS One, 2017, 12(5), e0178158.
[http://dx.doi.org/10.1371/journal.pone.0178158] [PMID: 28542453]
[35]
Wang, W.C.; Wang, C.; Song, X.Y.; Zhao, W.H.; Wang, Q. [Determination of 1, 2, 3, 4, 6-penta-O-galloyl-D-glucose in forty four kinds of Chinese traditional medicines by HPLC]. Zhongguo Zhongyao Zazhi, 2008, 33(6), 656-659.
[PMID: 18590194]
[36]
Xiang, Q.; Tang, J.; Luo, Q.; Xue, J.; Tao, Y.; Jiang, H.; Tian, J.; Fan, C. In vitro study of anti-ER positive breast cancer effect and mechanism of 1,2,3,4-6-pentyl-O-galloyl-beta-d-glucose (PGG). Biomed. Pharmacother., 2019, 111, 813-820.
[http://dx.doi.org/10.1016/j.biopha.2018.12.062] [PMID: 30616080]
[37]
Kim, Y.H.; Yang, X.; Yamashita, S.; Kumazoe, M.; Huang, Y.; Nakahara, K.; Won, Y.S.; Murata, M.; Lin, I.C.; Tachibana, H. 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose increases a population of T regulatory cells and inhibits IgE production in ovalbumin-sensitized mice. Int. Immunopharmacol., 2015, 26(1), 30-36.
[http://dx.doi.org/10.1016/j.intimp.2015.02.025] [PMID: 25737197]
[38]
Cryan, L.M.; Bazinet, L.; Habeshian, K.A.; Cao, S.; Clardy, J.; Christensen, K.A.; Rogers, M.S. 1,2,3,4,6-Penta-O-galloyl-β-D-glucopyranose inhibits angiogenesis via inhibition of capillary morphogenesis gene 2. J. Med. Chem., 2013, 56(5), 1940-1945.
[http://dx.doi.org/10.1021/jm301558t] [PMID: 23394144]
[39]
Hankenson, K.D.; Gagne, K.; Shaughnessy, M. Extracellular signaling molecules to promote fracture healing and bone regeneration. Adv. Drug Deliv. Rev., 2015, 94, 3-12.
[http://dx.doi.org/10.1016/j.addr.2015.09.008] [PMID: 26428617]
[40]
Garg, P.; Mazur, M.M.; Buck, A.C.; Wandtke, M.E.; Liu, J.; Ebraheim, N.A. Prospective review of mesenchymal stem cells differentiation into Osteoblasts. Orthop. Surg., 2017, 9(1), 13-19.
[http://dx.doi.org/10.1111/os.12304] [PMID: 28276640]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy