Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

蜜蜂毒液在健忘症症状中的记忆增强和神经发生活性——以健忘症样阿尔茨海默病大鼠为模型

卷 20, 期 3, 2023

发表于: 06 July, 2023

页: [190 - 201] 页: 12

弟呕挨: 10.2174/1567205020666230614143027

价格: $65

Open Access Journals Promotions 2
摘要

背景/目的:阿尔茨海默病(AD)的主要特征是健忘症,影响着全世界数百万人。本研究旨在探讨蜂毒 (BV) 对增强失忆样 AD 大鼠模型记忆过程的有效性。 方法:研究方案包含两个连续阶段,即促智阶段和治疗阶段,其中使用两种 BV 剂量(D1;0.25 和 D2:0.5 mg/kg,腹腔注射)。在促智阶段,治疗组与正常组进行统计学比较。同时,在治疗阶段,将BV与东莨菪碱(1mg/kg)一起给药,在大鼠模型中诱导失忆样AD,其中治疗组与阳性组(多奈哌齐;1mg/kg i.p.)进行比较。在每个阶段后,使用径向臂迷宫 (RAM) 和被动回避测试 (PAT) 通过工作记忆 (WM) 和长期记忆 (LTM) 评估进行行为分析。神经源性因素;使用 ELISA 和海马组织的免疫组织化学分析分别测量血浆中的脑源性神经营养因子 (BDNF) 和双皮质素 (DCX)。 结果:在促智阶段,与正常组相比,治疗组的 RAM 潜伏时间、空间 WM 误差和空间参考误差显着减少(P < 0.05)。此外,PA 测试显示两个治疗组 72 小时后 LTM 显着增强(P < 0.05); D1 和 D2。在治疗阶段,与阳性组相比,治疗组的记忆过程显着增强(P < 0.05); RAM 测试期间的空间 WM 错误、空间参考错误和延迟时间更少,并且在光室中 72 小时后延迟时间更长。此外,结果显示,与阴性组相比,D1 和 D2 组的血浆 BDNF 水平显着增加,并且海马颗粒下区 DCX 阳性数据增加(P < 0.05),呈剂量依赖性。方式。 结论:这项研究表明,注射 BV 可以增强和提高 WM 和 LTM 的表现。总之,BV 具有潜在的促智和治疗活性,可增强海马的生长和可塑性,从而改善 WM 和 LTM。鉴于这项研究是在大鼠中使用东莨菪碱诱导的失忆样 AD 进行的,表明 BV 对 AD 患者的记忆增强具有潜在的治疗活性,且呈剂量依赖性,但还需要进一步研究。

关键词: 蜂毒,BDNF,DCX,阿尔茨海默病,神经退行性,脑源性神经营养因子。

[1]
Almkvist O. Neuropsychological features of early Alzheimer’s disease: Preclinical and clinical stages. Acta Neurol Scand 1996; 94(S165): 63-71.
[http://dx.doi.org/10.1111/j.1600-0404.1996.tb05874.x] [PMID: 8740991]
[2]
Jedynak BM, Lang A, Liu B, et al. A computational neurodegenerative disease progression score: Method and results with the Alzheimer’s disease neuroimaging initiative cohort. Neuroimage 2012; 63(3): 1478-86.
[http://dx.doi.org/10.1016/j.neuroimage.2012.07.059] [PMID: 22885136]
[3]
Hajjo R, Sabbah DA, Abusara OH, Al Bawab AQ. A Review of the recent advances in Alzheimer’s Disease research and the utilization of network biology approaches for prioritizing diagnostics and therapeutics. Diagnostics 2022; 12(12): 2975.
[http://dx.doi.org/10.3390/diagnostics12122975] [PMID: 36552984]
[4]
Xie C, Miyasaka T, Yoshimura S, et al. The homologous carboxyl-terminal domains of microtubule-associated protein 2 and TAU induce neuronal dysfunction and have differential fates in the evolution of neurofibrillary tangles. PLoS One 2014; 9(2): e89796.
[http://dx.doi.org/10.1371/journal.pone.0089796] [PMID: 24587039]
[5]
Mir Z. Rosliza , Naeem B, et al. Synergistic molecular effect of BDNF, Apo E and MTHFR in inducing Depression in Alzheimer’s Disease. Res J Pharm Tech 2018; 11(10): 4317-23.
[http://dx.doi.org/10.5958/0974-360X.2018.00790.4]
[6]
Health at a Glance: Europe 2016. France: OECD Publishing Paris 2016.
[7]
Chua KK, Wong A, Kwan PWL, et al. The efficacy and safety of the Chinese herbal medicine Di-Tan decoction for treating Alzheimer’s disease: Protocol for a randomized controlled trial. Trials 2015; 16(1): 199.
[http://dx.doi.org/10.1186/s13063-015-0716-z] [PMID: 25925312]
[8]
Zhu H, Yan H, Tang N, et al. Impairments of spatial memory in an Alzheimer’s disease model via degeneration of hippocampal cholinergic synapses. Nat Commun 2017; 8(1): 1676.
[http://dx.doi.org/10.1038/s41467-017-01943-0] [PMID: 29162816]
[9]
Huntley J, Howard R. Working memory in early Alzheimer’s disease: A neuropsychological review. Int J Geriatr Psychiatry 2010; 25(2): 121-32.
[http://dx.doi.org/10.1002/gps.2314]
[10]
Mu Y, Gage FH. Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 2011; 6(1): 85.
[http://dx.doi.org/10.1186/1750-1326-6-85] [PMID: 22192775]
[11]
Singhal A, Bangar OP, Naithani V. Medicinal plants with a potential to treat Alzheimer and associated symptoms. Int J Nutr Pharmacol Neurol Dis 2012; 2(2): 84.
[http://dx.doi.org/10.4103/2231-0738.95927]
[12]
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 2015; 6(6): 1164-78.
[http://dx.doi.org/10.5114/aoms.2015.56342] [PMID: 26788077]
[13]
Pinton S, Sampaio TB, Savall AS, Gutierrez MEZ. Neurotrophic factors in Alzheimer’s and Parkinson’s diseases: Implications for pathogenesis and therapy. Neural Regen Res 2017; 12(4): 549-57.
[http://dx.doi.org/10.4103/1673-5374.205084] [PMID: 28553325]
[14]
Mohd Sairazi NS, Sirajudeen K. Natural products and their bioactive compounds: Neuroprotective potentials against neurodegenerative diseases. Evid Based Complement Alternat Med 2020; 2020: 6565396.
[http://dx.doi.org/10.1155/2020/6565396]
[15]
Khalaf-Nazzal R, Stouffer MA, Olaso R, et al. Early born neurons are abnormally positioned in the doublecortin knockout hippocampus. Hum Mol Genet 2017; 26(1): 90-108.
[PMID: 28007902]
[16]
Encinas JM, Sierra A. Neural stem cell deforestation as the main force driving the age-related decline in adult hippocampal neurogenesis. Behav Brain Res 2012; 227(2): 433-9.
[http://dx.doi.org/10.1016/j.bbr.2011.10.010] [PMID: 22019362]
[17]
Lipsky RH, Marini AM. Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann N Y Acad Sci 2007; 1122(1): 130-43.
[http://dx.doi.org/10.1196/annals.1403.009] [PMID: 18077569]
[18]
Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease: The relationship between pharmacological effects and clinical efficacy. Drugs Aging 2004; 21(7): 453-78.
[http://dx.doi.org/10.2165/00002512-200421070-00004] [PMID: 15132713]
[19]
Birks JS. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 2006; 2006(1): CD005593.
[http://dx.doi.org/10.1002/14651858.CD005593]
[20]
A Al-Kafaween M, Mohd Hilmi AB, A Nagi Al-Jamal H, A Elsahoryi N, Jaffar N, Khairi Zahri M. Pseudomonas aeruginosa and Streptococcus pyogenes exposed to Malaysian trigona honey in vitro demonstrated downregulation of virulence factor. Iran J Biotechnol 2020; 18(4): e2542.
[PMID: 34056021]
[21]
Stawiarz E, Dyduch J. The use of honey bee products of plant origin in apitherapy. Episteme 2014; 25: 111-27.
[22]
Hammad AM, Ibrahim YA, Khdair SI, et al. Metformin reduces oxandrolone- induced depression-like behavior in rats via modulating the expression of IL-1β IL-6, IL-10 and TNF-α. Behav Brain Res 2021; 414: 113475.
[http://dx.doi.org/10.1016/j.bbr.2021.113475] [PMID: 34280460]
[23]
Alkafaween MA, Kafaween H, Al-Groom RM. A comparative study of antibacterial activity of Citrus and Jabali Honeys with Manuka Honey. Appl Environ Biotechnol 2022; 7(1): 28-37.
[http://dx.doi.org/10.26789/AEB.2022.01.004]
[24]
Yang EJ, Jiang JH, Lee SM, et al. Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models. J Neuroinflammation 2010; 7(1): 69.
[http://dx.doi.org/10.1186/1742-2094-7-69] [PMID: 20950451]
[25]
Lee VMY, Goedert M, Trojanowski JQ. Neurodegenerative Tauopathies. Annu Rev Neurosci 2001; 24(1): 1121-59.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.1121] [PMID: 11520930]
[26]
Kim JI, Yang EJ, Lee MS, et al. Bee venom reduces neuroinflammation in the MPTP-induced model of Parkinson’s disease. Int J Neurosci 2011; 121(4): 209-17.
[http://dx.doi.org/10.3109/00207454.2010.548613] [PMID: 21265705]
[27]
Al-kafaween MA, Hilmi ABM, Al-Jamal HAN, Al-Groom RM, Elsahoryi NA, Al-Sayyed H. Potential antibacterial activity of Yemeni Sidr Honey against Pseudomonas aeruginosa and Streptococcus pyogenes. Antiinfect Agents 2021; 19(4): e130621192336.
[http://dx.doi.org/10.2174/2211352519666210319100204]
[28]
Al-kafaween MA, Al-Jamal HAN. A comparative study of antibacterial and antivirulence activities of four selected honeys to Manuka honey. Iran J Microbiol 2022; 14(2): 238-51.
[http://dx.doi.org/10.18502/ijm.v14i2.9193] [PMID: 35765547]
[29]
Bhuvanendran S, Kumari Y, Othman I, Shaikh MF. Amelioration of cognitive deficit by embelin in a scopolamine-induced Alzheimer’s disease-like condition in a rat model. Front Pharmacol 2018; 9: 665.
[http://dx.doi.org/10.3389/fphar.2018.00665] [PMID: 29988493]
[30]
Yadang FSA, Nguezeye Y, Kom CW, Betote PHD, Mamat A, Tchokouaha LRY, et al. Scopolamine-Induced Memory Impairment in Mice: Neuroprotective Effects of Carissa edulis (Forssk.) Valh (Apocynaceae). Aqueous Extract Int J Alzheimers Dis 2020; 2020: 6372059.
[31]
Hsieh MT, Wu CR, Chen CF. Gastrodin and p-hydroxybenzyl alcohol facilitate memory consolidation and retrieval, but not acquisition, on the passive avoidance task in rats. J Ethnopharmacol 1997; 56(1): 45-54.
[http://dx.doi.org/10.1016/S0378-8741(96)01501-2] [PMID: 9147253]
[32]
Rush DK. Scopolamine amnesia of passive avoidance: A deficit of information acquisition. Behav Neural Biol 1988; 50(3): 255-74.
[http://dx.doi.org/10.1016/S0163-1047(88)90938-7] [PMID: 3202811]
[33]
Olton DS. The radial arm maze as a tool in behavioral pharmacology. Physiol Behav 1987; 40(6): 793-7.
[http://dx.doi.org/10.1016/0031-9384(87)90286-1] [PMID: 3313453]
[34]
Olton DS, Collison C, Werz MA. Spatial memory and radial arm maze performance of rats. Learn Motiv 1977; 8(3): 289-314.
[http://dx.doi.org/10.1016/0023-9690(77)90054-6]
[35]
Bolhuis JJ, Bijlsma S, Ansmink P. Exponential decay of spatial memory of rats in a radial maze. Behav Neural Biol 1986; 46(2): 115-22.
[http://dx.doi.org/10.1016/S0163-1047(86)90584-4] [PMID: 3767826]
[36]
Brown MF. Does a cognitive map guide choices in the radial-arm maze? J Exp Psychol Anim Behav Process 1992; 18(1): 56-66.
[http://dx.doi.org/10.1037/0097-7403.18.1.56] [PMID: 1578200]
[37]
Batool Z, Sadir S, Liaquat L, et al. Repeated administration of almonds increases brain acetylcholine levels and enhances memory function in healthy rats while attenuates memory deficits in animal model of amnesia. Brain Res Bull 2016; 120: 63-74.
[http://dx.doi.org/10.1016/j.brainresbull.2015.11.001] [PMID: 26548495]
[38]
Haider S, Saleem S, Perveen T, et al. Age-related learning and memory deficits in rats: Role of altered brain neurotransmitters, acetylcholinesterase activity and changes in antioxidant defense system. Age 2014; 36(3): 9653.
[http://dx.doi.org/10.1007/s11357-014-9653-0] [PMID: 24771014]
[39]
Bannerman DM, Sprengel R, Sanderson DJ, et al. Hippocampal synaptic plasticity, spatial memory and anxiety. Nat Rev Neurosci 2014; 15(3): 181-92.
[http://dx.doi.org/10.1038/nrn3677] [PMID: 24552786]
[40]
Shojaei S, Panjehshahin MR, Shafiee SM, et al. Differential effects of resveratrol on the expression of brain-derived neurotrophic factor transcripts and protein in the hippocampus of rat brain. Iran J Med Sci 2017; 42(1): 32-9.
[PMID: 28293048]
[41]
Al-saraireh YM, Alshammari FOFO, Youssef AMM, et al. Cytochrome 4Z1 expression is associated with unfavorable survival in triple-negative breast cancers. Breast Cancer 2021; 13: 565-74.
[http://dx.doi.org/10.2147/BCTT.S329770] [PMID: 34675653]
[42]
Alshammari FOFO, Al-saraireh YM, Youssef AMM, Al-Sarayra YM, Alrawashdeh HM. Cytochrome P450 1B1 overexpression in cervical cancers: Cross-sectional study. Interact J Med Res 2021; 10(4): e31150.
[http://dx.doi.org/10.2196/31150] [PMID: 34636736]
[43]
Yamashima T, Popivanova BK, Guo J, et al. Implication of “Down syndrome cell adhesion molecule” in the hippocampal neurogenesis of ischemic monkeys. Hippocampus 2006; 16(11): 924-35.
[http://dx.doi.org/10.1002/hipo.20223] [PMID: 16983647]
[44]
Zurier RB, Mitnick H, Bloomgarden D, Weissmann G. Effect of bee venom on experimental arthritis. Ann Rheum Dis 1973; 32(5): 466-70.
[http://dx.doi.org/10.1136/ard.32.5.466] [PMID: 4751783]
[45]
Cai M, Lee JH, Yang EJ. Bee venom ameliorates cognitive dysfunction caused by neuroinflammation in an animal model of vascular dementia. Mol Neurobiol 2017; 54(8): 5952-60.
[http://dx.doi.org/10.1007/s12035-016-0130-x] [PMID: 27686075]
[46]
Singh AK, Rai SN, Maurya A, Mishra G, Awasthi R, Shakya A, et al. Therapeutic potential of phytoconstituents in management of Alzheimer’s disease. Evid Based Complement Alternat Med 2021; 2021: 5578574.
[http://dx.doi.org/10.1155/2021/5578574]
[47]
Chung ES, Kim H, Lee G, Park S, Kim H, Bae H. Neuro-protective effects of bee venom by suppression of neuroinflammatory responses in a mouse model of Parkinson’s disease: Role of regulatory T cells. Brain Behav Immun 2012; 26(8): 1322-30.
[http://dx.doi.org/10.1016/j.bbi.2012.08.013] [PMID: 22974722]
[48]
Nishizaki T, Matsuoka T, Nomura T, et al. A ‘long-term-potentiation-like’ facilitation of hippocampal synaptic transmission induced by the nootropic nefiracetam. Brain Res 1999; 826(2): 281-8.
[http://dx.doi.org/10.1016/S0006-8993(99)01312-8] [PMID: 10224305]
[49]
Shin J, Kong C, Lee J, et al. Focused ultrasound-induced blood-brain barrier opening improves adult hippocampal neurogenesis and cognitive function in a cholinergic degeneration dementia rat model. Alzheimers Res Ther 2019; 11(1): 110.
[http://dx.doi.org/10.1186/s13195-019-0569-x] [PMID: 31881998]
[50]
Kwon YB, Han HJ, Beitz AJ, Lee JH. Bee venom acupoint stimulation increases Fos expression in catecholaminergic neurons in the rat brain. Mol Cells 2004; 17(2): 329-3.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy