Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Emerging Nanotechnology-based Therapeutics: A New Insight into Promising Drug Delivery System for Lung Cancer Therapy

Author(s): Ravinder Verma*, Lakshita Rao, Diksha Nagpal, Manish Yadav, Vivek Kumar, Vikram Kumar, Harish Kumar, Jatin Parashar, Nitin Bansal, Manish Kumar, Parijat Pandey, Vineet Mittal and Deepak Kaushik

Volume 18, Issue 4, 2024

Published on: 03 August, 2023

Page: [395 - 414] Pages: 20

DOI: 10.2174/1872210517666230613154847

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Lung cancer is a foremost global health issue due to its poor diagnosis. The advancement of novel drug delivery systems and medical devices will aid its therapy.

Objective: In this review, the authors thoroughly introduce the ideas and methods for improving nanomedicine- based approaches for lung cancer therapy. This article provides mechanistic insight into various novel drug delivery systems (DDSs) including nanoparticles, solid lipid nanoparticles, liposomes, dendrimers, niosomes, and nanoemulsions for lung cancer therapy with recent research work. This review provides insights into various patents published for lung cancer therapy based on nanomedicine. This review also highlights the current status of approved and clinically tested nanoformulations for their treatment.

Methodology: For finding scholarly related data for the literature search, many search engines were employed including PubMed, Science Direct, Google, Scihub, Google Scholar, Research Gate, Web of Sciences, and several others. Various keywords and phrases were used for the search such as “nanoparticles”, “solid lipid nanoparticles”, “liposomes”, “dendrimers”, “niosomes”, “nanoemulsions”, “lung cancer”, “nanomedicine”, “nanomaterial”, “nanotechnology”, “in vivo” and “in vitro”. The most innovative and cutting-edge nanotechnology-based approaches that are employed in pre-clinical and clinical studies to address problems associated with lung cancer therapies are also mentioned in future prospects. A variety of problems encountered with current lung cancer therapy techniques that frequently led to inadequate therapeutic success are also discussed in the end.

Conclusion: The development of nanoformulations at the pilot scale still faces some difficulties, but their prospects for treating lung cancer appear to be promising in the future. Future developments and trends are anticipated as the evaluation comes to a close.

Keywords: Nanomedicine, lung cancer, solid lipid nanoparticles, liposomes, dendrimers, niosomes, nanoemulsions.

Graphical Abstract
[1]
Kooti W, Servatyari K, Behzadifar M, et al. Effective medicinal plant in cancer treatment, Part 2: Review study. J Evid Based Complementary Altern Med 2017; 22(4): 982-95.
[http://dx.doi.org/10.1177/2156587217696927] [PMID: 28359161]
[2]
Murugan C, Sharma V, Murugan RK, Malaimegu G, Sundaramurthy A. Two-dimensional cancer theranostic nanomaterials: Synthesis, surface functionalization and applications in photothermal therapy. J Control Release 2019; 299: 1-20.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.015] [PMID: 30771414]
[3]
Seitlinger J, Nounsi A, Idoux-Gillet Y, et al. Vascularization of patient-derived tumoroid from non-small-cell lung cancer and its microenvironment. Biomedicines 2022; 10(5): 1103.
[http://dx.doi.org/10.3390/biomedicines10051103] [PMID: 35625840]
[4]
DeSantis CE, Lin CC, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 2014; 64(4): 252-71.
[http://dx.doi.org/10.3322/caac.21235] [PMID: 24890451]
[5]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[6]
Visan KS, Lobb RJ, Wen SW, et al. Blood-derived extracellular vesicle-associated mir-3182 detects non-small cell lung cancer patients. Cancers 2022; 14(1): 257.
[http://dx.doi.org/10.3390/cancers14010257] [PMID: 35008424]
[8]
Yee Kuen C, Masarudin MJ. Chitosan nanoparticle-based system: a new insight into the promising controlled release system for lung cancer treatment. Molecules 2022; 27(2): 473.
[http://dx.doi.org/10.3390/molecules27020473] [PMID: 35056788]
[9]
Herbst RS, Heymach JV, Lippman SM. Lung Cancer. N Engl J Med 2008; 359(13): 1367-80.
[http://dx.doi.org/10.1056/NEJMra0802714] [PMID: 18815398]
[10]
Samet JM, Avila-Tang E, Boffetta P, et al. Lung cancer in never smokers: clinical epidemiology and environmental risk factors. Clin Cancer Res 2009; 15(18): 5626-45.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0376] [PMID: 19755391]
[11]
Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature 2018; 553(7689): 446-54.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[12]
Yao Y, Zhou Y, Liu L, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 2020; 7: 193.
[http://dx.doi.org/10.3389/fmolb.2020.00193] [PMID: 32974385]
[13]
Nayak S, Herzog RW. Progress and prospects: immune responses to viral vectors. Gene Ther 2010; 17(3): 295-304.
[http://dx.doi.org/10.1038/gt.2009.148] [PMID: 19907498]
[14]
Verma R, Mittal V, Kaushik D. Self-micro emulsifying drug delivery system: A vital approach for bioavailability enhancement. Int J Chemtech Res 2017; 10(7): 515-28.
[15]
Kesharwani P, Chadar R, Sheikh A, Rizg WY, Safhi AY. CD44-targeted nanocarrier for cancer therapy. Front Pharmacol 2022; 12: 800481.
[http://dx.doi.org/10.3389/fphar.2021.800481] [PMID: 35431911]
[16]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[17]
Wei R, Jiang G, Lv M, et al. TMTP1-modified indocyanine green-loaded polymeric micelles for targeted imaging of cervical cancer and metastasis sentinel lymph node in vivo. Theranostics 2019; 9(24): 7325-44.
[http://dx.doi.org/10.7150/thno.35346] [PMID: 31695771]
[18]
Sharma A, Shambhwani D, Pandey S, et al. Advances in lung cancer treatment using nanomedicines. ACS Omega 2023; 8(1): 10-41.
[http://dx.doi.org/10.1021/acsomega.2c04078] [PMID: 36643475]
[19]
Crintea A, Dutu AG, Samasca G, Florian IA, Lupan I, Craciun AM. The nanosystems involved in treating lung cancer. Life (Basel) 2021; 11(7): 682.
[http://dx.doi.org/10.3390/life11070682] [PMID: 34357054]
[20]
Attri A, Thakur D, Kaur T, et al. Nanoparticles incorporating a fluorescence turn-on reporter for real-time drug release monitoring, a chemoenhancer and a stealth agent: poseidon’s trident against cancer? Mol Pharm 2021; 18(1): 124-47.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00730] [PMID: 33346663]
[21]
Hinohara K, Polyak K. Intratumoral heterogeneity: More than just mutations. Trends Cell Biol 2019; 29(7): 569-79.
[http://dx.doi.org/10.1016/j.tcb.2019.03.003] [PMID: 30987806]
[22]
Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol 2007; 25(12): 563-70.
[http://dx.doi.org/10.1016/j.tibtech.2007.09.005] [PMID: 17997181]
[23]
Prasad M, Lambe UP, Brar B, et al. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 2018; 97: 1521-37.
[http://dx.doi.org/10.1016/j.biopha.2017.11.026] [PMID: 29793315]
[24]
Kostarelos K. The emergence of nanomedicine: a field in the making. Nanomedicine (Lond) 2006; 1(1): 1-3.
[http://dx.doi.org/10.2217/17435889.1.1.1] [PMID: 17716200]
[25]
Jones AAD III, Mi G, Webster TJ. A status report on FDA approval of medical devices containing nanostructured materials. Trends Biotechnol 2019; 37(2): 117-20.
[http://dx.doi.org/10.1016/j.tibtech.2018.06.003] [PMID: 30075863]
[26]
Mali S. Nanotechnology for Surgeons. Indian J Surg 2013; 75(6): 485-92.
[http://dx.doi.org/10.1007/s12262-012-0726-y] [PMID: 24465107]
[27]
Wang J, Li Y, Nie G, Zhao Y. Precise design of nanomedicines: perspectives for cancer treatment. Natl Sci Rev 2019; 6(6): 1107-10.
[http://dx.doi.org/10.1093/nsr/nwz012] [PMID: 34691989]
[28]
Peng S, Wang J, Lu C, et al. Emodin enhances cisplatin sensitivity in non-small cell lung cancer through Pgp downregulation. Oncol Lett 2021; 21(3): 230.
[http://dx.doi.org/10.3892/ol.2021.12491] [PMID: 33613719]
[29]
Jang SH, Wientjes MG, Au JL. Kinetics of P-glycoprotein-mediated efflux of paclitaxel. J Pharmacol Exp Ther 2001; 298(3): 1236-42.
[PMID: 11504826]
[30]
Galletti E, Magnani M, Renzulli ML, Botta M. Paclitaxel and docetaxel resistance: molecular mechanisms and development of new generation taxanes. ChemMedChem 2007; 2(7): 920-42.
[http://dx.doi.org/10.1002/cmdc.200600308] [PMID: 17530726]
[31]
Doroudian M, Azhdari MH, Goodarzi N, O’Sullivan D, Donnelly SC. Smart nanotherapeutics and lung cancer. Pharmaceutics 2021; 13(11): 1972.
[http://dx.doi.org/10.3390/pharmaceutics13111972] [PMID: 34834387]
[32]
Haider M, Elsherbeny A, Pittalà V, et al. Nanomedicine strategies for management of drug resistance in lung cancer. Int J Mol Sci 2022; 23(3): 1853.
[http://dx.doi.org/10.3390/ijms23031853] [PMID: 35163777]
[33]
Babu A, Templeton AK, Munshi A, Ramesh R. Nanoparticle-based drug delivery for therapy of lung cancer: progress and challenges. J Nanomater 2013; 2013: 1-11.
[http://dx.doi.org/10.1155/2013/863951]
[34]
Minocha N, Sharma N, Verma R, Kaushik D, Pandey P. Solid lipid nanoparticles: peculiar strategy to deliver bio-proactive molecules. Recent Pat Nanotechnol 2023; 17(3): 228-42.
[http://dx.doi.org/10.2174/1872210516666220317143351] [PMID: 35301957]
[35]
Arora D, Bhatt S, Kumar M, et al. QbD-based rivastigmine tartrate-loaded solid lipid nanoparticles for enhanced intranasal delivery to the brain for Alzheimer’s therapeutics. Front Aging Neurosci 2022; 14: 960246.
[http://dx.doi.org/10.3389/fnagi.2022.960246] [PMID: 36034142]
[36]
Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur J Pharm Biopharm 2018; 133: 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[37]
Bayón-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel) 2019; 9(3): 474.
[http://dx.doi.org/10.3390/nano9030474] [PMID: 30909401]
[38]
Ozgenc E, Karpuz M, Arzuk E, et al. Radiolabeled trastuzumab solid lipid nanoparticles for breast cancer cell: in vitro and in vivo studies. ACS Omega 2022; 7(34): 30015-27.
[http://dx.doi.org/10.1021/acsomega.2c03023] [PMID: 36061662]
[39]
Satari N, Taymouri S, Varshosaz J, Rostami M, Mirian M. Preparation and evaluation of inhalable dry powder containing glucosamine-conjugated gefitinib SLNs for lung cancer therapy. Drug Dev Ind Pharm 2020; 46(8): 1265-77.
[http://dx.doi.org/10.1080/03639045.2020.1788063] [PMID: 32594775]
[40]
Zhou Q, Hou K, Fu Z. Transferrin-modified mangiferin-loaded SLNs: Preparation, characterization, and application in A549 lung cancer cell. Drug Des Devel Ther 2022; 16: 1767-78.
[http://dx.doi.org/10.2147/DDDT.S366531] [PMID: 35707686]
[41]
Li S, Wang L, Li N, Liu Y, Su H. Combination lung cancer chemotherapy: Design of a pH-sensitive transferrin-PEG-Hz-lipid conjugate for the co-delivery of docetaxel and baicalin. Biomed Pharmacother 2017; 95: 548-55.
[http://dx.doi.org/10.1016/j.biopha.2017.08.090] [PMID: 28869892]
[42]
Pi C, Zhao W, Zeng M, et al. Anti-lung cancer effect of paclitaxel solid lipid nanoparticles delivery system with curcumin as co-loading partner in vitro and in vivo. Drug Deliv 2022; 29(1): 1878-91.
[http://dx.doi.org/10.1080/10717544.2022.2086938] [PMID: 35748365]
[43]
Huang K, Ma H, Liu J, et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 2012; 6(5): 4483-93.
[http://dx.doi.org/10.1021/nn301282m] [PMID: 22540892]
[44]
Mittal P, Saharan A, Verma R, et al. Dendrimers: A new race of pharmaceutical nanocarriers. BioMed Res Int 2021; 2021: 1-11.
[http://dx.doi.org/10.1155/2021/8844030] [PMID: 33644232]
[45]
Kaminskas LM, McLeod VM, Porter CJH, Boyd BJ. Association of chemotherapeutic drugs with dendrimer nanocarriers: an assessment of the merits of covalent conjugation compared to noncovalent encapsulation. Mol Pharm 2012; 9(3): 355-73.
[http://dx.doi.org/10.1021/mp2005966] [PMID: 22250750]
[46]
Ryan GM, Kaminskas LM, Kelly BD, Owen DJ, McIntosh MP, Porter CJH. Pulmonary administration of PEGylated polylysine dendrimers: absorption from the lung versus retention within the lung is highly size-dependent. Mol Pharm 2013; 10(8): 2986-95.
[http://dx.doi.org/10.1021/mp400091n] [PMID: 23750747]
[47]
Ayatollahi S, Salmasi Z, Hashemi M, et al. Aptamer-targeted delivery of Bcl-xL shRNA using alkyl modified PAMAM dendrimers into lung cancer cells. Int J Biochem Cell Biol 2017; 92: 210-7.
[http://dx.doi.org/10.1016/j.biocel.2017.10.005] [PMID: 29031805]
[48]
Amreddy N, Babu A, Panneerselvam J, et al. Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomedicine 2018; 14(2): 373-84.
[http://dx.doi.org/10.1016/j.nano.2017.11.010] [PMID: 29155362]
[49]
Liu J, Xiong Z, Zhang J, et al. Zwitterionic gadolinium(III)-complexed dendrimer-entrapped gold nanoparticles for enhanced computed tomography/magnetic resonance imaging of lung cancer metastasis. ACS Appl Mater Interfaces 2019; 11(17): 15212-21.
[http://dx.doi.org/10.1021/acsami.8b21679] [PMID: 30964632]
[50]
Masuda M, Kawakami S, Wijagkanalan W, et al. Anti-MUC1 aptamer/negatively charged amino acid dendrimer conjugates for targeted delivery to human lung adenocarcinoma A549 cells. Biol Pharm Bull 2016; 39(10): 1734-8.
[http://dx.doi.org/10.1248/bpb.b16-00508] [PMID: 27725454]
[51]
Zhong Q, Bielski ER, Rodrigues LS, Brown MR, Reineke JJ, da Rocha SRP. Conjugation to Poly(amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol Pharm 2016; 13(7): 2363-75.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00126] [PMID: 27253493]
[52]
Pandey P, Chellappan DK, Tambuwala MM, Bakshi HA, Dua K, Dureja H. Central composite designed formulation, characterization and in vitro cytotoxic effect of erlotinib loaded chitosan nanoparticulate system. Int J Biol Macromol 2019; 141: 596-610.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.023] [PMID: 31494160]
[53]
Pandey P, Dua K, Dureja H. Erlotinib loaded chitosan nanoparticles: Formulation, physicochemical characterization and cytotoxic potential. Int J Biol Macromol 2019; 139: 1304-16.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.084] [PMID: 31404602]
[54]
Kumar I, Nayak R, Chaudhary LB, et al. Fabrication of α-Fe2O3 nanostructures: synthesis, characterization, and their promising application in the treatment of carcinoma A549 lung cancer cells. ACS Omega 2022; 7(25): 21882-90.
[http://dx.doi.org/10.1021/acsomega.2c02083] [PMID: 35785292]
[55]
Maarof NNN, Abdulmalek E, Fakurazi S, Rahman MBA. Biodegradable carbonate apatite nanoparticle as a delivery system to promote afatinib delivery for non-small cell lung cancer treatment. Pharmaceutics 2022; 14(6): 1230.
[http://dx.doi.org/10.3390/pharmaceutics14061230] [PMID: 35745802]
[56]
Alnuqaydan AM, Almutary AG, Azam M, et al. Evaluation of the cytotoxic activity and anti-migratory effect of berberine-phytantriol liquid crystalline nanoparticle formulation on non-small-cell lung cancer in vitro. Pharmaceutics 2022; 14(6): 1119.
[http://dx.doi.org/10.3390/pharmaceutics14061119] [PMID: 35745691]
[57]
Ebrahimi E, Akbarzadeh A, Abbasi E, Khandaghi AA, Abasalizadeh F, Davaran S. Novel drug delivery system based on doxorubicin-encapsulated magnetic nanoparticles modified with PLGA-PEG1000 copolymer. Artif Cells Nanomed Biotechnol 2016; 44(1): 290-7.
[http://dx.doi.org/10.3109/21691401.2014.944646] [PMID: 25111052]
[58]
Kaur IP, Kapila M, Agrawal R. Role of novel delivery systems in developing topical antioxidants as therapeutics to combat photoageing. Ageing Res Rev 2007; 6(4): 271-88.
[http://dx.doi.org/10.1016/j.arr.2007.08.006] [PMID: 17933593]
[59]
Li Q, Cheng Y, Zhang Z, et al. Inhibition of ROCK ameliorates pulmonary fibrosis by suppressing M2 macrophage polarisation through phosphorylation of STAT3. Clin Transl Med 2022; 12(10): e1036.
[http://dx.doi.org/10.1002/ctm2.1036] [PMID: 36178087]
[60]
Al-hussaniy HA. The effect of microRNA-409-3p for treatment and response to tumor proliferation of lung cancer cell lines (in vitro). Asian Pac J Cancer Prev 2022; 23(9): 3151-6.
[http://dx.doi.org/10.31557/APJCP.2022.23.9.3151] [PMID: 36172678]
[61]
Yadav P, Ambudkar SV, Rajendra Prasad N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnology 2022; 20(1): 423.
[http://dx.doi.org/10.1186/s12951-022-01626-z] [PMID: 36153528]
[62]
Hattori Y, Tang M, Torii S, et al. Optimal combination of cationic lipid and phospholipid in cationic liposomes for gene knockdown in breast cancer cells and mouse lung using siRNA lipoplexes. Mol Med Rep 2022; 26(2): 253.
[http://dx.doi.org/10.3892/mmr.2022.12769] [PMID: 35686555]
[63]
Theodosiou M, Sakellis E, Boukos N, Kusigerski V, Kalska-Szostko B, Efthimiadou E. Iron oxide nanoflowers encapsulated in thermosensitive fluorescent liposomes for hyperthermia treatment of lung adenocarcinoma. Sci Rep 2022; 12(1): 8697.
[http://dx.doi.org/10.1038/s41598-022-12687-3] [PMID: 35610309]
[64]
Mazloum-Ravasan S, Mohammadi M, Hiagh EM, et al. Nano-liposomal zein hydrolysate for improved apoptotic activity and therapeutic index in lung cancer treatment. Drug Deliv 2022; 29(1): 1049-59.
[http://dx.doi.org/10.1080/10717544.2022.2057618] [PMID: 35363101]
[65]
Zhang J, Xu L, Hu H, Chen E. The combination of MnO2 @Lipo-coated gefitinib and bevacizumab inhibits the development of non-small cell lung cancer. Drug Deliv 2022; 29(1): 466-77.
[http://dx.doi.org/10.1080/10717544.2022.2032872] [PMID: 35147070]
[66]
Mansoori-Kermani A, Khalighi S, Akbarzadeh I, et al. Engineered hyaluronic acid-decorated niosomal nanoparticles for controlled and targeted delivery of epirubicin to treat breast cancer. Mater Today Bio 2022; 16: 100349.
[http://dx.doi.org/10.1016/j.mtbio.2022.100349] [PMID: 35875198]
[67]
Rahmati M, Babapoor E, Dezfulian M. Amikacin-loaded niosome nanoparticles improve amikacin activity against antibiotic-resistant Klebsiella pneumoniae strains. World J Microbiol Biotechnol 2022; 38(12): 230.
[http://dx.doi.org/10.1007/s11274-022-03405-2] [PMID: 36184645]
[68]
Mohamad Saimi NI, Salim N, Ahmad N, Abdulmalek E, Abdul Rahman MB. Aerosolized niosome formulation containing gemcitabine and cisplatin for lung cancer treatment: optimization, characterization and in vitro evaluation. Pharmaceutics 2021; 13(1): 59.
[http://dx.doi.org/10.3390/pharmaceutics13010059] [PMID: 33466428]
[69]
Abdulbaqi IM, Assi RA, Yaghmur A, et al. Pulmonary delivery of anticancer drugs via lipid-based nanocarriers for the treatment of lung cancer: an update. Pharmaceuticals 2021; 14(8): 725.
[http://dx.doi.org/10.3390/ph14080725] [PMID: 34451824]
[70]
Verma R, Kaushik D. Design and optimization of candesartan loaded self-nanoemulsifying drug delivery system for improving its dissolution rate and pharmacodynamic potential. Drug Deliv 2020; 27(1): 756-71.
[http://dx.doi.org/10.1080/10717544.2020.1760961] [PMID: 32397771]
[71]
Mansur-Alves I, Lima BLF, Santos TT, et al. Cholesterol improves stability of amphotericin B nanoemulsion: promising use in the treatment of cutaneous leishmaniasis. Nanomedicine (Lond) 2022; 17(18): 1237-51.
[http://dx.doi.org/10.2217/nnm-2021-0489] [PMID: 36189757]
[72]
Alhakamy NA, Badr-Eldin SM, Ahmed OAA, et al. Green nanoemulsion stabilized by in situ self-assembled natural oil/native cyclodextrin complexes: An eco-friendly approach for enhancing anticancer activity of costunolide against lung cancer cells. Pharmaceutics 2022; 14(2): 227.
[http://dx.doi.org/10.3390/pharmaceutics14020227] [PMID: 35213960]
[73]
Md S, Alhakamy NA, Alharbi WS, et al. Development and evaluation of repurposed etoricoxib loaded nanoemulsion for improving anticancer activities against lung cancer cells. Int J Mol Sci 2021; 22(24): 13284.
[http://dx.doi.org/10.3390/ijms222413284] [PMID: 34948081]
[74]
Haung HY, Wang YC, Cheng YC, et al. A novel oral astaxanthin nanoemulsion from Haematococcus pluvialis induces apoptosis in lung metastatic melanoma. Oxid Med Cell Longev 2020; 2020: 1-13.
[http://dx.doi.org/10.1155/2020/2647670] [PMID: 32908627]
[75]
Md S, Alhakamy NA, Aldawsari HM, et al. Formulation design, statistical optimization, and in vitro evaluation of a naringenin nanoemulsion to enhance apoptotic activity in A549 lung cancer cells. Pharmaceuticals (Basel) 2020; 13(7): 152.
[http://dx.doi.org/10.3390/ph13070152] [PMID: 32679917]
[76]
Yang Y, Liu H, Chen Y, et al. Liquid biopsy on the horizon in immunotherapy of non-small cell lung cancer: current status, challenges, and perspectives. Cell Death Dis 2023; 14(3): 230.
[http://dx.doi.org/10.1038/s41419-023-05757-5] [PMID: 37002211]
[77]
Lai X, Zhong J, Zhang B, Zhu T, Liao R. Exosomal non-coding RNAs: novel regulators of macrophage-linked intercellular communication in lung cancer and inflammatory lung diseases. Biomolecules 2023; 13(3): 536.
[http://dx.doi.org/10.3390/biom13030536] [PMID: 36979471]
[78]
Rao DY, Huang DF, Si MY, Lu H, Tang ZX, Zhang ZX. Role of exosomes in non-small cell lung cancer and EGFR-mutated lung cancer. Front Immunol 2023; 14: 1142539.
[http://dx.doi.org/10.3389/fimmu.2023.1142539] [PMID: 37122754]
[79]
Kujtan L, Subramanian J. Epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer. Expert Rev Anticancer Ther 2019; 19(7): 547-59.
[http://dx.doi.org/10.1080/14737140.2019.1596030] [PMID: 30913927]
[80]
Ueda K, Ishikawa N, Tatsuguchi A, Saichi N, Fujii R, Nakagawa H. Antibody-coupled monolithic silica microtips for highthroughput molecular profiling of circulating exosomes. Sci Rep 2014; 4(1): 6232.
[http://dx.doi.org/10.1038/srep06232] [PMID: 25167841]
[81]
Mezher M, Abdallah S, Ashekyan O, et al. Insights on the biomarker potential of exosomal non-coding rnas in colorectal cancer: an in silico characterization of related exosomal lncRNA/circRNA-miRNA-target axis. Cells 2023; 12(7): 1081.
[http://dx.doi.org/10.3390/cells12071081] [PMID: 37048155]
[82]
Sharma S, Rana R, Prakash P, Ganguly NK. Drug target therapy and emerging clinical relevance of exosomes in meningeal tumors. Mol Cell Biochem 2023; 1: 1-44.
[http://dx.doi.org/10.1007/s11010-023-04715-1] [PMID: 37016182]
[83]
Yang X, Yu F, Huang G, et al. Exosomal miR-133a-3p promotes the growth and metastasis of lung cancer cells following incomplete microwave ablation. Int J Hyperthermia 2023; 40(1): 2190065.
[http://dx.doi.org/10.1080/02656736.2023.2190065] [PMID: 37031959]
[84]
Hu J, He Q, Tian T, Chang N, Qian L. Transmission of exosomal TPX2 promotes metastasis and resistance of NSCLC cells to docetaxel. OncoTargets Ther 2023; 16: 197-210.
[http://dx.doi.org/10.2147/OTT.S401454] [PMID: 37009264]
[85]
Meng F, Yu W, Niu M, et al. Ratiometric electrochemical OR gate assay for NSCLC-derived exosomes. J Nanobiotechnology 2023; 21(1): 104.
[http://dx.doi.org/10.1186/s12951-023-01833-2] [PMID: 36964516]
[86]
Cheng X, Li Q, Sun X, et al. Well-defined shell-sheddable core-crosslinked micelles with pH and oxidation dual-response for on-demand drug delivery. Polymers (Basel) 2023; 15(9): 1990.
[http://dx.doi.org/10.3390/polym15091990] [PMID: 37177138]
[87]
Chang J, Yang Z, Li J, et al. Preparation and in vitro and in vivo antitumor effects of VEGF targeting micelles. Technol Cancer Res Treat 2020; 19: 1533033820957022.
[http://dx.doi.org/10.1177/1533033820957022] [PMID: 32912078]
[88]
Wang B, Zhang W, Zhou X, et al. Development of dual-targeted nano-dandelion based on an oligomeric hyaluronic acid polymer targeting tumor-associated macrophages for combination therapy of non-small cell lung cancer. Drug Deliv 2019; 26(1): 1265-79.
[http://dx.doi.org/10.1080/10717544.2019.1693707] [PMID: 31777307]
[89]
Rahman MA, Ali A, Rahamathulla M, et al. Fabrication of sustained release curcumin-loaded solid lipid nanoparticles (Cur-SLNs) as a potential drug delivery system for the treatment of lung cancer: Optimization of formulation and in vitro biological evaluation. Polymers (Basel) 2023; 15(3): 542.
[http://dx.doi.org/10.3390/polym15030542] [PMID: 36771843]
[90]
Sherif AY, Harisa GI, Alanazi FK, Nasr FA, Alqahtani AS. PEGylated SLN as a promising approach for lymphatic delivery of gefitinib to lung cancer. Int J Nanomedicine 2022; 17: 3287-311.
[http://dx.doi.org/10.2147/IJN.S365974] [PMID: 35924261]
[91]
Fatani WK, Aleanizy FS, Alqahtani FY, et al. Erlotinib-loaded dendrimer nanocomposites as a targeted lung cancer chemotherapy. Molecules 2023; 28(9): 3974.
[http://dx.doi.org/10.3390/molecules28093974] [PMID: 37175381]
[92]
Devi J, Kumar S, Kumar D, Jindal DK, Poornachandra Y. Synthesis, characterization, in vitro antimicrobial and cytotoxic evaluation of Co(II), Ni(II), Cu(II) and Zn(II) complexes derived from bidentate hydrazones. Res Chem Intermed 2022; 48(1): 423-55.
[http://dx.doi.org/10.1007/s11164-021-04602-8]
[93]
Bisht D, Kumar D, Kumar D, Dua K, Chellappan DK. Phytochemistry and pharmacological activity of the genus Artemisia. Arch Pharm Res 2021; 44(5): 439-74.
[http://dx.doi.org/10.1007/s12272-021-01328-4] [PMID: 33893998]
[94]
Vasil’kov A, Voronova A, Batsalova T, et al. Evolution of gold and iron oxide nanoparticles in conjugates with methotrexate: synthesis and anticancer effects. Materials (Basel) 2023; 16(8): 3238.
[http://dx.doi.org/10.3390/ma16083238] [PMID: 37110074]
[95]
Gahtani RM, Alqahtani A, Alqahtani T, et al. 5-fluorouracil-loaded PLGA nanoparticles: formulation, physicochemical characterisation, and in vitro anti-cancer activity. Bioinorg Chem Appl 2023; 2023: 1-11.
[http://dx.doi.org/10.1155/2023/2334675] [PMID: 37102134]
[96]
Hublikar LV, Ganachari SV, Patil VB, Nandi S, Honnad A. Anticancer potential of biologically synthesized silver nanoparticles using Lantana camara leaf extract. Prog Biomater 2023; 12(2): 155-69.
[http://dx.doi.org/10.1007/s40204-023-00219-9] [PMID: 37093445]
[97]
Chen Y, Liu S, Liao Y, et al. Albumin-modified gold nanoparticles as novel radiosensitizers for enhancing lung cancer radiotherapy. Int J Nanomedicine 2023; 18: 1949-64.
[http://dx.doi.org/10.2147/IJN.S398254] [PMID: 37070100]
[98]
Tang H, Zhang Z, Zhu M, et al. Efficient delivery of gemcitabine by estrogen receptor-targeted PEGylated liposome and its anti-lung cancer activity in vivo and in vitro. Pharmaceutics 2023; 15(3): 988.
[http://dx.doi.org/10.3390/pharmaceutics15030988] [PMID: 36986849]
[99]
Yan L, Su Y, Hsia I, et al. Delivery of anti-microRNA-21 by lung-targeted liposomes for pulmonary fibrosis treatment. Mol Ther Nucleic Acids 2023; 32: 36-47.
[http://dx.doi.org/10.1016/j.omtn.2023.02.031] [PMID: 36919116]
[100]
Dehghan S, Naghipour A, Anbaji FZ, et al. Enhanced in vitro and in vivo anticancer activity through the development of Sunitinib-Loaded nanoniosomes with controlled release and improved uptake. Int J Pharm 2023; 640: 122977.
[http://dx.doi.org/10.1016/j.ijpharm.2023.122977] [PMID: 37121495]
[101]
Zarepour A, Egil AC, Cokol Cakmak M, et al. Cokol, Cakmak, M.; Esmaeili Rad, M.; Cetin, Y.; Aydinlik, S.; Ozaydin Ince, G.; Zarrabi, A. Fabrication of a dual-drug-loaded smart niosome-g-chitosan polymeric platform for lung cancer treatment. Polymers (Basel) 2023; 15(2): 298.
[http://dx.doi.org/10.3390/polym15020298] [PMID: 36679179]
[102]
K Shukla S. Nguyen V, Goyal M, Gupta V. Cationically modified inhalable nintedanib niosomes: enhancing therapeutic activity against non-small-cell lung cancer. Nanomedicine (Lond) 2022; 17(13): 935-58.
[http://dx.doi.org/10.2217/nnm-2022-0045] [PMID: 36004583]
[103]
Chauhan G, Wang X, Yousry C, Gupta V. Scalable production and in vitro efficacy of inhaled erlotinib nanoemulsion for enhanced efficacy in non-small cell lung cancer (NSCLC). Pharmaceutics 2023; 15(3): 996.
[http://dx.doi.org/10.3390/pharmaceutics15030996] [PMID: 36986858]
[104]
Asmawi AA, Salim N, Abdulmalek E, Abdul Rahman MB. Size-controlled preparation of docetaxel- and curcumin-loaded nanoemulsions for potential pulmonary delivery. Pharmaceutics 2023; 15(2): 652.
[http://dx.doi.org/10.3390/pharmaceutics15020652] [PMID: 36839974]
[105]
Wong KH, Guo Z, Jiang D, et al. Linear-like polypeptide-based micelle with pH-sensitive detachable PEG to deliver dimeric camptothecin for cancer therapy. Asian J Pharm Sci 2023; 18(1): 100773.
[http://dx.doi.org/10.1016/j.ajps.2022.100773] [PMID: 36711109]
[106]
Wang H, Shi W, Zeng D, et al. pH-activated, mitochondria-targeted, and redox-responsive delivery of paclitaxel nanomicelles to overcome drug resistance and suppress metastasis in lung cancer. J Nanobiotechnology 2021; 19(1): 152.
[http://dx.doi.org/10.1186/s12951-021-00895-4] [PMID: 34022909]
[107]
Wang S, Gou J, Wang Y, et al. Synergistic antitumor efficacy mediated by liposomal co-delivery of polymeric micelles of vinorelbine and cisplatin in non-small cell lung cancer. Int J Nanomedicine 2021; 16: 2357-72.
[http://dx.doi.org/10.2147/IJN.S290263] [PMID: 33790554]
[108]
Xu J, Wang H, Shi B, et al. Exosomal MFI2-AS1 sponge miR-107 promotes non-small cell lung cancer progression through NFAT5. Cancer Cell Int 2023; 23(1): 51.
[http://dx.doi.org/10.1186/s12935-023-02886-x] [PMID: 36934264]
[109]
Babu A, Periasamy J, Gunasekaran A, et al. Polyethylene glycol-modified gelatin/polylactic acid nanoparticles for enhanced photodynamic efficacy of a hypocrellin derivative in vitro. J Biomed Nanotechnol 2013; 9(2): 177-92.
[http://dx.doi.org/10.1166/jbn.2013.1480] [PMID: 23627044]
[110]
ClinicalTrials.gov is a database of privately and publicly funded clinical studies conducted around the world. Available from: https://clinicaltrials.gov/=
[111]
Mohamed NA, Marei I, Crovella S, Abou-Saleh H. Recent developments in nanomaterials-based drug delivery and upgrading treatment of cardiovascular diseases. Int J Mol Sci 2022; 23(3): 1404.
[http://dx.doi.org/10.3390/ijms23031404] [PMID: 35163328]
[112]
Ellis PM, Vandermeer R. Delays in the diagnosis of lung cancer. J Thorac Dis 2011; 3(3): 183-8.
[PMID: 22263086]
[113]
Kim DW, Kim SY, Kim HK, et al. Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol 2007; 18(12): 2009-14.
[http://dx.doi.org/10.1093/annonc/mdm374] [PMID: 17785767]
[114]
Kim TY, Kim DW, Chung JY, et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 2004; 10(11): 3708-16.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0655] [PMID: 15173077]
[115]
Ma P, Mumper RJ. Paclitaxel nano-delivery systems: A comprehensive review. J Nanomed Nanotechnol 2013; 4(2): 1000164.
[http://dx.doi.org/10.4172/2157-7439.1000164] [PMID: 24163786]
[116]
Deng H, Zhang Z. The application of nanotechnology in immune checkpoint blockade for cancer treatment. J Control Release 2018; 290: 28-45.
[http://dx.doi.org/10.1016/j.jconrel.2018.09.026] [PMID: 30287266]
[117]
Ge R, Liu C, Zhang X, et al. Photothermal-activatable Fe3O4 superparticle nanodrug carriers with PD-L1 immune checkpoint blockade for anti-metastatic cancer immunotherapy. ACS Appl Mater Interfaces 2018; 10(24): 20342-55.
[http://dx.doi.org/10.1021/acsami.8b05876] [PMID: 29878757]
[118]
Preparation method of lung cancer targeted self-assembly nanoparticles. Patent CN 107737348B, 2020.
[119]
Methods of treating lung cancer. Patent KR102191311B1, 2015.
[120]
A kind of RNA nano-hydrogels and its preparation method and application for targeted therapy of lung cancer. Patents CN108743521A, 2018.
[121]
Nano-sliver anti-cancer composition for treating lung cancer and preparation method and use thereof. Patent WO2015169103A1, 2015.
[122]
A kind of self assembly lung cancer targeting is accurate to treat nano-carrier medicine and preparation method. Patent CN108578388A, 2018.
[123]
Chitosan nano material for treating lung cancer and preparation method thereof. Patent CN110251689B, 2019.
[124]
Nano-gold enhanced highly sensitive detection method for a plurality of lung cancer markers. Patents CN102313814A, 2016.
[125]
PKM2 gene mutation anti-lung cancer nanocrystallization pharmaceutical preparation and application. Patent CN115337280A, 2022.
[126]
Compositions and methods of tumor treatment utilizing nanoparticles. Patent TWI626061B, 2016.
[127]
Exosome-encapsulated nano drug delivery system for tumor treatment and preparation thereof. Patent CN108543074B, 2018.
[128]
Nano sensor for early diagonisis of lung cancer using surface enhanced raman scattering and the method thereof. Patent KR101828279B1, 2016.
[129]
Nano-liposomal irinotecan for use in the treatment of small cell lung cancer. Patent KR20190009319A, 2017.
[130]
Light nano vaccine for cancer treatment and preparation method and application thereof. Patent CN111344015B, 2020.
[131]
Multifunctional nano-drug delivery carrier targeting lung cancer gene, preparation and application thereof. Patent CN109701016B, 2019.
[132]
Pharmaceutical composition, liposome containing pharmaceutical composition and application. Patent CN110898066A, 2018.
[133]
Lung protease nanosensors and uses thereof. Patent US20200096514A1, 2020.
[134]
Liang C, Bai X, Qi C, et al. Π electron-stabilized polymeric micelles potentiate docetaxel therapy in advanced-stage gastrointestinal cancer. Biomaterials 2021; 266: 120432.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120432] [PMID: 33069116]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy