Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Perspective

Unlocking Delivery Strategies for mRNA Therapeutics

Author(s): Zhiyuan Luo and Yangchao Chen*

Volume 19, Issue 2, 2024

Published on: 23 June, 2023

Page: [126 - 129] Pages: 4

DOI: 10.2174/1574892818666230607093231

Abstract

mRNA emerged as an attractive therapy modality with the development of mRNA structure engineering techniques and delivery platforms. mRNA therapeutics, applied for vaccine therapy, protein replacement therapy, and chimeric antigen receptor (CAR) T cell-based therapy, has shown huge potential in treating a wide range of diseases, such as cancer and rare genetic diseases, with successful and exciting preclinical and clinical progress. In mRNA therapeutics, a potent delivery system is key to the success of its application for disease treatment. Herein, different types of mRNA delivery strategies, including nanoparticles produced from lipid or polymer materials, virus-based platforms, and exosome-based platforms, are mainly focused.

Keywords: mRNA delivery, mRNA therapeutics, nucleic acid delivery, gene therapy, delivery system, nanoparticle.

[1]
Rohner E, Yang R, Foo KS, Goedel A, Chien KR. Unlocking the promise of mRNA therapeutics. Nat Biotechnol 2022; 40(11): 1586-600.
[http://dx.doi.org/10.1038/s41587-022-01491-z] [PMID: 36329321]
[2]
Qin S, Tang X, Chen Y, et al. mRNA-based therapeutics: Powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7(1): 166.
[http://dx.doi.org/10.1038/s41392-022-01007-w] [PMID: 35597779]
[3]
Barbier AJ, Jiang AY, Zhang P, Wooster R, Anderson DG. The clinical progress of mRNA vaccines and immunotherapies. Nat Biotechnol 2022; 40(6): 840-54.
[http://dx.doi.org/10.1038/s41587-022-01294-2] [PMID: 35534554]
[4]
Van Hoecke L, Verbeke R, Dewitte H, et al. mRNA in cancer immunotherapy: Beyond a source of antigen. Mol Cancer 2021; 20(1): 48.
[http://dx.doi.org/10.1186/s12943-021-01329-3] [PMID: 33658037]
[5]
Kim SC, Sekhon SS, Shin WR, et al. Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Mol Cell Toxicol 2022; 18(1): 1-8.
[http://dx.doi.org/10.1007/s13273-021-00171-4] [PMID: 34567201]
[6]
Adibzadeh S, Fardaei M, Takhshid MA, et al. Enhancing stability of destabilized green fluorescent protein using chimeric mRNA Containing human beta-globin 5′ and 3′ untranslated regions. Avicenna J Med Biotechnol 2019; 11(1): 112-7.
[PMID: 30800251]
[7]
Gallie DR. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev 1991; 5(11): 2108-16.
[http://dx.doi.org/10.1101/gad.5.11.2108] [PMID: 1682219]
[8]
Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: The impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005; 23(2): 165-75.
[http://dx.doi.org/10.1016/j.immuni.2005.06.008] [PMID: 16111635]
[9]
Pardi N, Weissman D. Nucleoside modified mRNA vaccines for infectious diseases. Methods Mol Biol 2017; 1499: 109-21.
[http://dx.doi.org/10.1007/978-1-4939-6481-9_6] [PMID: 27987145]
[10]
Lind NA, Rael VE, Pestal K, Liu B, Barton GM. Regulation of the nucleic acid-sensing toll-like receptors. Nat Rev Immunol 2022; 22(4): 224-35.
[http://dx.doi.org/10.1038/s41577-021-00577-0] [PMID: 34272507]
[11]
Rehwinkel J, Gack MU. RIG-I-like receptors: Their regulation and roles in RNA sensing. Nat Rev Immunol 2020; 20(9): 537-51.
[http://dx.doi.org/10.1038/s41577-020-0288-3] [PMID: 32203325]
[12]
Xiao Y, Tang Z, Huang X, et al. Emerging mRNA technologies: Delivery strategies and biomedical applications. Chem Soc Rev 2022; 51(10): 3828-45.
[http://dx.doi.org/10.1039/D1CS00617G] [PMID: 35437544]
[13]
Verbeke R, Lentacker I, De Smedt SC, Dewitte H. The dawn of mRNA vaccines: The COVID-19 case. J Control Release 2021; 333: 511-20.
[http://dx.doi.org/10.1016/j.jconrel.2021.03.043] [PMID: 33798667]
[14]
Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer 2021; 20(1): 41.
[http://dx.doi.org/10.1186/s12943-021-01335-5] [PMID: 33632261]
[15]
Finn JD, Smith AR, Patel MC, et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent In vivo Genome Editing. Cell Rep 2018; 22(9): 2227-35.
[http://dx.doi.org/10.1016/j.celrep.2018.02.014] [PMID: 29490262]
[16]
Beck JD, Reidenbach D, Salomon N, et al. mRNA therapeutics in cancer immunotherapy. Mol Cancer 2021; 20(1): 69.
[http://dx.doi.org/10.1186/s12943-021-01348-0] [PMID: 33858437]
[17]
Deng Z, Tian Y, Song J, An G, Yang P. mRNA Vaccines: The dawn of a new era of cancer immunotherapy. Front Immunol 2022; 13: 887125.
[http://dx.doi.org/10.3389/fimmu.2022.887125] [PMID: 35720301]
[18]
Bechter O, Utikal J, Baurain J-F, Massard C, Sahin U, Derhovanessian E. 391 A first-in-human study of intratumoral sar441000, an mrna mixture encoding il-12sc, interferon alpha2b, gm-csf and il-15sushi as monotherapy and in combination with cemiplimab in advanced solid tumors. J Immunother Cancer 2020; 8: A237-8.
[19]
Sahin U, Oehm P, Derhovanessian E, et al. An rna vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 2020; 585(7823): 107-12.
[http://dx.doi.org/10.1038/s41586-020-2537-9] [PMID: 32728218]
[20]
Ganta H. Moderna enrols first patient in phase i/ii trial of mrna- 3704. 2020. Available from: https://www.clinicaltrialsarena.com/news/moderna-enrols-first-patient/
[21]
Healthcare G. Crispr therapy ntla-2001 demonstrates durable responses in rare heart disease. 2022. Available from: https://www.clinicaltrialsarena.com/comment/crispr-ntla-2001-heart-disease/
[22]
Dilliard SA, Cheng Q, Siegwart DJ. On the mechanism of tissue-specific mrna delivery by selective organ targeting nanoparticles. Proc Natl Acad Sci 2021; 118(52): e2109256118.
[http://dx.doi.org/10.1073/pnas.2109256118] [PMID: 34933999]
[23]
Kim M, Jeong M, Hur S, et al. Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver. Sci Adv 2021; 7(9): eabf4398.
[http://dx.doi.org/10.1126/sciadv.abf4398] [PMID: 33637537]
[24]
Meyer RA, Neshat SY, Green JJ, Santos JL, Tuesca AD. Targeting strategies for mRNA delivery. Mater Today Adv 2022; 14: 100240.
[http://dx.doi.org/10.1016/j.mtadv.2022.100240]
[25]
Chen J, Ye Z, Huang C, et al. Lipid nanoparticle-mediated lymph node–targeting delivery of mrna cancer vaccine elicits robust cd8 + T cell response. Proc Natl Acad Sci 2022; 119(34): e2207841119.
[http://dx.doi.org/10.1073/pnas.2207841119] [PMID: 35969778]
[26]
Xiao B, Zhang Z, Viennois E, et al. Combination therapy for ulcerative colitis: Orally targeted nanoparticles prevent mucosal damage and relieve inflammation. Theranostics 2016; 6(12): 2250-66.
[http://dx.doi.org/10.7150/thno.15710] [PMID: 27924161]
[27]
Khan OF, Kowalski PS, Doloff JC, et al. Endothelial siRNA delivery in nonhuman primates using ionizable low–molecular weight polymeric nanoparticles. Sci Adv 2018; 4(6): eaar8409.
[http://dx.doi.org/10.1126/sciadv.aar8409] [PMID: 29963629]
[28]
Dahlman JE, Barnes C, Khan OF, et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat Nanotechnol 2014; 9(8): 648-55.
[http://dx.doi.org/10.1038/nnano.2014.84] [PMID: 24813696]
[29]
Chahal JS, Khan OF, Cooper CL, et al. Dendrimer-rna nanoparticles generate protective immunity against lethal ebola, h1n1 influenza, and toxoplasma gondii challenges with a single dose. Proc Natl Acad Sci 2016; 113(29): E4133-42.
[http://dx.doi.org/10.1073/pnas.1600299113] [PMID: 27382155]
[30]
Eltoukhy AA, Chen D, Alabi CA, Langer R, Anderson DG. Degradable terpolymers with alkyl side chains demonstrate enhanced gene delivery potency and nanoparticle stability. Adv Mater 2013; 25(10): 1487-93.
[http://dx.doi.org/10.1002/adma.201204346] [PMID: 23293063]
[31]
Kaczmarek JC, Patel AK, Kauffman KJ, et al. Polymer-lipid nanoparticles for systemic delivery of mrna to the lungs. Angew Chem Int Ed 2016; 55(44): 13808-12.
[http://dx.doi.org/10.1002/anie.201608450] [PMID: 27690187]
[32]
Srivastava A. In vivo tissue-tropism of adeno-associated viral vectors. Curr Opin Virol 2016; 21: 75-80.
[http://dx.doi.org/10.1016/j.coviro.2016.08.003] [PMID: 27596608]
[33]
Samulski RJ, Zhu X, Xiao X, et al. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 1991; 10(12): 3941-50.
[http://dx.doi.org/10.1002/j.1460-2075.1991.tb04964.x] [PMID: 1657596]
[34]
Linden RM, Winocour E, Berns KI. The recombination signals for adeno-associated virus site-specific integration. Proc Natl Acad Sci 1996; 93(15): 7966-72.
[http://dx.doi.org/10.1073/pnas.93.15.7966] [PMID: 8755586]
[35]
Zhao H, Li Y, He L, et al. In vivo AAV-CRISPR/Cas9–mediated gene editing ameliorates atherosclerosis in familial hypercholesterolemia. Circulation 2020; 141(1): 67-79.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.042476] [PMID: 31779484]
[36]
Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 2016; 351(6271): 403-7.
[http://dx.doi.org/10.1126/science.aad5143] [PMID: 26721684]
[37]
Fuentes CM, Schaffer DV. Adeno-associated virus-mediated delivery of crispr-cas9 for genome editing in the central nervous system. Curr Opin Biomed Eng 2018; 7: 33-41.
[http://dx.doi.org/10.1016/j.cobme.2018.08.003] [PMID: 34046535]
[38]
Park SH, Bao G. CRISPR/Cas9 gene editing for curing sickle cell disease. Transfus Apheresis Sci 2021; 60(1): 103060.
[http://dx.doi.org/10.1016/j.transci.2021.103060] [PMID: 33455878]
[39]
Segel M, Lash B, Song J, et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 2021; 373(6557): 882-9.
[http://dx.doi.org/10.1126/science.abg6155] [PMID: 34413232]
[40]
Gorshkov A, Purvinsh L, Brodskaia A, Vasin A. Exosomes as natural nanocarriers for rna-based therapy and prophylaxis. Nanomaterials 2022; 12(3): 524.
[http://dx.doi.org/10.3390/nano12030524] [PMID: 35159869]
[41]
Rehman FU, Liu Y, Zheng M, Shi B. Exosomes based strategies for brain drug delivery. Biomaterials 2023; 293: 121949.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121949] [PMID: 36525706]
[42]
Aslan C, Kiaie SH, Zolbanin NM, et al. Exosomes for mrna delivery: A novel biotherapeutic strategy with hurdles and hope. BMC Biotechnol 2021; 21(1): 20.
[http://dx.doi.org/10.1186/s12896-021-00683-w] [PMID: 33691652]
[43]
Meng W, He C, Hao Y, Wang L, Li L, Zhu G. Prospects and challenges of extracellular vesicle-based drug delivery system: Considering cell source. Drug Deliv 2020; 27(1): 585-98.
[http://dx.doi.org/10.1080/10717544.2020.1748758] [PMID: 32264719]
[44]
Colao IL, Corteling R, Bracewell D, Wall I. Manufacturing exosomes: A promising therapeutic platform. Trends Mol Med 2018; 24(3): 242-56.
[http://dx.doi.org/10.1016/j.molmed.2018.01.006] [PMID: 29449149]
[45]
Amiri A, Bagherifar R, Ansari Dezfouli E, Kiaie SH, Jafari R, Ramezani R. Exosomes as bio-inspired nanocarriers for RNA delivery: Preparation and applications. J Transl Med 2022; 20(1): 125.
[http://dx.doi.org/10.1186/s12967-022-03325-7] [PMID: 35287692]
[46]
Liu C, Su C. Design strategies and application progress of therapeutic exosomes. Theranostics 2019; 9(4): 1015-28.
[http://dx.doi.org/10.7150/thno.30853] [PMID: 30867813]
[47]
Yang Z, Shi J, Xie J, Wang Y, Sun J, Liu T. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng 2019; 4(1): 69-83.
[http://dx.doi.org/10.1038/s41551-019-0485-1]
[48]
Sato YT, Umezaki K, Sawada S, et al. Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep 2016; 6(1): 21933.
[http://dx.doi.org/10.1038/srep21933] [PMID: 26911358]

© 2024 Bentham Science Publishers | Privacy Policy