Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Commentary

Strategies for Developing Cancer Theranostics Approaches

Author(s): Zikang Wang, Wanhe Wang* and Chung-Hang Leung*

Volume 19, Issue 2, 2024

Published on: 22 May, 2023

Page: [130 - 136] Pages: 7

DOI: 10.2174/1574892818666230510124139

[1]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359-86.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[2]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature 2019; 575(7782): 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[4]
Visser E, Geleijnse JM, Roos B. Inter‐individual variation in cancer and cardiometabolic health outcomes in response to coffee consumption: A critical review. Mol Nutr Food Res 2020; 64(7): 1900479.
[http://dx.doi.org/10.1002/mnfr.201900479] [PMID: 32045503]
[5]
Chabner BA, Roberts TG Jr. Chemotherapy and the war on cancer. Nat Rev Cancer 2005; 5(1): 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[6]
Tietze R, Lyer S, Dürr S, et al. Efficient drug-delivery using magnetic nanoparticles — biodistribution and therapeutic effects in tumour bearing rabbits. Nanomedicine 2013; 9(7): 961-71.
[http://dx.doi.org/10.1016/j.nano.2013.05.001] [PMID: 23669367]
[7]
Sawyers C. Targeted cancer therapy. Nature 2004; 432(7015): 294-7.
[http://dx.doi.org/10.1038/nature03095] [PMID: 15549090]
[8]
Neidle S. Cancer drug design and discovery. Elsevier: Amsterdam, Netherlands 2011.
[9]
Wong H, Bendayan R, Rauth A, Li Y, Wu X. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 2007; 59(6): 491-504.
[http://dx.doi.org/10.1016/j.addr.2007.04.008] [PMID: 17532091]
[10]
Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells. Nat Med 1996; 2(5): 561-6.
[http://dx.doi.org/10.1038/nm0596-561] [PMID: 8616716]
[11]
Tsimberidou AM. Targeted therapy in cancer. Cancer Chemother Pharmacol 2015; 76(6): 1113-32.
[http://dx.doi.org/10.1007/s00280-015-2861-1] [PMID: 26391154]
[12]
Reyes-Habito CM, Roh EK. Cutaneous reactions to chemotherapeutic drugs and targeted therapy for cancer: Part II. Targeted therapy. J Am Acad Dermatol 2014; 71(2): 217.
[13]
Chen S, Cao Q, Wen W, Wang H. Targeted therapy for hepatocellular carcinoma: Challenges and opportunities. Cancer Lett 2019; 460: 1-9.
[http://dx.doi.org/10.1016/j.canlet.2019.114428] [PMID: 31207320]
[14]
Thakor AS, Gambhir SS. Nanooncology: The future of cancer diagnosis and therapy. CA Cancer J Clin 2013; 63(6): 395-418.
[http://dx.doi.org/10.3322/caac.21199] [PMID: 24114523]
[15]
Jafari SH, Saadatpour Z, Salmaninejad A, et al. Breast cancer diagnosis: Imaging techniques and biochemical markers. J Cell Physiol 2018; 233(7): 5200-13.
[http://dx.doi.org/10.1002/jcp.26379] [PMID: 29219189]
[16]
Gallamini A, Zwarthoed C, Borra A. Positron emission tomography (PET) in oncology. Cancers 2014; 6(4): 1821-89.
[http://dx.doi.org/10.3390/cancers6041821] [PMID: 25268160]
[17]
Holly TA, Abbott BG, Al-Mallah M, et al. Single photon-emission computed tomography. J Nucl Cardiol 2010; 17: 941-73.
[http://dx.doi.org/10.1007/s12350-010-9246-y]
[18]
Kalender WA. X-ray computed tomography. Phys Med Biol 2006; 51(13): R29-43.
[http://dx.doi.org/10.1088/0031-9155/51/13/R03] [PMID: 16790909]
[19]
Ko CN, Li G, Leung CH, Ma DL. Dual function luminescent transition metal complexes for cancer theranostics: The combination of diagnosis and therapy. Coord Chem Rev 2019; 381: 79-103.
[http://dx.doi.org/10.1016/j.ccr.2018.11.013]
[20]
Dou WT, Han HH, Sedgwick AC, et al. Fluorescent probes for the detection of disease-associated biomarkers. Sci Bull (Beijing) 2022; 67(8): 853-78.
[http://dx.doi.org/10.1016/j.scib.2022.01.014] [PMID: 36546238]
[21]
Gao L, Wang W, Wang X, et al. Fluorescent probes for bioimaging of potential biomarkers in Parkinson’s disease. Chem Soc Rev 2021; 50(2): 1219-50.
[http://dx.doi.org/10.1039/D0CS00115E] [PMID: 33284303]
[22]
Smith BA, Smith BD. Biomarkers and molecular probes for cell death imaging and targeted therapeutics. Bioconjug Chem 2012; 23(10): 1989-2006.
[http://dx.doi.org/10.1021/bc3003309] [PMID: 22989049]
[23]
Feng R, Li G, Ko C-N, Zhang Z, Wan J-B, Zhang Q-W. Long‐lived second near‐infrared luminescent probes: an emerging role in time‐resolved luminescence Bioimaging and Biosensing. Small Struct 2022; 2200131.
[24]
Funkhouser J. Reinventing pharma: The theranostic revolution. Curr Drug Discov 2002; 2: 17-9.
[25]
Kelkar SS, Reineke TM. Theranostics: Combining imaging and therapy. Bioconjug Chem 2011; 22(10): 1879-903.
[http://dx.doi.org/10.1021/bc200151q] [PMID: 21830812]
[26]
Picard FJ, Bergeron MG. Rapid molecular theranostics in infectious diseases. Drug Discov Today 2002; 7(21): 1092-101.
[http://dx.doi.org/10.1016/S1359-6446(02)02497-2] [PMID: 12546841]
[27]
Gao M, Yu F, Lv C, Choo J, Chen L. Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy. Chem Soc Rev 2017; 46(8): 2237-71.
[http://dx.doi.org/10.1039/C6CS00908E] [PMID: 28319221]
[28]
Hennrich U, Eder M. [68Ga] Ga-PSMA-11: The first FDA-Approved 68Ga-radiopharmaceutical for PET imaging of prostate cancer. Pharmaceuticals 2021; 14(8): 713.
[http://dx.doi.org/10.3390/ph14080713] [PMID: 34451810]
[29]
Bu T, Zhang L, Yu F, et al. 177Lu-PSMA-I&T radioligand therapy for treating metastatic castration-resistant prostate cancer: A single-centre study in East Asians. Front Oncol 2022; 12: 835956.
[http://dx.doi.org/10.3389/fonc.2022.835956] [PMID: 35402274]
[30]
Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K. Nanomaterials for theranostics: Recent advances and future challenges. Chem Rev 2015; 115(1): 327-94.
[http://dx.doi.org/10.1021/cr300213b] [PMID: 25423180]
[31]
Song HT, Choi J, Huh YM, et al. Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. J Am Chem Soc 2005; 127(28): 9992-3.
[http://dx.doi.org/10.1021/ja051833y] [PMID: 16011350]
[32]
Lee JH, Huh YM, Jun Y, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 2007; 13(1): 95-9.
[http://dx.doi.org/10.1038/nm1467] [PMID: 17187073]
[33]
Yigit MV, Moore A, Medarova Z. Magnetic nanoparticles for cancer diagnosis and therapy. Pharm Res 2012; 29(5): 1180-8.
[http://dx.doi.org/10.1007/s11095-012-0679-7] [PMID: 22274558]
[34]
Hutter E, Fendler JH. Exploitation of localized surface plasmon resonance. Adv Mater 2004; 16(19): 1685-706.
[http://dx.doi.org/10.1002/adma.200400271]
[35]
Gao D, Shi Y, Ni J, et al. NIR/MRI‐guided oxygen‐independent carrier‐free anti‐tumor nano‐theranostics. Small 2022; 18(36): 2106000.
[http://dx.doi.org/10.1002/smll.202106000] [PMID: 34854571]
[36]
Wáng YXJ, Idée JM, Corot C. Scientific and industrial challenges of developing nanoparticle-based theranostics and multiple-modality contrast agents for clinical application. Nanoscale 2015; 7(39): 16146-50.
[http://dx.doi.org/10.1039/C5NR03887A] [PMID: 26394746]
[37]
Wang D, Lee MMS, Xu W, Kwok RTK, Lam JWY, Tang BZ. Theranostics based on AIEgens. Theranostics 2018; 8(18): 4925-56.
[http://dx.doi.org/10.7150/thno.27787] [PMID: 30429878]
[38]
Feng G, Liu B. Aggregation-induced emission (AIE) dots: emerging theranostic nanolights. Acc Chem Res 2018; 51(6): 1404-14.
[http://dx.doi.org/10.1021/acs.accounts.8b00060] [PMID: 29733571]
[39]
Hong Y, Lam JWY, Tang BZ. Aggregation-induced emission. Chem Soc Rev 2011; 40(11): 5361-88.
[http://dx.doi.org/10.1039/c1cs15113d] [PMID: 21799992]
[40]
Zhao Y, Kwok RTK, Lam JWY, Tang BZ. A highly fluorescent AIE-active theranostic agent with anti-tumor activity to specific cancer cells. Nanoscale 2016; 8(25): 12520-3.
[http://dx.doi.org/10.1039/C5NR08782A] [PMID: 26781935]
[41]
Li X, Kim J, Yoon J, Chen X. Cancer‐associated, stimuli‐driven, turn on theranostics for multimodality imaging and therapy. Adv Mater 2017; 29(23): 1606857.
[http://dx.doi.org/10.1002/adma.201606857] [PMID: 28370546]
[42]
Xu Z, Jiang Y, Fan M, et al. Aggregation‐induced emission nanoprobes working in the NIR‐II region: From material design to fluorescence imaging and phototherapy. Adv Opt Mater 2021; 9(20): 2100859.
[http://dx.doi.org/10.1002/adom.202100859]
[43]
Shazia R, Muhammad I, Anwar N, Haji A, Amin A. Transition metal complexes as potential therapeutic agents. Biotechnol Mol Biol Rev 2010; 5(2): 38-45.
[44]
Vellaisamy K, Li G, Wang W, Leung CH, Ma DL. A long-lived peptide-conjugated iridium(iii) complex as a luminescent probe and inhibitor of the cell migration mediator, formyl peptide receptor 2. Chem Sci 2018; 9(43): 8171-7.
[http://dx.doi.org/10.1039/C8SC02733A] [PMID: 30568767]
[45]
Wang W, Wu KJ, Vellaisamy K, Leung CH, Ma DL. Peptide‐conjugated long-lived theranostic imaging for targeting GRPr in cancer and immune cells. Angew Chem Int Ed 2020; 59(41): 17897-902.
[http://dx.doi.org/10.1002/anie.202007920] [PMID: 32649787]
[46]
Wu KJ, Ho SH, Dong JY, et al. Aliphatic group-tethered iridium complex as a theranostic agent against malignant melanoma metastasis. ACS Appl Bio Mater 2020; 3(4): 2017-27.
[http://dx.doi.org/10.1021/acsabm.9b01156] [PMID: 35025323]
[47]
Wu C, Wu KJ, Liu JB, Wang W, Leung CH, Ma DL. Structure-guided discovery of a luminescent theranostic toolkit for living cancer cells and the imaging behavior effect. Chem Sci 2020; 11(42): 11404-12.
[http://dx.doi.org/10.1039/D0SC04576D] [PMID: 34094382]
[48]
Chakrabortty S, Agrawalla BK, Stumper A, et al. Mitochondria targeted protein-ruthenium photosensitizer for efficient photodynamic applications. J Am Chem Soc 2017; 139(6): 2512-9.
[http://dx.doi.org/10.1021/jacs.6b13399] [PMID: 28097863]
[49]
Lazic S, Kaspler P, Shi G, et al. Novel osmium-based coordination complexes as photosensitizers for panchromatic photodynamic therapy. Photochem Photobiol 2017; 93(5): 1248-58.
[http://dx.doi.org/10.1111/php.12767] [PMID: 28370264]
[50]
Großmann AM, Filipović E, Lazina L. The strategic use of patents and standards for new product development knowledge transfer. R & D Manag 2016; 46(2): 312-25.
[http://dx.doi.org/10.1111/radm.12193]
[51]
Pandey PN, Saini N, Sapre N, Kulkarni DA, Tiwari DAK. Prioritising breast cancer theranostics: A current medical longing in oncology. Cancer Treat Res Commun 2021; 29: 100465.
[http://dx.doi.org/10.1016/j.ctarc.2021.100465] [PMID: 34598060]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy