Review Article

调节人类癌症中细胞活性及其相关信号通路的转移RNA衍生的小RNA失调

卷 23, 期 4, 2023

发表于: 08 June, 2023

页: [291 - 303] 页: 13

弟呕挨: 10.2174/1566523223666230601102506

价格: $65

conference banner
摘要

tsRNA是源自tRNA切割的小的非编码RNA,在基因表达、翻译、转录和表观遗传修饰中起重要的调控作用。癌症中tsRNA的失调会破坏基因表达并扰乱各种细胞活动,包括细胞增殖,凋亡,迁移和侵袭。此外,tsRNA可能通过调节相关的细胞信号通路来影响癌症的发展。在本综述中,我们首先研究了tsRNA的起源和分类及其对肿瘤细胞活性的影响。为了突出tsRNA和信号通路的最新研究进展,我们总结了tsRNA在特定肿瘤相关信号通路中的可能机制,包括最近研究中已发现的Wnt,TGFb1,MAPK,PI3K-AKT,Notch和MDM2 / p53信号通路。

关键词: tsRNA,tRFs,癌症,失调,细胞活性,信号通路。

图形摘要
[1]
Xiao L, Wang J, Ju S, Cui M, Jing R. Disorders and roles of tsRNA, snoRNA, snRNA and piRNA in cancer. J Med Genet 2022; 59(7): 623-31.
[http://dx.doi.org/10.1136/jmedgenet-2021-108327] [PMID: 35145038]
[2]
Li S, Xu Z, Sheng J. tRNA-Derived small RNA: A novel regulatory small non-coding RNA. Genes 2018; 9(5): 246.
[http://dx.doi.org/10.3390/genes9050246] [PMID: 29748504]
[3]
Chen Q, Zhang X, Shi J, Yan M, Zhou T. Origins and evolving functionalities of tRNA-derived small RNAs. Trends Biochem Sci 2021; 46(10): 790-804.
[http://dx.doi.org/10.1016/j.tibs.2021.05.001] [PMID: 34053843]
[4]
Dou S, Wang Y, Lu J. Metazoan tsRNAs: Biogenesis, evolution and regulatory functions. Noncoding RNA 2019; 5(1): 18.
[http://dx.doi.org/10.3390/ncrna5010018] [PMID: 30781726]
[5]
Kim HK. Transfer RNA-derived small non-coding RNA: Dual regulator of protein synthesis. Mol Cells 2019; 42(10): 687-92.
[PMID: 31656062]
[6]
Li J, Zhu L, Cheng J, Peng Y. Transfer RNA-derived small RNA: A rising star in oncology. Semin Cancer Biol 2021; 75: 29-37.
[http://dx.doi.org/10.1016/j.semcancer.2021.05.024] [PMID: 34029740]
[7]
Hu F, Niu Y, Mao X, et al. tsRNA-5001a promotes proliferation of lung adenocarcinoma cells and is associated with postoperative re-currence in lung adenocarcinoma patients. Transl Lung Cancer Res 2021; 10(10): 3957-72.
[http://dx.doi.org/10.21037/tlcr-21-829] [PMID: 34858784]
[8]
Pan L, Huang X, Liu ZX, et al. Inflammatory cytokine–regulated tRNA-derived fragment tRF-21 suppresses pancreatic ductal adenocar-cinoma progression. J Clin Invest 2021; 131(22): e148130.
[http://dx.doi.org/10.1172/JCI148130] [PMID: 34779408]
[9]
Xi J, Zeng Z, Li X, Zhang X, Xu J. Expression and diagnostic value of tRNA-derived fragments secreted by extracellular vesicles in hy-popharyngeal carcinoma. OncoTargets Ther 2021; 14: 4189-99.
[http://dx.doi.org/10.2147/OTT.S320176] [PMID: 34285510]
[10]
Gu X, Ma S, Liang B, Ju S. Serum hsa_tsr016141 as a kind of tRNA-derived fragments is a novel biomarker in gastric cancer. Front Oncol 2021; 11: 679366.
[http://dx.doi.org/10.3389/fonc.2021.679366] [PMID: 34055648]
[11]
Huang Y, Zhang H, Gu X, et al. Elucidating the role of serum tRF-31-U5YKFN8DYDZDD as a novel diagnostic biomarker in Gastric Cancer (GC). Front Oncol 2021; 11: 723753.
[http://dx.doi.org/10.3389/fonc.2021.723753] [PMID: 34497770]
[12]
Mafi A, Rahmati A, Babaei Aghdam Z, et al. Recent insights into the microRNA-dependent modulation of gliomas from pathogenesis to diagnosis and treatment. Cell Mol Biol Lett 2022; 27(1): 65.
[http://dx.doi.org/10.1186/s11658-022-00354-4] [PMID: 35922753]
[13]
Xia L, Tan S, Zhou Y, et al. Role of the NFκB-signaling pathway in cancer. OncoTargets Ther 2018; 11: 2063-73.
[http://dx.doi.org/10.2147/OTT.S161109] [PMID: 29695914]
[14]
Duchartre Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol 2016; 99: 141-9.
[http://dx.doi.org/10.1016/j.critrevonc.2015.12.005] [PMID: 26775730]
[15]
Szkandera J, Kiesslich T, Haybaeck J, Gerger A, Pichler M. Hedgehog signaling pathway in ovarian cancer. Int J Mol Sci 2013; 14(1): 1179-96.
[http://dx.doi.org/10.3390/ijms14011179] [PMID: 23303278]
[16]
Moghadam AR, Patrad E, Tafsiri E, et al. Ral signaling pathway in health and cancer. Cancer Med 2017; 6(12): 2998-3013.
[http://dx.doi.org/10.1002/cam4.1105] [PMID: 29047224]
[17]
Vaghari-Tabari M, Ferns GA, Qujeq D, Andevari AN, Sabahi Z, Moein S. Signaling, metabolism, and cancer: An important relationship for therapeutic intervention. J Cell Physiol 2021; 236(8): 5512-32.
[http://dx.doi.org/10.1002/jcp.30276] [PMID: 33580511]
[18]
Mo D, He F, Zheng J, Chen H, Tang L, Yan F. tRNA-derived fragment tRF-17-79MP9PP attenuates cell invasion and migration via THBS1/TGF-β1/Smad3 axis in breast cancer. Front Oncol 2021; 11: 656078.
[http://dx.doi.org/10.3389/fonc.2021.656078] [PMID: 33912465]
[19]
Mo D, Jiang P, Yang Y, et al. A tRNA fragment, 5′-tiRNAVal, suppresses the Wnt/β-catenin signaling pathway by targeting FZD3 in breast cancer. Cancer Lett 2019; 457: 60-73.
[http://dx.doi.org/10.1016/j.canlet.2019.05.007] [PMID: 31078732]
[20]
Li X, Liu X, Zhao D, et al. tRNA-derived small RNAs: Novel regulators of cancer hallmarks and targets of clinical application. Cell Death Discov 2021; 7(1): 249.
[http://dx.doi.org/10.1038/s41420-021-00647-1] [PMID: 34537813]
[21]
Pan Q, Han T, Li G. Novel insights into the roles of tRNA-derived small RNAs. RNA Biol 2021; 18(12): 2157-67.
[http://dx.doi.org/10.1080/15476286.2021.1922009] [PMID: 33998370]
[22]
Zhu L, Ge J, Li T, Shen Y, Guo J. tRNA-derived fragments and tRNA halves: The new players in cancers. Cancer Lett 2019; 452: 31-7.
[http://dx.doi.org/10.1016/j.canlet.2019.03.012] [PMID: 30905816]
[23]
Xu WL, Yang Y, Wang YD, Qu LH, Zheng LL. Computational approaches to tRNA-derived small RNAs. Noncoding RNA 2017; 3(1): 2.
[http://dx.doi.org/10.3390/ncrna3010002] [PMID: 29657274]
[24]
Zhu P, Yu J, Zhou P. Role of tRNA-derived fragments in cancer: Novel diagnostic and therapeutic targets tRFs in cancer. Am J Cancer Res 2020; 10(2): 393-402.
[PMID: 32195016]
[25]
Wen J, Huang Z, Li Q, Chen X, Qin H, Zhao Y. Research progress on the tsRNA classification, function, and application in gynecological malignant tumors. Cell Death Discov 2021; 7(1): 388.
[http://dx.doi.org/10.1038/s41420-021-00789-2] [PMID: 34907180]
[26]
Kuscu C, Kumar P, Kiran M, Su Z, Malik A, Dutta A. tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner. RNA 2018; 24(8): 1093-105.
[http://dx.doi.org/10.1261/rna.066126.118] [PMID: 29844106]
[27]
Krishna S, Raghavan S, DasGupta R, Palakodeti D. tRNA-derived fragments (tRFs): Establishing their turf in post-transcriptional gene regulation. Cell Mol Life Sci 2021; 78(6): 2607-19.
[http://dx.doi.org/10.1007/s00018-020-03720-7] [PMID: 33388834]
[28]
Wang B, Yan L, Xu Q, Zhong X. The role of Transfer RNA-Derived Small RNAs (tsRNAs) in digestive system tumors. J Cancer 2020; 11(24): 7237-45.
[http://dx.doi.org/10.7150/jca.46055] [PMID: 33193887]
[29]
Fu Y, Lee I, Lee YS, Bao X. Small non-coding Transfer RNA-Derived RNA Fragments (tRFs): Their biogenesis, function and implication in human diseases. Genomics Inform 2015; 13(4): 94-101.
[http://dx.doi.org/10.5808/GI.2015.13.4.94] [PMID: 26865839]
[30]
Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 2010; 16(4): 673-95.
[http://dx.doi.org/10.1261/rna.2000810] [PMID: 20181738]
[31]
Hu Y, Cai A, Xu J, et al. An emerging role of the 5′ termini of mature tRNAs in human diseases: Current situation and prospects. Biochim Biophys Acta Mol Basis Dis 2022; 1868(2): 166314.
[http://dx.doi.org/10.1016/j.bbadis.2021.166314] [PMID: 34863896]
[32]
Shao Y, Sun Q, Liu X, Wang P, Wu R, Ma Z. tRF-Leu-CAG promotes cell proliferation and cell cycle in non-small cell lung cancer. Chem Biol Drug Des 2017; 90(5): 730-8.
[http://dx.doi.org/10.1111/cbdd.12994] [PMID: 28378898]
[33]
Yang W, Gao K, Qian Y, et al. A novel tRNA-derived fragment AS-tDR-007333 promotes the malignancy of NSCLC via the HSPB1/MED29 and ELK4/MED29 axes. J Hematol Oncol 2022; 15(1): 53.
[http://dx.doi.org/10.1186/s13045-022-01270-y] [PMID: 35526007]
[34]
Fan H, Liu H, Lv Y, Song Y. AS-tDR-007872: A novel tRNA-derived small RNA acts an important role in non-small-cell lung cancer. Comput Math Methods Med 2022; 2022: 1-11.
[http://dx.doi.org/10.1155/2022/3475955] [PMID: 35756407]
[35]
Wang J, Liu X, Cui W, et al. Plasma tRNA-derived small RNAs signature as a predictive and prognostic biomarker in lung adenocarci-noma. Cancer Cell Int 2022; 22(1): 59.
[http://dx.doi.org/10.1186/s12935-022-02481-6] [PMID: 35115004]
[36]
Cui H, Li H, Wu H, et al. A novel 3’tRNA-derived fragment tRF-Val promotes proliferation and inhibits apoptosis by targeting EEF1A1 in gastric cancer. Cell Death Dis 2022; 13(5): 471.
[http://dx.doi.org/10.1038/s41419-022-04930-6] [PMID: 35585048]
[37]
Tong L, Zhang W, Qu B, et al. The tRNA-derived fragment-3017A promotes metastasis by inhibiting NELL2 in human gastric cancer. Front Oncol 2021; 10: 570916.
[http://dx.doi.org/10.3389/fonc.2020.570916] [PMID: 33665159]
[38]
Zhang F, Shi J, Wu Z, et al. A 3′-tRNA-derived fragment enhances cell proliferation, migration and invasion in gastric cancer by targeting FBXO47. Arch Biochem Biophys 2020; 690: 108467.
[http://dx.doi.org/10.1016/j.abb.2020.108467] [PMID: 32592804]
[39]
Xu W, Zheng J, Wang X, et al. tRF-Val-CAC-016 modulates the transduction of CACNA1d-mediated MAPK signaling pathways to sup-press the proliferation of gastric carcinoma. Cell Commun Signal 2022; 20(1): 68.
[http://dx.doi.org/10.1186/s12964-022-00857-9] [PMID: 35590368]
[40]
Xu W, Zhou B, Wang J, et al. tRNA-derived fragment tRF-Glu-TTC-027 regulates the progression of gastric carcinoma via MAPK Signal-ing pathway. Front Oncol 2021; 11: 733763.
[http://dx.doi.org/10.3389/fonc.2021.733763] [PMID: 34497772]
[41]
Shen Y, Yu X, Ruan Y, et al. Global profile of tRNA-derived small RNAs in gastric cancer patient plasma and identification of tRF-33-P4R8YP9LON4VDP as a new tumor suppressor. Int J Med Sci 2021; 18(7): 1570-9.
[http://dx.doi.org/10.7150/ijms.53220] [PMID: 33746573]
[42]
Dong X, Fan X, He X, et al. Comprehensively identifying the key tRNA-derived fragments and investigating their function in gastric cancer processes. OncoTargets Ther 2020; 13: 10931-43.
[http://dx.doi.org/10.2147/OTT.S266130] [PMID: 33149609]
[43]
Zheng J, Li C, Zhu Z, et al. A 5`-tRNA derived fragment namedtiRNA-Val-CAC-001 works as a suppressor in gastric cancer. Cancer Manag Res 2022; 14: 2323-37.
[http://dx.doi.org/10.2147/CMAR.S363629] [PMID: 35958946]
[44]
Shen Y, Xie Y, Yu X, et al. Clinical diagnostic values of transfer RNA-derived fragment tRF-19-3L7L73JD and its effects on the growth of gastric cancer cells. J Cancer 2021; 12(11): 3230-8.
[http://dx.doi.org/10.7150/jca.51567] [PMID: 33976732]
[45]
Zhu L, Li Z, Yu X, et al. The tRNA-derived fragment 5026a inhibits the proliferation of gastric cancer cells by regulating the PTEN/PI3K/AKT signaling pathway. Stem Cell Res Ther 2021; 12(1): 418.
[http://dx.doi.org/10.1186/s13287-021-02497-1] [PMID: 34294122]
[46]
Zhou Y, Hu J, Liu L, et al. Gly-tRF enhances LCSC-like properties and promotes HCC cells migration by targeting NDFIP2. Cancer Cell Int 2021; 21(1): 502.
[http://dx.doi.org/10.1186/s12935-021-02102-8] [PMID: 34537070]
[47]
Liu D, Wu C, Wang J, et al. Transfer RNA-derived fragment 5′ tRF-Gly promotes the development of hepatocellular carcinoma by direct targeting of carcinoembryonic antigen-related cell adhesion molecule 1. Cancer Sci 2022; 113(10): 3476-88.
[http://dx.doi.org/10.1111/cas.15505] [PMID: 35879647]
[48]
Sui S, Wang Z, Cui X, Jin L, Zhu C. The biological behavior of tRNA-derived fragment tRF-Leu-AAG in pancreatic cancer cells. Bioengineered 2022; 13(4): 10617-28.
[http://dx.doi.org/10.1080/21655979.2022.2064206] [PMID: 35442152]
[49]
Huang B, Yang H, Cheng X, et al. tRF/miR-1280 suppresses stem cell–like cells and metastasis in colorectal cancer. Cancer Res 2017; 77(12): 3194-206.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3146] [PMID: 28446464]
[50]
Han Y, Peng Y, Liu S, et al. tRF3008A suppresses the progression and metastasis of colorectal cancer by destabilizing FOXK1 in an AGO-dependent manner. J Exp Clin Cancer Res 2022; 41(1): 32.
[http://dx.doi.org/10.1186/s13046-021-02190-4] [PMID: 35065674]
[51]
Luan N, Chen Y, Li Q, et al. TRF-20-M0NK5Y93 suppresses the metastasis of colon cancer cells by impairing the epithelial-to-mesenchymal transition through targeting Claudin-1. Am J Transl Res 2021; 13(1): 124-42.
[PMID: 33527013]
[52]
Tao EW, Wang HL, Cheng WY, Liu QQ, Chen YX, Gao QY. A specific tRNA half, 5’tiRNA-His-GTG, responds to hypoxia via the HIF1α/ANG axis and promotes colorectal cancer progression by regulating LATS2. J Exp Clin Cancer Res 2021; 40(1): 67.
[http://dx.doi.org/10.1186/s13046-021-01836-7] [PMID: 33588913]
[53]
Zhang M, Li F, Wang J, et al. tRNA-derived fragment tRF-03357 promotes cell proliferation, migration and invasion in high-grade serous ovarian cancer. OncoTargets Ther 2019; 12: 6371-83.
[http://dx.doi.org/10.2147/OTT.S206861] [PMID: 31496739]
[54]
Yang C, Lee M, Song G, Lim W. tRNALys-Derived fragment alleviates cisplatin-induced apoptosis in prostate cancer cells. Pharmaceutics 2021; 13(1): 55.
[http://dx.doi.org/10.3390/pharmaceutics13010055] [PMID: 33406670]
[55]
Qin C, Chen ZH, Cao R, Shi MJ, Tian Y. A Novel tiRNA-Gly-GCC-1 promotes progression of urothelial bladder carcinoma and directly targets TLR4. Cancers 2022; 14(19): 4555.
[http://dx.doi.org/10.3390/cancers14194555] [PMID: 36230476]
[56]
Zhu P, Lu J, Zhi X, et al. tRNA-derived fragment tRFLys-CTT-010 promotes triple-negative breast cancer progression by regulating glucose metabolism via G6PC. Carcinogenesis 2021; 42(9): 1196-207.
[http://dx.doi.org/10.1093/carcin/bgab058] [PMID: 34216208]
[57]
Zhang Z, Liu Z, Zhao W, Zhao X, Tao Y. tRF-19-W4PU732S promotes breast cancer cell malignant activity by targeting inhibition of RPL27A (ribosomal protein-L27A). Bioengineered 2022; 13(2): 2087-98.
[http://dx.doi.org/10.1080/21655979.2021.2023796] [PMID: 35030975]
[58]
Farina NH, Scalia S, Adams CE, et al. Identification of tRNA-derived small RNA (tsRNA) responsive to the tumor suppressor, RUNX1, in breast cancer. J Cell Physiol 2020; 235(6): 5318-27.
[http://dx.doi.org/10.1002/jcp.29419] [PMID: 31919859]
[59]
Falconi M, Giangrossi M, Zabaleta ME, et al. A novel 3′-tRNA Glu -derived fragment acts as a tumor suppressor in breast cancer by tar-geting nucleolin. FASEB J 2019; 33(12): 13228-40.
[http://dx.doi.org/10.1096/fj.201900382RR] [PMID: 31560576]
[60]
Han L, Lai H, Yang Y, et al. A 5′-tRNA halve, tiRNA-Gly promotes cell proliferation and migration via binding to RBM17 and inducing alternative splicing in papillary thyroid cancer. J Exp Clin Cancer Res 2021; 40(1): 222.
[http://dx.doi.org/10.1186/s13046-021-02024-3] [PMID: 34225773]
[61]
Liu L, Zhang Z, Xia X, Lei J. KIF18B promotes breast cancer cell proliferation, migration and invasion by targeting TRIP13 and activat-ing the Wnt/β catenin signaling pathway. Oncol Lett 2022; 23(4): 112.
[http://dx.doi.org/10.3892/ol.2022.13232] [PMID: 35251343]
[62]
Li Z, Liu H, Zhang Y, Tan H. The effect of propofol on the proliferation and apoptosis of hepatocellular carcinoma cells through TGF-B1/Smad2 signaling pathway. Bioengineered 2021; 12(1): 4581-92.
[http://dx.doi.org/10.1080/21655979.2021.1955177] [PMID: 34323647]
[63]
Mo S, Fang D, Zhao S, et al. Down regulated oncogene KIF2C inhibits growth, invasion, and metastasis of hepatocellular carcinoma through the Ras/MAPK signaling pathway and epithelial-to-mesenchymal transition. Ann Transl Med 2022; 10(3): 151.
[http://dx.doi.org/10.21037/atm-21-6240] [PMID: 35284538]
[64]
Saito-Diaz K, Chen TW, Wang X, et al. The way Wnt works: Components and mechanism. Growth Factors 2013; 31(1): 1-31.
[http://dx.doi.org/10.3109/08977194.2012.752737] [PMID: 23256519]
[65]
Tang Y, Chen Y, Liu R, Li W, Hua B, Bao Y. Wnt signaling pathways: A role in pain processing. Neuromolecular Med 2022; 24(3): 233-49.
[http://dx.doi.org/10.1007/s12017-021-08700-z] [PMID: 35067780]
[66]
Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis. Development 2018; 145(11): dev146589.
[http://dx.doi.org/10.1242/dev.146589] [PMID: 29884654]
[67]
Willert K, Jones KA. Wnt signaling: Is the party in the nucleus? Genes Dev 2006; 20(11): 1394-404.
[http://dx.doi.org/10.1101/gad.1424006] [PMID: 16751178]
[68]
Zhou HB, Yang L, Liu SF, et al. CDC like Kinase 2 plays an oncogenic role in colorectal cancer via modulating the Wnt/β-catenin signal-ing. Neoplasma 2022; 69(3): 657-69.
[http://dx.doi.org/10.4149/neo_2022_220206N138] [PMID: 35293765]
[69]
Shi Y, Ge C, Fang D, et al. NCAPG facilitates colorectal cancer cell proliferation, migration, invasion and epithelial–mesenchymal transi-tion by activating the Wnt/β-catenin signaling pathway. Cancer Cell Int 2022; 22(1): 119.
[http://dx.doi.org/10.1186/s12935-022-02538-6] [PMID: 35292013]
[70]
Chen K, Wang Z, Zong QB, Zhou MY, Chen QF. miR-497-5p-RSPO2 axis inhibits cell growth and metastasis in glioblastoma. J Cancer 2022; 13(4): 1241-51.
[http://dx.doi.org/10.7150/jca.62652] [PMID: 35281864]
[71]
Rong Z, Zhang L, Li Z, et al. SIK2 maintains breast cancer stemness by phosphorylating LRP6 and activating Wnt/β-catenin signaling. Oncogene 2022; 41(16): 2390-403.
[http://dx.doi.org/10.1038/s41388-022-02259-0] [PMID: 35277657]
[72]
Zhang X, Chen R, Song LD, Zhu LF, Zhan JF. SIRT6 promotes the progression of prostate cancer via regulating the Wnt/β-Catenin sig-naling pathway. J Oncol 2022; 2022: 1-7.
[http://dx.doi.org/10.1155/2022/2174758] [PMID: 35251169]
[73]
Fang Z, Zhong M, Zhou L, Le Y, Wang H, Fang Z. Low-density lipoprotein receptor-related protein 8 facilitates the proliferation and invasion of non-small cell lung cancer cells by regulating the Wnt/β-catenin signaling pathway. Bioengineered 2022; 13(3): 6807-18.
[http://dx.doi.org/10.1080/21655979.2022.2036917] [PMID: 35246020]
[74]
Zuo L, Zhu Y, Han J, Liu H. Circular RNA circSHPRH inhibits the malignant behaviors of bladder cancer by regulating the miR-942/BARX2 pathway. Aging 2022; 14(4): 1891-909.
[http://dx.doi.org/10.18632/aging.203911] [PMID: 35200157]
[75]
Sansom OJ, Meniel VS, Muncan V, et al. Myc deletion rescues Apc deficiency in the small intestine. Nature 2007; 446(7136): 676-9.
[http://dx.doi.org/10.1038/nature05674] [PMID: 17377531]
[76]
Shi N, Wang Z, Zhu H, et al. Research progress on drugs targeting the TGF-β signaling pathway in fibrotic diseases. Immunol Res 2022; 70(3): 276-88.
[http://dx.doi.org/10.1007/s12026-022-09267-y] [PMID: 35147920]
[77]
Zarzynska JM. Two faces of TGF-beta1 in breast cancer. Mediators Inflamm 2014; 2014: 1-16.
[http://dx.doi.org/10.1155/2014/141747] [PMID: 24891760]
[78]
Liu F, Yang X, Geng M, Huang M. Targeting ERK, an Achilles’ Heel of the MAPK pathway, in cancer therapy. Acta Pharm Sin B 2018; 8(4): 552-62.
[http://dx.doi.org/10.1016/j.apsb.2018.01.008] [PMID: 30109180]
[79]
Zhang X, Guo X, Zhuo R, et al. BRD4 inhibitor MZ1 exerts anti-cancer effects by targeting MYCN and MAPK signaling in neuroblasto-ma. Biochem Biophys Res Commun 2022; 604: 63-9.
[http://dx.doi.org/10.1016/j.bbrc.2022.03.039] [PMID: 35299072]
[80]
Xiao X, Guo L, Dai W, et al. Green tea-derived theabrownin suppresses human non-small cell lung carcinoma in xenograft model through activation of not only p53 signaling but also MAPK/JNK signaling pathway. J Ethnopharmacol 2022; 291: 115167.
[http://dx.doi.org/10.1016/j.jep.2022.115167] [PMID: 35271947]
[81]
Xia T, Zhang Z, Zhang X, Li Q. Hsa-miR-186-3p suppresses colon cancer progression by inhibiting KRT18/MAPK signaling pathway. Cell Cycle 2022; 21(7): 741-53.
[http://dx.doi.org/10.1080/15384101.2021.2023305] [PMID: 35258413]
[82]
Mardanshahi A, Gharibkandi NA, Vaseghi S, Abedi SM, Molavipordanjani S. The PI3K/AKT/mTOR signaling pathway inhibitors en-hance radiosensitivity in cancer cell lines. Mol Biol Rep 2021; 48(8): 1-14.
[http://dx.doi.org/10.1007/s11033-021-06607-3] [PMID: 34357550]
[83]
Xie Y, Shi X, Sheng K, et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep 2019; 19(2): 783-91.
[PMID: 30535469]
[84]
Wyatt LA, Filbin MT, Keirstead HS. PTEN inhibition enhances neurite outgrowth in human embryonic stem cell-derived neuronal pro-genitor cells. J Comp Neurol 2014; 522(12): 2741-55.
[http://dx.doi.org/10.1002/cne.23580] [PMID: 24610700]
[85]
Ni J, Chen Y, Fei B, et al. MicroRNA-301a promotes cell proliferation and resistance to apoptosis through PTEN/PI3K/Akt Signaling pathway in human ovarian cancer. Gynecol Obstet Invest 2021; 86(1-2): 108-16.
[http://dx.doi.org/10.1159/000513070] [PMID: 33596588]
[86]
Sheng X, Zhu P, Zhao Y, et al. Effect of PI3K/AKT/mTOR signaling pathway on regulating and controlling the anti-invasion and metas-tasis of hepatoma cells by bufalin. Recent Patents Anticancer Drug Discov 2021; 16(1): 54-65.
[http://dx.doi.org/10.2174/22123970MTEzaODMD4] [PMID: 33530915]
[87]
Jafari M, Ghadami E, Dadkhah T, Akhavan-Niaki H. PI3k/AKT signaling pathway: Erythropoiesis and beyond. J Cell Physiol 2019; 234(3): 2373-85.
[http://dx.doi.org/10.1002/jcp.27262] [PMID: 30192008]
[88]
Peltier J, O’Neill A, Schaffer DV. PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol 2007; 67(10): 1348-61.
[http://dx.doi.org/10.1002/dneu.20506] [PMID: 17638387]
[89]
Wei J, Gou Z, Wen Y, Luo Q, Huang Z. Marine compounds targeting the PI3K/Akt signaling pathway in cancer therapy. Biomed Pharmacother 2020; 129: 110484.
[http://dx.doi.org/10.1016/j.biopha.2020.110484] [PMID: 32768966]
[90]
Ediriweera MK, Tennekoon KH, Samarakoon SR. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin Cancer Biol 2019; 59: 147-60.
[http://dx.doi.org/10.1016/j.semcancer.2019.05.012] [PMID: 31128298]
[91]
Fattahi S, Amjadi-Moheb F, Tabaripour R, Ashrafi GH, Akhavan-Niaki H. PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond. Life Sci 2020; 262: 118513.
[http://dx.doi.org/10.1016/j.lfs.2020.118513] [PMID: 33011222]
[92]
Wen X, Zhou L, Wu X, et al. The PI3K AKT pathway in the pathogenesis of prostate cancer. Front Biosci 2016; 21(5): 1084-91.
[http://dx.doi.org/10.2741/4443] [PMID: 27100493]
[93]
Nunnery SE, Mayer IA. Targeting the PI3K/AKT/mTOR pathway in hormone-positive breast cancer. Drugs 2020; 80(16): 1685-97.
[http://dx.doi.org/10.1007/s40265-020-01394-w] [PMID: 32894420]
[94]
Du L, Li X, Zhen L, et al. Everolimus inhibits breast cancer cell growth through PI3K/AKT/mTOR signaling pathway. Mol Med Rep 2018; 17(5): 7163-9.
[http://dx.doi.org/10.3892/mmr.2018.8769] [PMID: 29568883]
[95]
Zhang T, Ma Y, Fang J, Liu C, Chen L. A Deregulated PI3K-AKT signaling pathway in patients with colorectal cancer. J Gastrointest Cancer 2019; 50(1): 35-41.
[http://dx.doi.org/10.1007/s12029-017-0024-9] [PMID: 29110225]
[96]
Braune EB, Lendahl U. Notch - a goldilocks signaling pathway in disease and cancer therapy. Discov Med 2016; 21(115): 189-96.
[PMID: 27115169]
[97]
Castro RC, Gonçales RA, Zambuzi FA, Frantz FG. Notch signaling pathway in infectious diseases: Role in the regulation of immune re-sponse. Inflamm Res 2021; 70(3): 261-74.
[http://dx.doi.org/10.1007/s00011-021-01442-5] [PMID: 33558976]
[98]
Sprinzak D, Blacklow SC. Biophysics of notch signaling. Annu Rev Biophys 2021; 50(1): 157-89.
[http://dx.doi.org/10.1146/annurev-biophys-101920-082204] [PMID: 33534608]
[99]
Jing J, Jiang X, Chen J, et al. Notch signaling pathway promotes the development of ovine ovarian follicular granulosa cells. Anim Reprod Sci 2017; 181: 69-78.
[http://dx.doi.org/10.1016/j.anireprosci.2017.03.017] [PMID: 28400072]
[100]
De Santis F, Romero-Cordoba SL, Castagnoli L, et al. BCL6 and the Notch pathway: A signaling axis leading to a novel druggable biotar-get in triple negative breast cancer. Cell Oncol 2022; 45(2): 257-74.
[http://dx.doi.org/10.1007/s13402-022-00663-y] [PMID: 35357654]
[101]
Zhu D, Xia J, Liu C, Fang C. Numb/Notch/PLK1 signaling pathway mediated hyperglycemic memory in pancreatic cancer cell radiore-sistance and the therapeutic effects of metformin. Cell Signal 2022; 93: 110268.
[http://dx.doi.org/10.1016/j.cellsig.2022.110268] [PMID: 35143930]
[102]
Huang S, Lin W, Wang L, et al. SIX1 predicts poor prognosis and facilitates the progression of non-small lung cancer via activating the notch signaling pathway. J Cancer 2022; 13(2): 527-40.
[http://dx.doi.org/10.7150/jca.61385] [PMID: 35069900]
[103]
Deng G, Luo Y, Zhang Y, Zhang J, He Z. Enabled homolog (ENAH) regulated by RNA binding protein splicing factor 3b subunit 4 (SF3B4) exacerbates the proliferation, invasion and migration of hepatocellular carcinoma cells via Notch signaling pathway. Bioengineered 2022; 13(2): 2194-206.
[http://dx.doi.org/10.1080/21655979.2021.2023983] [PMID: 35030977]
[104]
Li L, Tang P, Li S, et al. Notch signaling pathway networks in cancer metastasis: A new target for cancer therapy. Med Oncol 2017; 34(10): 180.
[http://dx.doi.org/10.1007/s12032-017-1039-6] [PMID: 28918490]
[105]
Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66(4): 649-61.
[http://dx.doi.org/10.1016/0092-8674(91)90111-B] [PMID: 1831692]
[106]
Hernández Borrero LJ, El-Deiry WS. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim Biophys Acta Rev Cancer 2021; 1876(1): 188556.
[http://dx.doi.org/10.1016/j.bbcan.2021.188556] [PMID: 33932560]
[107]
Liu Y, Tavana O, Gu W. p53 modifications: Exquisite decorations of the powerful guardian. J Mol Cell Biol 2019; 11(7): 564-77.
[http://dx.doi.org/10.1093/jmcb/mjz060] [PMID: 31282934]
[108]
Levine AJ. The many faces of p53: Something for everyone. J Mol Cell Biol 2019; 11(7): 524-30.
[http://dx.doi.org/10.1093/jmcb/mjz026] [PMID: 30925588]
[109]
Liu J, Zhang C, Wang J, Hu W, Feng Z. The regulation of ferroptosis by tumor suppressor p53 and its pathway. Int J Mol Sci 2020; 21(21): 8387.
[http://dx.doi.org/10.3390/ijms21218387] [PMID: 33182266]
[110]
Karni-Schmidt O, Lokshin M, Prives C. The roles of MDM2 and MDMX in cancer. Annu Rev Pathol 2016; 11(1): 617-44.
[http://dx.doi.org/10.1146/annurev-pathol-012414-040349] [PMID: 27022975]
[111]
Meng X, Franklin DA, Dong J, Zhang Y. MDM2-p53 pathway in hepatocellular carcinoma. Cancer Res 2014; 74(24): 7161-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1446] [PMID: 25477334]
[112]
Aubrey BJ, Strasser A, Kelly GL. Tumor-suppressor functions of the TP53 pathway. Cold Spring Harb Perspect Med 2016; 6(5): a026062.
[http://dx.doi.org/10.1101/cshperspect.a026062] [PMID: 27141080]
[113]
Zhang X, Jiang Y, Yang J. [p53-independent signaling pathway in DNA damage-induced cell apoptosis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2013; 42(2): 217-23.
[PMID: 23585010]
[114]
Lacroix M, Riscal R, Arena G, Linares LK, Le Cam L. Metabolic functions of the tumor suppressor p53: Implications in normal physi-ology, metabolic disorders, and cancer. Mol Metab 2020; 33: 2-22.
[http://dx.doi.org/10.1016/j.molmet.2019.10.002] [PMID: 31685430]
[115]
Kurashima K, Shiozaki A, Kudou M, et al. LRRC8A influences the growth of gastric cancer cells via the p53 signaling pathway. Gastric Cancer 2021; 24(5): 1063-75.
[http://dx.doi.org/10.1007/s10120-021-01187-4] [PMID: 33864161]
[116]
Wei GH, Wang X. lncRNA MEG3 inhibit proliferation and metastasis of gastric cancer via p53 signaling pathway. Eur Rev Med Pharmacol Sci 2017; 21(17): 3850-6.
[PMID: 28975980]
[117]
Cao J, Liu X, Yang Y, et al. Decylubiquinone suppresses breast cancer growth and metastasis by inhibiting angiogenesis via the ROS/p53/BAI1 signaling pathway. Angiogenesis 2020; 23(3): 325-38.
[http://dx.doi.org/10.1007/s10456-020-09707-z] [PMID: 32020421]
[118]
Chen YH, Yang SF, Yang CK, et al. Metformin induces apoptosis and inhibits migration by activating the AMPK/p53 axis and suppress-ing PI3K/AKT signaling in human cervical cancer cells. Mol Med Rep 2020; 23(1): 88.
[http://dx.doi.org/10.3892/mmr.2020.11725] [PMID: 33236135]
[119]
Zhang H, Zhang X, Li X, et al. Effect of CCNB1 silencing on cell cycle, senescence, and apoptosis through the p53 signaling pathway in pancreatic cancer. J Cell Physiol 2019; 234(1): 619-31.
[http://dx.doi.org/10.1002/jcp.26816] [PMID: 30069972]
[120]
Zhao Y, Cai J, Shi K, et al. Germacrone induces lung cancer cell apoptosis and cell cycle arrest via the Akt/MDM2/p53 signaling path-way. Mol Med Rep 2021; 23(6): 452.
[http://dx.doi.org/10.3892/mmr.2021.12091] [PMID: 33880579]
[121]
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 1999; 27(1): 29-34.
[http://dx.doi.org/10.1093/nar/27.1.29] [PMID: 9847135]
[122]
Chen L, Zhang YH, Wang S, Zhang Y, Huang T, Cai YD. Prediction and analysis of essential genes using the enrichments of gene ontol-ogy and KEGG pathways. PLoS One 2017; 12(9): e0184129.
[http://dx.doi.org/10.1371/journal.pone.0184129] [PMID: 28873455]
[123]
Lu Z, Su K, Wang X, et al. Expression Profiles of tRNA-derived small RNAs and their potential roles in primary nasopharyngeal carci-noma. Front Mol Biosci 2021; 8: 780621.
[http://dx.doi.org/10.3389/fmolb.2021.780621] [PMID: 34988117]
[124]
Shan N, Li N, Dai Q, et al. Interplay of tRNA-derived fragments and T cell activation in breast cancer patient survival. Cancers 2020; 12(8): 2230.
[http://dx.doi.org/10.3390/cancers12082230] [PMID: 32785169]
[125]
Chen H, Xu Z, Cai H, Peng Y, Yang L, Wang Z. Identifying differentially expressed tRNA-derived small fragments as a biomarker for the progression and metastasis of colorectal cancer. Dis Markers 2022; 2022: 1-10.
[http://dx.doi.org/10.1155/2022/2646173] [PMID: 35035608]
[126]
Huang Y, Ge H, Zheng M, et al. Serum tRNA-derived fragments (tRFs) as potential candidates for diagnosis of nontriple negative breast cancer. J Cell Physiol 2020; 235(3): 2809-24.
[http://dx.doi.org/10.1002/jcp.29185] [PMID: 31535382]
[127]
Karousi P, Papanota AM, Artemaki PI, et al. tRNA derivatives in multiple Myeloma: Investigation of the potential value of a tRNA-derived molecular signature. Biomedicines 2021; 9(12): 1811.
[http://dx.doi.org/10.3390/biomedicines9121811] [PMID: 34944627]
[128]
Xu C, Fu Y. Expression profiles of tRNA-derived fragments and their potential roles in multiple myeloma. OncoTargets Ther 2021; 14: 2805-14.
[http://dx.doi.org/10.2147/OTT.S302594] [PMID: 33911877]
[129]
Wang J, Ma G, Li M, et al. Plasma tRNA fragments derived from 5′ ends as novel diagnostic biomarkers for early-stage breast cancer. Mol Ther Nucleic Acids 2020; 21: 954-64.
[http://dx.doi.org/10.1016/j.omtn.2020.07.026] [PMID: 32814252]
[130]
Xiong W, Wang X, Cai X, et al. Identification of tRNA derived fragments in colon cancer by comprehensive small RNA sequencing. Oncol Rep 2019; 42(2): 735-44.
[http://dx.doi.org/10.3892/or.2019.7178] [PMID: 31173257]
[131]
Xu C, Liang T, Zhang F, Liu J, Fu Y. tRNA-derived fragments as novel potential biomarkers for relapsed/refractory multiple myeloma. BMC Bioinformatics 2021; 22(1): 238.
[http://dx.doi.org/10.1186/s12859-021-04167-8] [PMID: 33971811]
[132]
Jin L, Zhu C, Qin X. Expression profile of tRNA derived fragments in pancreatic cancer. Oncol Lett 2019; 18(3): 3104-14.
[http://dx.doi.org/10.3892/ol.2019.10601] [PMID: 31452788]
[133]
Wang X, Zhang Y, Ghareeb WM, et al. A comprehensive repertoire of transfer RNA-derived fragments and their regulatory networks in colorectal cancer. J Comput Biol 2020; 27(12): 1644-55.
[http://dx.doi.org/10.1089/cmb.2019.0305] [PMID: 32392430]
[134]
Zong T, Yang Y, Lin X, et al. 5′-tiRNA-Cys-GCA regulates VSMC proliferation and phenotypic transition by targeting STAT4 in aortic dissection. Mol Ther Nucleic Acids 2021; 26: 295-306.
[http://dx.doi.org/10.1016/j.omtn.2021.07.013] [PMID: 34513311]
[135]
Dou R, Zhang X, Xu X, Wang P, Yan B. Mesenchymal stem cell exosomal tsRNA-21109 alleviate systemic lupus erythematosus by inhibiting macrophage M1 polarization. Mol Immunol 2021; 139: 106-14.
[http://dx.doi.org/10.1016/j.molimm.2021.08.015] [PMID: 34464838]
[136]
Fang Y, Liu Y, Yan Y, et al. Differential expression profiles and function predictions for tRFs & tiRNAs in skin injury induced by ultra-violet irradiation. Front Cell Dev Biol 2021; 9: 707572.
[http://dx.doi.org/10.3389/fcell.2021.707572] [PMID: 34447751]
[137]
Wang T, Cao L, He S, et al. Small RNA sequencing reveals a novel tsRNA-06018 playing an important role during adipogenic differentia-tion of hMSCs. J Cell Mol Med 2020; 24(21): 12736-49.
[http://dx.doi.org/10.1111/jcmm.15858] [PMID: 32939933]
[138]
Wang T, Mei J, Li X, Xu X, Ma B, Li W. A novel tsRNA-16902 regulating the adipogenic differentiation of human bone marrow mesen-chymal stem cells. Stem Cell Res Ther 2020; 11(1): 365.
[http://dx.doi.org/10.1186/s13287-020-01882-6] [PMID: 32831139]
[139]
Shi H, Yu M, Wu Y, et al. tRNA-derived fragments (tRFs) contribute to podocyte differentiation. Biochem Biophys Res Commun 2020; 521(1): 1-8.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.009] [PMID: 31629473]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy