Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Determination of Cyanide at Trace Levels by Computational Scanning Densitometry

Author(s): Waheed-Uz-Zaman, Muhammad Salman*, Umar Farooq, Amara Dar, Isma Haq, Tahira Burhan, Jamil Anwar, Jesús Manuel Anzano and Umer Shafique*

Volume 19, Issue 6, 2023

Published on: 19 July, 2023

Page: [466 - 471] Pages: 6

DOI: 10.2174/1573411019666230616085924

Price: $65

Abstract

Introduction: Cyanide is one of the most commonly present anions in industrial effluents, highly toxic to human and animal life. Therefore, its determination in aqueous media by simple, portable, and quick methods is required.

Objective: This study aims to develop a simple and quick method to determine this anion at the micro level in aqueous media without using any expensive instrument.

Method: The method is based on treating the microliter sample of aqueous cyanide with the classical Lassaigne’s reagents on a TLC plate. After heating in an oven for a few minutes, a deep blue spot of ferric ferrocyanide complex appeared on the plate. The color depth of the spots was measured by scanning the TLC plate and analyzing the image with an indigenous software package.

Result: As a result of fusion with metallic sodium, carbon and nitrogen of the organic compound combine to form cyanide, which first reacts with Fe(II) to form hexacyanoferrate ion [Fe(CN)6]4- that further combines with Fe(III) to create a neutral deep blue colored coordination complex, ferric ferrocyanide Fe4[Fe(CN)6]3.

Discussion: This process converts real-world colors into numeric computer data consisting of rows and columns of pixels. Each pixel will consist of three numeric components, i.e., red, green, and blue. The pixel's color will be one of 16.8 million possible color combinations (256 shades of red, green, and blue each).

Conclusion: From the comparison of results obtained by the proposed method and standard ion-selective electrode method, it can be concluded that the former method for determining micro quantities of cyanide in aqueous samples using computational densitometry is a simple, accurate, and adequately precise method without the involvement of sophisticated instrumentation.

Keywords: Cyanide determination, spot test, image scanning, computational densitometry, water analysis, ferric ferrocyanide.

Graphical Abstract
[1]
Qi, J.; Hu, J.; Sun, Y.; Li, J. Cyanide detection using azo-acylhydrazone in aqueous media with high sensitivity and selectivity. Curr. Anal. Chem., 2016, 12(2), 119-123.
[http://dx.doi.org/10.2174/1573411011666150827194259]
[2]
Sharma, S.; Bhattacharya, A. Drinking water contamination and treatment techniques. Appl. Water Sci., 2017, 7(3), 1043-1067.
[http://dx.doi.org/10.1007/s13201-016-0455-7]
[3]
Tahir, M.B.; Asiri, A.M.; Malik, M.F.; Khalid, N.R.; Iqbal, T.; Rafique, M.; Kiran, H.; Muhammad, S.; Siddeeg, S.M.; Shahzad, K. Role of nano-photocatalysts in detoxification of toxic heavy metals. Curr. Anal. Chem., 2021, 17(2), 126-137.
[http://dx.doi.org/10.2174/1573411016666191230151455]
[4]
Hydrogen cyanide and cyanides : Human health aspects 2004.https://apps.who.int/iris/handle/10665/42942
[5]
Dash, R.R.; Gaur, A.; Balomajumder, C. Cyanide in industrial wastewaters and its removal: A review on biotreatment. J. Hazard. Mater., 2009, 163(1), 1-11.
[http://dx.doi.org/10.1016/j.jhazmat.2008.06.051] [PMID: 18657360]
[6]
Jaszczak, E. Polkowska, Ż.; Narkowicz, S.; Namieśnik, J. Cyanides in the environment—analysis—problems and challenges. Environ. Sci. Pollut. Res. Int., 2017, 24(19), 15929-15948.
[http://dx.doi.org/10.1007/s11356-017-9081-7] [PMID: 28512706]
[7]
Curry, S.C.; Spyres, M.B. Cyanide: Hydrogen cyanide, inorganic cyanide salts, and nitriles.Critical Care Toxicology; Springer International Publishing: Cham, 2015, pp. 1-21.
[http://dx.doi.org/10.1007/978-3-319-20790-2_101-1]
[8]
Mousavi, S.R.; Balali-Mood, M.; Riahi-Zanjani, B.; Sadeghi, M. Determination of cyanide and nitrate concentrations in drinking, irrigation, and wastewaters. J. Res. Med. Sci., 2013, 18(1), 65-69.
[PMID: 23900450]
[9]
Bolarinwa, I.F.; Orfila, C.; Morgan, M.R.A. Determination of amygdalin in apple seeds, fresh apples and processed apple juices. Food Chem., 2015, 170, 437-442.
[http://dx.doi.org/10.1016/j.foodchem.2014.08.083] [PMID: 25306368]
[10]
Ganesan, K.; Raza, S.K.; Vijayaraghavan, R. Chemical warfare agents. J. Pharm. Bioallied Sci., 2010, 2(3), 166-178.
[http://dx.doi.org/10.4103/0975-7406.68498] [PMID: 21829312]
[11]
Delaney, M.F.; Blodget, C. Reliable determination of cyanide in treated water. J. Am. Water Works Assoc., 2016, 108, E87-E98.
[http://dx.doi.org/10.5942/jawwa.2016.108.0006]
[12]
Jaszczak, E.; Narkowicz, S. Namieśnik, J.; Polkowska, Ż. Determination of cyanide in urine and saliva samples by ion chromatography with pulsed amperometric detection. Monatsh. Chem., 2017, 148(9), 1645-1649.
[http://dx.doi.org/10.1007/s00706-017-1977-x] [PMID: 28824204]
[13]
Oluwole, O.S.; Onabolu, A.O.; Cotgreave, I.A.; Rosling, H.; Persson, A.; Link, H. Incidence of endemic ataxic polyneuropathy and its relation to exposure to cyanide in a Nigerian community. J. Neurol. Neurosurg. Psychiatry, 2003, 74(10), 1417-1422.
[http://dx.doi.org/10.1136/jnnp.74.10.1417] [PMID: 14570837]
[14]
Pitschmann, V.; Kobliha, Z.; Tušarová, I. A simple spectrophotometric determination of cyanides by P-nitrobenzaldehyde and tetrazolium blue., 2011, 16(2), 19-27. Available From: https://www.aimt.cz/index.php/aimt/article/view/1601
[15]
Singh, H.B.; Wasi, N.; Mehra, M.C. Detection and determination of cyanide--a review. Int. J. Environ. Anal. Chem., 1986, 26(2), 115-136.
[http://dx.doi.org/10.1080/03067318608077109] [PMID: 3531047]
[16]
Long, L.; Yuan, X.; Cao, S.; Han, Y.; Liu, W.; Chen, Q.; Han, Z.; Wang, K. Determination of cyanide in water and food samples using an efficient naphthalene-based ratiometric fluorescent probe. ACS Omega, 2019, 4(6), 10784-10790.
[http://dx.doi.org/10.1021/acsomega.9b01308] [PMID: 31460176]
[17]
Virbickas, P. Valiūnienė A.; Baryševa, D.; Popkirov, G.; Ramanavičius, A. Determination of cyanide concentration by chronoamperometry, cyclic voltammetry and fast Fourier transform electrochemical impedance spectroscopy. J. Electroanal. Chem., 2021, 895, 115449.
[http://dx.doi.org/10.1016/j.jelechem.2021.115449]
[18]
Fávero, J.A.D.; Tubino, M. Semi-quantitative “spot-test” of cyanide. Anal. Sci., 2003, 19(8), 1139-1144.
[http://dx.doi.org/10.2116/analsci.19.1139] [PMID: 12945666]
[19]
Guilbault, G.G.; Kramer, D.N. Specific detection and determination of cyanide using various quinone derivatives. Anal. Chem., 1965, 37(11), 1395-1399.
[http://dx.doi.org/10.1021/ac60230a027]
[20]
Doménech-Carbó, M.T.; Doménech-Carbó, A. Spot tests: Past and present. ChemTexts., 2022, 8(1), 4.
[http://dx.doi.org/10.1007/s40828-021-00152-z] [PMID: 34976574]
[21]
Anwar, J. Waheed-uz-Zaman; Shafique, M.U.; Salman, M. Computational quantification of spot tests by image scanning-a new analytical technique for micro samples. Anal. Lett., 2010, 43(2), 367-371.
[http://dx.doi.org/10.1080/00032710903325898]
[22]
Salman, M.; Athar, M. Waheed-uz-Zaman; Shafique, U.; Anwar, J.; Rehman, R.; Ameer, S.; Azeem, M. Micro-determination of arsenic in aqueous samples by image scanning and computational quantification. Anal. Methods, 2012, 4(1), 242-246.
[http://dx.doi.org/10.1039/c1ay05569k]
[23]
Dar, A.; Anwar, J.; Shafique, U. Estimation of sulfur by gas-phase molecular absorption spectroscopy (GPMAS) and use in pharmaceutical analysis. J. Sulfur Chem., 2010, 31(1), 13-18.
[http://dx.doi.org/10.1080/17415990903480379]
[24]
Dar, A.; Shafique, U.; Anwar, J. Waheed-uz-Zaman; Naseer, A. A simple spot test quantification method to determine formaldehyde in aqueous samples. J. Saudi Chem. Soc., 2016, 20, S352-S356.
[http://dx.doi.org/10.1016/j.jscs.2012.12.002]
[25]
Jones, A.M.; Griffin, P.J.; Waite, T.D. Ferrous iron oxidation by molecular oxygen under acidic conditions: The effect of citrate, EDTA and fulvic acid. Geochim. Cosmochim. Acta, 2015, 160, 117-131.
[http://dx.doi.org/10.1016/j.gca.2015.03.026]
[26]
Liu, J.; Jiang, G. Spectrophotometric flow injection determination of total reducing sugars in tobacco based on oxidation by ferricyanide and formation of Prussian blue. Anal. Lett., 2001, 34(11), 1923-1934.
[http://dx.doi.org/10.1081/AL-100106122]
[27]
Koch, W.F. The determination of trace levels of cyanide by ion chromatography with electrochemical detection. J. Res. Natl. Bur. Stand., 1983, 88(3), 161.
[http://dx.doi.org/10.6028/jres.088.008]
[28]
Cacace, D.; Ashbaugh, H.; Kouri, N.; Bledsoe, S.; Lancaster, S.; Chalk, S. Spectrophotometric determination of aqueous cyanide using a revised phenolphthalin method. Anal. Chim. Acta, 2007, 589(1), 137-141.
[http://dx.doi.org/10.1016/j.aca.2007.02.004] [PMID: 17397664]
[29]
Guilbault, G.G.; Kramer, D.N. Ultra sensitive, specific method for cyanide using p -Nitrobenzaldehyde and o -Dinitrobenzene. Anal. Chem., 1966, 38(7), 834-836.
[http://dx.doi.org/10.1021/ac60239a009]
[30]
Druzhinin, A.A.; Lozanov, I.A.; Prosvetova, M.Y.; Veksler, K.V. Spectrophotometric determination of cyanide by chromogenic disulfide in water using micellar catalysis. J. Anal. Chem., 2010, 65(7), 704-706.
[http://dx.doi.org/10.1134/S1061934810070087]
[31]
Nagashima, S.; Ozawa, T. Spectrophotometric determination of cyanide with isonicotinic acid and barbituric acid. Int. J. Environ. Anal. Chem., 1981, 10(2), 99-106.
[http://dx.doi.org/10.1080/03067318108071535]
[32]
Nagaraja, P.; Hemantha Kumar, M.S.; Yathirajan, H.S.; Prakash, J.S. Novel sensitive spectrophotometric method for the trace determination of cyanide in industrial effluent. Anal. Sci., 2002, 18(9), 1027-1030.
[http://dx.doi.org/10.2116/analsci.18.1027] [PMID: 12243398]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy