Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Design, Synthesis, in silico and in vitro Evaluation of New Combretastatin A-4 Analogs as Antimitotic Antitumor Agents

Author(s): Shaker A. Abdul Hussein, Ammar Kubba, Asim A. Balakit, Lubna H. Tahtamouni* and Ali H. Abbas

Volume 19, Issue 10, 2023

Published on: 03 July, 2023

Page: [1018 - 1036] Pages: 19

DOI: 10.2174/1573406419666230530155741

Price: $65

conference banner
Abstract

Background: Combretastatin A-4 (CA-4) binds β-tubulin at the colchicine-binding site preventing tubulin from polymerizing into microtubules. CA-4 and cis combretastatin analogs isomerize to the trans form resulting in decreased cytotoxicity and anti-tubulin activity. However, the excellent anti-cancer potential and relatively simple molecular structure of CA-4 provide an encouraging starting point for the development of new, more stable and more potent anti-tubulin compounds.

Objective: This study aimed to synthesize a new series of compounds derived from 4-(3,4,5- trimethoxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione derivatives (compounds 10-12) with substituted phenyl group at C5 of the triazole ring (B-ring) as analogs of CA-4, with different alkyl and aryl side chain substituents at the triazole moiety, resulting in the permanent cis configuration of the two phenyl rings. Moreover, the anti-cancer activities of the new compounds were assessed.

Methods: Chemical synthesis was carried out by conventional organic methods. The newly synthesized CA-4 analogs were characterized by FT-IR, 1HNMR, 13CNMR, and HR-MS(ESI) techniques. Molecular docking studies, including docking score (ΔG), ADMET, DFT, and molecular similarities, were performed. The anti-proliferative activity of the new compounds against three human cancer cell lines (A549, Hep G2, and HCT-116) and the normal cell line WI-38 was evaluated using the MTT assay, and their ability to inhibit tubulin polymerization, and consequently, their effects on cell cycle progression and induction of apoptosis were assessed.

Results: Molecular docking studies showed that compounds 11b and 11d exhibited the highest docking scores (-13.30 and -14.01 Kcal/mol, respectively) into the colchicine-binding site, scores very close to the reference drug colchicine (-13.50 Kcal/mol), and that hydrogen bonding and hydrophobic interaction are essential for binding. The most active cytotoxic compound, 11b, had potent IC50 values against the three human cancer cell lines (3.83, 10.20, and 10.67 μM against Hep G2, HCT- 116, and A549, respectively) while exhibiting low cytotoxicity against non-cancer-human WI-38, suggesting that compound 11b targets rapidly growing cancer cells. Moreover, compound 11b exhibited potent anti-tubulin activity which was comparable to CA-4. Targeting microtubules caused cell cycle arrest at the G2/M phase resulting in the induction of apoptosis.

Conclusion: These findings indicate that compound 11b is a promising β-tubulin-binding compound with antimitotic action that has the potential to treat cancer.

Keywords: Triazoles, colchicine, molecular docking, tubulin, cytotoxicity, cell cycle arrest, apoptosis.

Graphical Abstract
[1]
Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005, 100(1-2), 72-79.
[http://dx.doi.org/10.1016/j.jep.2005.05.011] [PMID: 16009521]
[2]
Chen, G.; Horsman, M.R.; Pedersen, M.; Pang, Q.; Stødkilde-jørgensen, H. The effect of combretastatin A4 disodium phosphate and 5,6-dimethylxanthenone-4-acetic acid on water diffusion and blood perfusion in tumours. Acta Oncol., 2008, 47(6), 1071-1076.
[http://dx.doi.org/10.1080/02841860701769750] [PMID: 18770061]
[3]
Griggs, J.; Metcalfe, J.C.; Hesketh, R. Targeting tumour vasculature: The development of combretastatin A4. Lancet Oncol., 2001, 2(2), 82-87.
[http://dx.doi.org/10.1016/S1470-2045(00)00224-2] [PMID: 11905799]
[4]
Grosios, K.; Holwell, S.E.; McGown, A.T.; Pettit, G.R.; Bibby, M.C. In vivo and in vitro evaluation of combretastatin A-4 and its sodium phosphate prodrug. Br. J. Cancer, 1999, 81(8), 1318-1327.
[http://dx.doi.org/10.1038/sj.bjc.6692174] [PMID: 10604728]
[5]
Salmon, B.A.; Siemann, D.W. Characterizing the tumor response to treatment with combretastatin A4 phosphate. Int. J. Radiat. Oncol. Biol. Phys., 2007, 68(1), 211-217.
[http://dx.doi.org/10.1016/j.ijrobp.2006.12.051] [PMID: 17448875]
[6]
West, C.M.L.; Price, P. Combretastatin A4 phosphate. Anticancer Drugs, 2004, 15(3), 179-187.
[http://dx.doi.org/10.1097/00001813-200403000-00001] [PMID: 15014350]
[7]
Thorpe, P.E.; Chaplin, D.J.; Blakey, D.C. The first international conference on vascular targeting: Meeting overview. Cancer Res., 2003, 63(5), 1144-1147.
[http://dx.doi.org/10.1016/j.bmc.2006.10.020] [PMID: 12615734]
[8]
Pettit, G.R.; Singh, S.B.; Hamel, E.; Lin, C.M.; Alberts, D.S.; Garcia-Kendal, D. Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia, 1989, 45(2), 209-211.
[http://dx.doi.org/10.1007/BF01954881] [PMID: 2920809]
[9]
Kerr, D.J.; Hamel, E.; Jung, M.K.; Flynn, B.L. The concise synthesis of chalcone, indanone and indenone analogues of combretastatin A4. Bioorg. Med. Chem., 2007, 15(9), 3290-3298.
[http://dx.doi.org/10.1016/j.bmc.2007.02.006] [PMID: 17360188]
[10]
Pettit, G.R.; Rhodes, M.R. Antineoplastic agents 389. New syntheses of the combretastatin A-4 prodrug. Anticancer Drug Des., 1998, 13(3), 183-191.
[PMID: 9595032]
[11]
Pettit, G.R.; Lippert, J.W., III; Boyd, M.R.; Verdier-Pinard, P.; Hamel, E. Antineoplastic agents 442. Synthesis and biological activities of dioxostatin. Anticancer Drug Des., 2000, 15(5), 361-371.
[PMID: 11354312]
[12]
Ohsumi, K.; Hatanaka, T.; Fujita, K.; Nakagawa, R.; Fukuda, Y.; Nihei, Y.; Suga, Y.; Morinaga, Y.; Akiyama, Y.; Tsuji, T. Syntheses and antitumor activity of cis-restricted combretastatins: 5-Membered heterocyclic analogues. Bioorg. Med. Chem. Lett., 1998, 8(22), 3153-3158.
[http://dx.doi.org/10.1016/S0960-894X(98)00579-4] [PMID: 9873694]
[13]
Abbas, A.H.; Mahmood, A.A.R.; Tahtamouni, L.H.; Al-Mazaydeh, Z.A.; Rammaha, M.S.; Alsoubani, F.; Al-bayati, R.I. A novel derivative of picolinic acid induces endoplasmic reticulum stress-mediated apoptosis in human non-small cell lung cancer cells: Synthesis, docking study, and anticancer activity. Pharmacia, 2021, 68(3), 679-692.
[http://dx.doi.org/10.3897/pharmacia.68.e70654]
[14]
Zhang, J.; Wang, Q.; Fang, H.; Xu, W.; Liu, A.; Du, G. Design, synthesis, inhibitory activity, and SAR studies of hydrophobic p-aminosalicylic acid derivatives as neuraminidase inhibitors. Bioorg. Med. Chem., 2008, 16(7), 3839-3847.
[http://dx.doi.org/10.1016/j.bmc.2008.01.036] [PMID: 18304821]
[15]
Cho, A.; Saunders, O.L.; Butler, T.; Zhang, L.; Xu, J.; Vela, J.E.; Feng, J.Y.; Ray, A.S.; Kim, C.U. Synthesis and antiviral activity of a series of 1′-substituted 4-aza-7,9-dideazaadenosine C-nucleosides. Bioorg. Med. Chem. Lett., 2012, 22(8), 2705-2707.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.105] [PMID: 22446091]
[16]
Kubba, A.A.; Shihab, W. Design and synthesis of novel derivatives of 4-(6-(4- substituted phenyl)-7H-[1,2,4] triazolo[3,4-b][1,3,4] thiadiazin-3-yl) phenol as a possible tubulin-antitumor inhibitor. Indian J. Pharm., 2020, 31(2), 92-107.
[http://dx.doi.org/10.14499/indonesianjpharm31iss2pp92]
[17]
Yaseen, Y.; Kubba, A.; Shihab, W.; Tahtamouni, L. Synthesis, docking study and structure activity relationship of novel niflumic acid deriatives as anticancer agents by inhibiting of VEGFR or EGFR tyrosine kinase activities. Pharmacia, 2022, 69(3), 595-61.4.
[http://dx.doi.org/10.3897/pharmacia.69.e86504]
[18]
Abdul Hussein, S.A.; Kubba, A.A. Synthesis, characterization and antimicrobial activity of new 2,5-disubstituted-1,3,4-thiadiazole derivatives. Pharma Chem., 2015, 79, 250-260.
[19]
Azizi, N.; Khajeh Amiri, A.; Bolourtchian, M.; Saidi, M.R. A green and highly efficient alkylation of thiols in water. J. Indian Chem. Soc., 2009, 6(4), 749-753.
[http://dx.doi.org/10.1007/BF03246165]
[20]
Al-Mansury, S.; Balakit, A.A.; Alkazaz, F.F.; Madlum, K.N.; Ghaleb, R.A. Synthesis and anti-colon cancer activity of 1,2,4-triazole derivatives with aliphatic S-substituents. Orient. J. Chem., 2019, 35, 77-84.
[http://dx.doi.org/10.13005/ojc/350109]
[21]
Abdulridha, A.; Saour, K.Y. Synthesis of some anticancer agent conjugated to aminoacids through amide bond with expected biological activity. Pharma Chem., 2015, 7(10), 251-259.
[22]
Tahtamouni, L.H.; Mehihi, A.A.; Kubba, A.A. Synthesis, molecular docking studies, and in vitro anticancer evaluation of novel tolfenamic acid derivatives. Lett. Drug Des. Discov., 2023, 20(9), 1393-1413.
[http://dx.doi.org/10.2174/1570180819666220831110423]
[23]
Eissa, I.H.; Ibrahim, M.K.; Metwaly, A.M.; Belal, A.; Mehany, A.B.M.; Abdelhady, A.A.; Elhendawy, M.A.; Radwan, M.M.; ElSohly, M.A.; Mahdy, H.A. Design, molecular docking, in vitro, and in vivo studies of new quinazolin-4(3H)-ones as VEGFR-2 inhibitors with potential activity against hepatocellular carcinoma. Bioorg. Chem., 2021, 107, 104532.
[http://dx.doi.org/10.1016/j.bioorg.2020.104532] [PMID: 33334586]
[24]
Eissa, I.H.; Mohammad, H.; Qassem, O.A.; Younis, W.; Abdelghany, T.M.; Elshafeey, A.; Abd, R.M.M.M.; Seleem, M.N.; Mayhoub, A.S. Diphenylurea derivatives for combating methicillin- and vancomycin-resistant Staphylococcus aureus. Eur. J. Med. Chem., 2017, 130, 73-85.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.044] [PMID: 28249208]
[25]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[26]
Niu, M.; Qin, J.; Tian, C.; Yan, X.; Dong, F.; Cheng, Z.; Fida, G.; Yang, M.; Chen, H.; Gu, Y. Tubulin inhibitors: Pharmacophore modeling, virtual screening and molecular docking. Acta Pharmacol. Sin., 2014, 35(7), 967-979.
[http://dx.doi.org/10.1038/aps.2014.34] [PMID: 24909516]
[27]
Ji, Y.; Tian, R.; Lin, W. QSAR and molecular docking study of a series of combretastatin analogues tubulin inhibitors. In: Life System Modeling and Simulation; Li, K.; Li, X.; Irwin, G.W.; He, G., Eds.; Springer: Berlin, Heidelberg, 2007, Vol. 4689, .
[http://dx.doi.org/10.1007/978-3-540-74771-0_50]
[28]
Hadizadeh, F.; Ghodsi, R.; Mirzaei, S.; Sahebkar, A. In silico exploration of novel tubulin inhibitors: A combination of docking and molecular dynamics simulations, pharmacophore modeling, and virtual screening. Comput. Math. Methods Med., 2022, 2022, 4004068.
[http://dx.doi.org/10.1155/2022/4004068]
[29]
Mustafa, M.; Anwar, S.; Elgamal, F.; Ahmed, E.R.; Aly, O.M. Potent combretastatin A-4 analogs containing 1,2,4-triazole: Synthesis, antiproliferative, anti-tubulin activity, and docking study. Eur. J. Med. Chem., 2019, 183, 111697.
[http://dx.doi.org/10.1016/j.ejmech.2019.111697] [PMID: 31536891]
[30]
Subashchandrabose, S.; Saleem, H.; Erdogdu, Y.; Rajarajan, G.; Thanikachalam, V. FT-Raman, FT-IR spectra and total energy distribution of 3-pentyl-2,6-diphenylpiperidin-4-one: DFT method. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 82(1), 260-269.
[http://dx.doi.org/10.1016/j.saa.2011.07.046] [PMID: 21862393]
[31]
Huerta-Aguilar, C.A.; Palos-Barba, V.; Thangarasu, P.; Koodali, R.T. Visible light driven photo-degradation of Congo red by TiO2ZnO/Ag: DFT approach on synergetic effect on band gap energy. Chemosphere, 2018, 213, 481-497.
[http://dx.doi.org/10.1016/j.chemosphere.2018.09.053] [PMID: 30245225]
[32]
Shamran Mohammed, H.; Deepak Tripathi, V.; Aldin Darghouth, A. mothhar, T. Synthesis, characterization, DFT calculation and antimicrobial activity of Co(II) and Cu(II) complexes with azo dye. J. Phys. Conf. Ser., 2019, 1294(5), 052051.
[http://dx.doi.org/10.1088/1742-6596/1294/5/052051]
[33]
Fleming, I. Frontier orbitals and organic chemical reactions; Wiley: Hoboken, NJ, USA, 1977.
[34]
El-Nahass, M.M.; Kamel, M.A.; El-deeb, A.F.; Atta, A.A.; Huthaily, S.Y. Ab initio HF, DFT and experimental (FT-IR) investigation of vibrational spectroscopy of P-N,N-dimethylaminobenzyli-denemalononitrile (DBM). Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 79(3), 443-450.
[http://dx.doi.org/10.1016/j.saa.2011.02.055] [PMID: 21514212]
[35]
Aihara, J. Correlation found between the HOMO–LUMO energy separation and the chemical reactivity at the most reactive site for isolated-pentagon isomers of fullerenes. Phys. Chem. Chem. Phys., 2000, 2(14), 3121-3125.
[http://dx.doi.org/10.1039/b002601h]
[36]
Vandecandelaere, A.; Martin, S.R.; Engelborghs, Y. Response of microtubules to the addition of colchicine and tubulin–colchicine: Evaluation of models for the interaction of drugs with microtubules. Biochem. J., 1997, 323(1), 189-196.
[http://dx.doi.org/10.1042/bj3230189] [PMID: 9173881]
[37]
Indrayanto, G.; Putra, G.S.; Suhud, F. Validation of in-vitro bioassay methods: Application in herbal drug research. Profiles Drug Subst. Excip. Relat. Methodol., 2021, 46, 273-307.
[http://dx.doi.org/10.1016/bs.podrm.2020.07.005] [PMID: 33461699]
[38]
Weerapreeyakul, N.; Nonpunya, A.; Barusrux, S.; Thitimetharoch, T.; Sripanidkulchai, B. Evaluation of the anticancer potential of six herbs against a hepatoma cell line. Chin. Med., 2012, 7(1), 15.
[http://dx.doi.org/10.1186/1749-8546-7-15] [PMID: 22682026]
[39]
Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D.D. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res., 2012, 29(11), 2943-2971.
[http://dx.doi.org/10.1007/s11095-012-0828-z] [PMID: 22814904]
[40]
Bakar Ateş, F.; Özmen, N.; Kaya Sezginer, E.; Kurt, E.E. Effects of colchicine on cell cycle arrest and MMP-2 mRNA expression in MCF-7 breast adenocarcinoma cells. Turk Hij. Deney. Biyol. Derg., 2018, 75(3), 239-244.
[http://dx.doi.org/10.5505/TurkHijyen.2018.22755]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy