General Research Article

高通量测序揭示N6-甲基腺苷修饰的LncRNA作为肝纤维化小鼠的潜在生物标志物

卷 23, 期 5, 2023

发表于: 03 July, 2023

页: [371 - 390] 页: 20

弟呕挨: 10.2174/1566523223666230606151013

价格: $65

Open Access Journals Promotions 2
摘要

背景:N6-甲基腺苷 (m6A) 是真核 RNA 中最常见的内部修饰。长非编码RNA(lncRNA)是一种具有多种细胞功能的新型非编码调节分子。两者均与肝纤维化(LF)的发生、发展密切相关。然而,m6A 甲基化 lncRNA 在 LF 进展中的作用仍然很大程度上未知。 方法:本研究采用HE和Masson染色观察肝脏病理变化,采用m6A修饰RNA免疫沉淀测序(m6A-seq)系统评价LF小鼠lncRNAs的m6A修饰水平,meRIP-qPCR和RT-qPCR用于检测目标lncRNA的m6A甲基化水平和RNA表达水平。 结果:肝纤维化组织中313个lncRNA中共检测到415个m6A峰。 LF中有98个显着不同的m6A峰,位于84个lncRNA上,其中45.2%的lncRNA长度在200-400 bp之间。同时,这些甲基化lncRNA的前3条染色体分别是7号、5号和1号染色体。RNA测序在LF中鉴定出154个差异表达的lncRNA。 m6A-seq和RNA-seq联合分析发现,m6A甲基化和RNA表达水平发生显着变化的lncRNA有3个:lncRNA H19、lncRNA Gm16023和lncRNA Gm17586。随后验证结果显示,lncRNA H19和lncRNA Gm17586的m6A甲基化水平显着升高,而lncRNA Gm16023的m6A甲基化水平显着降低,且3个lncRNA的RNA表达显着降低。通过创建lncRNA-miRNA-mRNA调控网络,揭示了lncRNA H19、lncRNA Gm16023和lncRNA Gm17586在LF中可能的调控关系。 结论:本研究揭示了LF小鼠lncRNA独特的m6A甲基化模式,提示lncRNA的m6A甲基化修饰与LF的发生、发展有关。

关键词: N6-甲基腺苷,lncRNA,调节网络,肝纤维化,高通量测序,meRIP-qPCR。

图形摘要
[1]
Song M, Pebworth MP, Yang X, et al. Cell-type-specific 3D epigenomes in the developing human cortex. Nature 2020; 587(7835): 644-9.
[http://dx.doi.org/10.1038/s41586-020-2825-4] [PMID: 33057195]
[2]
Tanakas S, Aubin JE, van Wijnen AJ. Epigenetic control of skeletal homeostasis and diseases. Bone 2021; 144: 115797.
[http://dx.doi.org/10.1016/j.bone.2020.115797] [PMID: 33333242]
[3]
Ohkura N, Yasumizu Y, Kitagawa Y, et al. Regulatory T cell-specific epigenomic region variants are a key determinant of susceptibility to common autoimmune diseases. Immunity 2020; 52(6): 1119-1132.e4.
[http://dx.doi.org/10.1016/j.immuni.2020.04.006] [PMID: 32362325]
[4]
Zhang H, Shi X, Huang T, et al. Dynamic landscape and evolution of m6A methylation in human. Nucleic Acids Res 2020; 48(11): 6251-64.
[http://dx.doi.org/10.1093/nar/gkaa347] [PMID: 32406913]
[5]
Ma Z, Gao X, Shuai Y, Xing X, Ji J. The m6A epitranscriptome opens a new charter in immune system logic. Epigenetics 2021; 16(8): 819-37.
[http://dx.doi.org/10.1080/15592294.2020.1827722] [PMID: 33070685]
[6]
Li E, Wei B, Wang X, Kang R. METTL3 enhances cell adhesion through stabilizing integrin β1 mRNA via an m6A-HuR-dependent mechanism in prostatic carcinoma. Am J Cancer Res 2020; 10(3): 1012-25.
[PMID: 32266107]
[7]
Du YD, Guo WY, Han CH, et al. N6-methyladenosine demethylase FTO impairs hepatic ischemia–reperfusion injury via inhibiting Drp1-mediated mitochondrial fragmentation. Cell Death Dis 2021; 12(5): 442.
[http://dx.doi.org/10.1038/s41419-021-03622-x] [PMID: 33947842]
[8]
Liu J, Harada BT, He C. Regulation of gene expression by N-methyladenosine in Cancer. Trends Cell Biol 2019; 29(6): 487-99.
[http://dx.doi.org/10.1016/j.tcb.2019.02.008] [PMID: 30940398]
[9]
Yue C, Chen J, Li Z, Li L, Chen J, Guo Y. microRNA-96 promotes occurrence and progression of colorectal cancer via regulation of the AMPKα2-FTO-m6A/MYC axis. J Exp Clin Cancer Res 2020; 39(1): 240.
[http://dx.doi.org/10.1186/s13046-020-01731-7] [PMID: 33183350]
[10]
Guo X, Li K, Jiang W, et al. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer 2020; 19(1): 91.
[http://dx.doi.org/10.1186/s12943-020-01158-w] [PMID: 32429928]
[11]
Shi R, Ying S, Li Y, Zhu L, Wang X, Jin H. Linking the YTH domain to cancer: The importance of YTH family proteins in epigenetics. Cell Death Dis 2021; 12(4): 346.
[http://dx.doi.org/10.1038/s41419-021-03625-8] [PMID: 33795663]
[12]
Zhu L, Li S, He S, et al. The critical role of m6A methylation in the pathogenesis of Graves’ ophthalmopathy. Eye Vis 2020; 7(1): 55.
[http://dx.doi.org/10.1186/s40662-020-00221-3] [PMID: 33292635]
[13]
Xue M, Zhao BS, Zhang Z, et al. Viral N6-methyladenosine upregulates replication and pathogenesis of human respiratory syncytial virus. Nat Commun 2019; 10(1): 4595.
[http://dx.doi.org/10.1038/s41467-019-12504-y] [PMID: 31597913]
[14]
Xiang S, Liang X, Yin S, Liu J, Xiang Z. N6-methyladenosine methyltransferase METTL3 promotes colorectal cancer cell proliferation through enhancing MYC expression. Am J Transl Res 2020; 12(5): 1789-806.
[PMID: 32509177]
[15]
Wang Y, Zheng Y, Guo D, et al. m6A methylation analysis of differentially expressed genes in skin tissues of coarse and fine type liaoning cashmere goats. Front Genet 2020; 10: 1318.
[http://dx.doi.org/10.3389/fgene.2019.01318] [PMID: 32038703]
[16]
Han Z, Wang X, Xu Z, et al. ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1. Theranostics 2021; 11(6): 3000-16.
[http://dx.doi.org/10.7150/thno.47354] [PMID: 33456585]
[17]
He S, Wang H, Liu R, et al. mRNA N6-methyladenosine methylation of postnatal liver development in pig. PLoS One 2017; 12(3): e0173421.
[http://dx.doi.org/10.1371/journal.pone.0173421] [PMID: 28267806]
[18]
Barajas JM, Lin CH, Sun HL, et al. METTL3 regulates liver homeostasis, hepatocyte ploidy, and circadian Rhythm-controlled gene expression in mice. Am J Pathol 2022; 192(1): 56-71.
[PMID: 34599880]
[19]
Zhou B, Liu C, Xu L, et al. N6-Methyladenosine reader protein YT521-B homology domain-containing 2 suppresses liver steatosis by regulation of mRNA stability of lipogenic genes. Hepatology 2021; 73(1): 91-103.
[http://dx.doi.org/10.1002/hep.31220] [PMID: 32150756]
[20]
Shi Z, Zhang K, Chen T, et al. Transcriptional factor ATF3 promotes liver fibrosis via activating hepatic stellate cells. Cell Death Dis 2020; 11(12): 1066.
[http://dx.doi.org/10.1038/s41419-020-03271-6] [PMID: 33311456]
[21]
Zong Z, Liu J, Wang N, et al. Nicotinamide mononucleotide inhibits hepatic stellate cell activation to prevent liver fibrosis via promoting PGE2 degradation. Free Radic Biol Med 2021; 162: 571-81.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.11.014] [PMID: 33220424]
[22]
Hong F, Wan L, Liu J, et al. Histone methylation regulates Hif-1 signaling cascade in activation of hepatic stellate cells. FEBS Open Bio 2018; 8(3): 406-15.
[http://dx.doi.org/10.1002/2211-5463.12379] [PMID: 29511617]
[23]
Rinaldi L, Ascione A, Messina V, et al. Influence of antiviral therapy on the liver stiffness in chronic HBV hepatitis. Infection 2018; 46(2): 231-8.
[http://dx.doi.org/10.1007/s15010-017-1113-1] [PMID: 29335905]
[24]
Cui Z, Huang N, Liu L, et al. Dynamic analysis of m6A methylation spectroscopy during progression and reversal of hepatic fibrosis. Epigenomics 2020; 12(19): 1707-23.
[http://dx.doi.org/10.2217/epi-2019-0365] [PMID: 33174480]
[25]
Zhu Y, Pan X, Du N, et al. ASIC1a regulates miR-350/SPRY2 by N6-methyladenosine to promote liver fibrosis. FASEB J 2020; 34(11): 14371-88.
[http://dx.doi.org/10.1096/fj.202001337R] [PMID: 32949431]
[26]
Lu L, Zhang Y, He Q, et al. MTA, an RNA m6A methyltransferase, enhances drought tolerance by regulating the development of trichomes and roots in poplar. Int J Mol Sci 2020; 21(7): 2462.
[http://dx.doi.org/10.3390/ijms21072462] [PMID: 32252292]
[27]
Zheng N, Su J, Hu H, Wang J, Chen X. Research progress of N6-methyladenosine in the cardiovascular system. Med Sci Monit 2020; 26: e921742.
[http://dx.doi.org/10.12659/MSM.921742] [PMID: 32350237]
[28]
He Z, Yang D, Fan X, et al. The roles and mechanisms of lncRNAs in liver fibrosis. Int J Mol Sci 2020; 21(4): 1482.
[http://dx.doi.org/10.3390/ijms21041482] [PMID: 32098245]
[29]
Barth DA, Prinz F, Teppan J, Jonas K, Klec C, Pichler M. Long-Noncoding RNA (lncRNA) in the regulation of Hypoxia-Inducible Factor (HIF) in cancer. Noncoding RNA 2020; 6(3): 27.
[http://dx.doi.org/10.3390/ncrna6030027] [PMID: 32640630]
[30]
Nolte W, Weikard R, Brunner RM, et al. Biological network approach for the identification of regulatory long non-coding RNAs associated with metabolic efficiency in cattle. Front Genet 2019; 10: 1130.
[http://dx.doi.org/10.3389/fgene.2019.01130] [PMID: 31824560]
[31]
Mao C, Wang X, Liu Y, et al. A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res 2018; 78(13): 3484-96.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3454] [PMID: 29588351]
[32]
Fan C, Ma Y, Chen S, et al. Comprehensive analysis of the transcriptome-wide m6A methylation modification difference in liver fibrosis mice by high-throughput m6A sequencing. Front Cell Dev Biol 2021; 9: 767051.
[http://dx.doi.org/10.3389/fcell.2021.767051] [PMID: 34869362]
[33]
Fan C, Wu FR, Zhang JF, Jiang H. A network pharmacology approach to explore the mechanisms of shugan jianpi formula in liver fibrosis. Evid Based Complement Alternat Med 2020; 2020: 4780383.
[http://dx.doi.org/10.1155/2020/4780383]
[34]
Liang Q, Li X, Guan G, et al. Long non-coding RNA, HOTAIRM1, promotes glioma malignancy by forming a ceRNA network. Aging 2019; 11(17): 6805-38.
[http://dx.doi.org/10.18632/aging.102205] [PMID: 31477638]
[35]
Chen X, Lv C, Zhu X, et al. MicroRNA-504 modulates osteosarcoma cell chemoresistance to cisplatin by targeting p53. Oncol Lett 2019; 17(2): 1664-74.
[PMID: 30675226]
[36]
Ye J, Lin Y, Yu Y, Sun D. LncRNA NEAT1/microRNA-129-5p/SOCS2 axis regulates liver fibrosis in alcoholic steatohepatitis. J Transl Med 2020; 18(1): 445.
[http://dx.doi.org/10.1186/s12967-020-02577-5] [PMID: 33228663]
[37]
Zhang K, Han X, Zhang Z, et al. The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch pathways. Nat Commun 2017; 8(1): 144.
[http://dx.doi.org/10.1038/s41467-017-00204-4] [PMID: 28747678]
[38]
Yang JJ, Yang Y, Zhang C, Li J, Yang Y. Epigenetic silencing of LncRNA ANRIL enhances liver fibrosis and HSC activation through activating AMPK pathway. J Cell Mol Med 2020; 24(4): 2677-87.
[http://dx.doi.org/10.1111/jcmm.14987] [PMID: 31961061]
[39]
He Y, Wu Y, Huang C, et al. Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis. Biochim Biophys Acta Mol Basis Dis 2014; 1842(11): 2204-15.
[http://dx.doi.org/10.1016/j.bbadis.2014.08.015] [PMID: 25201080]
[40]
Zuo L, Su H, Zhang Q, et al. Comprehensive analysis of lncRNAs N6-methyladenosine modification in colorectal cancer. Aging 2021; 13(3): 4182-98.
[http://dx.doi.org/10.18632/aging.202383] [PMID: 33493136]
[41]
Niu X, Xu J, Liu J, Chen L, Qiao X, Zhong M. Landscape of N6-methyladenosine modification patterns in human ameloblastoma. Front Oncol 2020; 10: 556497.
[http://dx.doi.org/10.3389/fonc.2020.556497] [PMID: 33178585]
[42]
Kasowitz SD, Ma J, Anderson SJ, et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet 2018; 14(5): e1007412.
[http://dx.doi.org/10.1371/journal.pgen.1007412] [PMID: 29799838]
[43]
Zhang Z, Luo K, Zou Z, et al. Genetic analyses support the contribution of mRNA N6-methyladenosine (m6A) modification to human disease heritability. Nat Genet 2020; 52(9): 939-49.
[http://dx.doi.org/10.1038/s41588-020-0644-z] [PMID: 32601472]
[44]
Zheng H, Li S, Zhang X, Sui N. Functional implications of active N6-methyladenosine in plants. Front Cell Dev Biol 2020; 8: 291.
[http://dx.doi.org/10.3389/fcell.2020.00291] [PMID: 32411708]
[45]
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012; 485(7397): 201-6.
[http://dx.doi.org/10.1038/nature11112] [PMID: 22575960]
[46]
Wu Y, Yang X, Chen Z, et al. m6A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol Cancer 2019; 18(1): 87.
[http://dx.doi.org/10.1186/s12943-019-1014-2] [PMID: 30979372]
[47]
Wang J, Ding W, Xu Y, et al. Long non-coding RNA RHPN1-AS1 promotes tumorigenesis and metastasis of ovarian cancer by acting as a ceRNA against miR-596 and upregulating LETM1. Aging 2020; 12(5): 4558-72.
[http://dx.doi.org/10.18632/aging.102911] [PMID: 32163372]
[48]
Yang X, Zhang S, He C, et al. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol Cancer 2020; 19(1): 46.
[http://dx.doi.org/10.1186/s12943-020-1146-4] [PMID: 32111213]
[49]
Ghafouri-Fard S, Esmaeili M, Taheri M. H19 lncRNA: Roles in tumorigenesis. Biomed Pharmacother 2020; 123: 109774.
[50]
Yang JJ, Liu LP, Tao H, et al. MeCP2 silencing of LncRNA H19 controls hepatic stellate cell proliferation by targeting IGF1R. Toxicology 2016; 359-360: 39-46.
[http://dx.doi.org/10.1016/j.tox.2016.06.016] [PMID: 27350269]
[51]
Zhang Y, Liu C, Barbier O, et al. Bcl2 is a critical regulator of bile acid homeostasis by dictating Shp and lncRNA H19 function. Sci Rep 2016; 6(1): 20559.
[http://dx.doi.org/10.1038/srep20559] [PMID: 26838806]
[52]
Liu Y, Liu N, Liu Q. Constructing a ceRNA-immunoregulatory network associated with the development and prognosis of human atherosclerosis through weighted gene co-expression network analysis. Aging 2021; 13(2): 3080-100.
[http://dx.doi.org/10.18632/aging.202486] [PMID: 33460396]
[53]
Xia W, Chen H, Xie C, Hou M. Long-noncoding RNA MALAT1 sponges microRNA-92a-3p to inhibit doxorubicin-induced cardiac senescence by targeting ATG4a. Aging 2020; 12(9): 8241-60.
[http://dx.doi.org/10.18632/aging.103136] [PMID: 32384281]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy