Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Identification of Phytochemicals and Assessment of Hypoglycemic and Haematological Potentials of Terminalia catappa Linn leaf Extract in Alloxan-induced Diabetic Wistar Rats

Author(s): Ezekiel E. Ben, Justin A. Beshel, Daniel U. Owu*, Javier Palacios, Magdalene Nwokocha, Jorge Bórquez, Mario J. Simirgiotis and Chukwuemeka R. Nwokocha

Volume 22, Issue 2, 2024

Published on: 08 June, 2023

Page: [139 - 150] Pages: 12

DOI: 10.2174/1871525721666230526152917

Price: $65

conference banner
Abstract

Introduction: Hypoglycemia and anemia are associated with diabetes mellitus. Medicinal plants and orthodox drugs have been used for the management of this disease. This study aimed to validate the ethnomedical claims of Terminalia catappa Linn. leaf extract in reducing hyperglycemia and hematological potentials in alloxan-induced diabetic rats and to identify likely antidiabetic compounds.

Materials and Methods: Ultra-high-performance liquid chromatography was used to identify the various phytochemical constituents. Male Wistar rats were randomly divided into five groups containing 6 rats per group. Group 1 (control) received 0.2 ml/kg of distilled water, group 2 received 130 mg/kg of T. catappa aqueous extract, groups 3-5 were diabetic and received 0.2 ml/g distilled water, 130 mg/kg T. catappa extract and 0.75 IU/kg insulin respectively for 14 days. Hematological parameters were measured and an oral glucose tolerance test was carried out using 2 g/kg body weight glucose. A histological analysis of the pancreas was done.

Results: Twenty-five compounds identified as flavonoids, phenolic acids, tannins, and triterpenoids were detected. The blood glucose levels were significantly (p <0.05) elevated in DM groups but were significantly (p <0.05) reduced following Terminalia catappa leaves extract to DM groups. There was s significant (p <0.05) increase in insulin levels improved hematological parameters (RBC, WBC, and platelets), and increased islet population.

Conclusion: These results suggest that T. catappa extract has hypoglycemic, insulinogenic, and hematopoietic potentials in diabetic condition and offer protection to the pancreas which could be attributed to the phytochemical constituents thereby justifying its use in traditional therapy.

Keywords: Glucose, hematology, insulin, pancreas, phytochemistry, Terminalia catappa.

Graphical Abstract
[1]
Cerf, M.E. Beta cell dysfunction and insulin resistance. Front. Endocrinol., 2013, 4, 37.
[http://dx.doi.org/10.3389/fendo.2013.00037] [PMID: 23542897]
[2]
Forouhi, N.G.; Misra, A.; Mohan, V.; Taylor, R.; Yancy, W. Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ, 2018, 361, k2234.
[http://dx.doi.org/10.1136/bmj.k2234] [PMID: 29898883]
[3]
Ansari-Moghaddam, A.; Setoodehzadeh, F.; Khammarnia, M.; Adineh, H.A. Economic cost of diabetes in the Eastern Mediterranean region countries: A meta-analysis. Diabetes Metab. Syndr., 2020, 14(5), 1101-1108.
[http://dx.doi.org/10.1016/j.dsx.2020.06.044] [PMID: 32653635]
[4]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[5]
Castellano, J.M.; Guinda, A.; Delgado, T.; Rada, M.; Cayuela, J.A. Biochemical basis of the antidiabetic activity of oleanolic acid and related pentacyclic triterpenes. Diabetes, 2013, 62(6), 1791-1799.
[http://dx.doi.org/10.2337/db12-1215] [PMID: 23704520]
[6]
Adefegha, S.A.; Oboh, G.; Oyeleye, S.I.; Ejakpovi, I. Erectogenic, antihypertensive, antidiabetic, anti-oxidative properties and phenolic compositions of almond fruit (Terminalia catappa L.) parts (hull and drupe) - in vitro. J. Food Biochem., 2017, 41(2), e12309.
[http://dx.doi.org/10.1111/jfbc.12309]
[7]
Anand, A.; Divya, N.; Kotti, P. An updated review of Terminalia catappa. Pharmacogn. Rev., 2015, 9(18), 93-98.
[http://dx.doi.org/10.4103/0973-7847.162103] [PMID: 26392705]
[8]
Iheagwam, F.N.; Israel, E.N.; Kayode, K.O.; De Campos, O.C.; Ogunlana, O.O.; Chinedu, S.N. GC-MS analysis and inhibitory evaluation of Terminalia catappa leaf extracts on major enzymes linked to diabetes. Evid. Based Complement. Alternat. Med., 2019, 2019, 6316231.
[9]
Ben, E.E.; Asuquo, A.E.; Owu, D.U. The role of serum alpha-amylase and glycogen synthase in the anti-diabetic potential of Terminalia catappa aqueous leaf extract in diabetic Wistar rats. Asian J Res. Med. Pharmaceut. Sci., 2019, 6(2), 1-11.
[http://dx.doi.org/10.9734/ajrimps/2019/v6i230096]
[10]
Fan, Y.M.; Xu, L.Z.; Gao, J.; Wang, Y.; Tang, X.H.; Zhao, X.N.; Zhang, Z.X. Phytochemical and antiinflammatory studies on Terminalia catappa. Fitoterapia, 2004, 75(3-4), 253-260.
[http://dx.doi.org/10.1016/j.fitote.2003.11.007] [PMID: 15158981]
[11]
Abiodun, O.O.; Rodríguez-Nogales, A.; Algieri, F.; Gomez-Caravaca, A.M.; Segura-Carretero, A.; Utrilla, M.P.; Rodriguez-Cabezas, M.E.; Galvez, J. Antiinflammatory and immunomodulatory activity of an ethanolic extract from the stem bark of Terminalia catappa L. (Combretaceae): In vitro and in vivo evidences. J. Ethnopharmacol., 2016, 192, 309-319.
[http://dx.doi.org/10.1016/j.jep.2016.07.056] [PMID: 27452660]
[12]
Iheagwam, F.N.; Iheagwam, O.T.; Onuoha, M.K.; Ogunlana, O.O.; Chinedu, S.N. Terminalia catappa aqueous leaf extract reverses insulin resistance, improves glucose transport and activates PI3K/AKT signalling in high fat/streptozotocin-induced diabetic rats. Sci. Rep., 2022, 12(1), 10711.
[http://dx.doi.org/10.1038/s41598-022-15114-9] [PMID: 35739183]
[13]
Simirgiotis, M.; Quispe, C.; Areche, C.; Sepúlveda, B. Phenolic compounds in Chilean mistletoe (Quintral, tristerix tetrandus) analyzed by UHPLC-Q/Orbitrap/MS/MS and its antioxidant properties. Molecules, 2016, 21(3), 245.
[http://dx.doi.org/10.3390/molecules21030245] [PMID: 26907248]
[14]
Garneau, F.X.; Collin, G.J.; Jean, F.I.; Gagnon, H.; Arze, J.B.L. Essential oils from Bolivia. XII. Asteraceae: Ophryosporus piquerioides (D.C.) Benth. ex Baker. J. Essent. Oil Res., 2013, 25(5), 388-394.
[http://dx.doi.org/10.1080/10412905.2013.827478]
[15]
Joseph, S.; Kumar, L.; Bai, V.N. Evaluation of anti-diabetic activity of Strobilanthes cuspidate in alloxan induced diabetic rats and the effect of bioactive compounds on inhibition of [alpha]-amylase enzyme. J. Pharmacogn. Phytochem., 2016, 5(3), 169-175.
[16]
Okon, I.O.; Ufot, U.F.; Onoyeraye, U.G.; Nwachukwu, E.O.; Owu, D.U. Effect of Gongronema latifolium on lipid profile, oral glucose tolerance test and some hematological parameters in fructose induced hyperglycemia in rats. Pharm Biomed Res., 2019, 5(1), 25-31.
[17]
Sakaguchi, K.; Takeda, K.; Maeda, M.; Ogawa, W.; Sato, T.; Okada, S.; Ohnishi, Y.; Nakajima, H.; Kashiwagi, A. Glucose area under the curve during oral glucose tolerance test as an index of glucose intolerance. Diabetol. Int., 2016, 7(1), 53-58.
[http://dx.doi.org/10.1007/s13340-015-0212-4] [PMID: 30603243]
[18]
Kozłowska, A.; Szostak-Wegierek, D. Flavonoids--food sources and health benefits. Rocz. Panstw. Zakl. Hig., 2014, 65(2), 79-85.
[PMID: 25272572]
[19]
Ballard, C.R.; Junior, M.R.M. Health benefits of flavonoids. In: Bioactive compounds health benefits and potential applications; Woodhead publishing: Sawston, 2019; pp. 185-201.
[http://dx.doi.org/10.1016/B978-0-12-814774-0.00010-4]
[20]
Wu, X.; Zheng, D.; Qin, Y.; Liu, Z.; Zhang, G.; Zhu, X.; Zeng, L.; Liang, Z. Nobiletin attenuates adverse cardiac remodeling after acute myocardial infarction in rats via restoring autophagy flux. Biochem. Biophys. Res. Commun., 2017, 492(2), 262-268.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.064] [PMID: 28830813]
[21]
Lee, J.; Oh, J.G.; Kim, J.S.; Lee, K.W. Effects of chebulic acid on advanced glycation endproducts-induced collagen cross-links. Biol. Pharm. Bull., 2014, 37(7), 1162-1167.
[http://dx.doi.org/10.1248/bpb.b14-00034] [PMID: 24759763]
[22]
Chen, Y.; Li, Q.; Zhao, T.; Zhang, Z.; Mao, G.; Feng, W.; Wu, X.; Yang, L. Biotransformation and metabolism of three mulberry anthocyanin monomers by rat gut microflora. Food Chem., 2017, 237, 887-894.
[http://dx.doi.org/10.1016/j.foodchem.2017.06.054] [PMID: 28764082]
[23]
Galarraga Montes, E.; Amaro-Luis, J.M. Icosandrin, a novel peltogynoid from the fruits of Phytolacca icosandra (Phytolaccaceae). Nat. Prod. Res., 2016, 30(1), 89-94.
[http://dx.doi.org/10.1080/14786419.2015.1038537] [PMID: 25942389]
[24]
Jiménez-Sánchez, C.; Lozano-Sánchez, J.; Rodríguez-Pérez, C.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Comprehensive, untargeted, and qualitative RP-HPLC-ESI-QTOF/MS2 metabolite profiling of green asparagus (Asparagus officinalis). J. Food Compos. Anal., 2016, 46, 78-87.
[http://dx.doi.org/10.1016/j.jfca.2015.11.004]
[25]
Xu, X.; Wang, Y.; Wei, Z.; Wei, W.; Zhao, P.; Tong, B.; Xia, Y.; Dai, Y. Madecassic acid, the contributor to the anti-colitis effect of madecassoside, enhances the shift of Th17 toward Treg cells via the PPARγ/AMPK/ACC1 pathway. Cell Death Dis., 2017, 8(3), e2723.
[http://dx.doi.org/10.1038/cddis.2017.150] [PMID: 28358365]
[26]
Al-Aboudi, A.M.F.; Abu Zarga, M.H.; Abu-Irmaileh, B.E.; Awwadi, F.F.; Khanfar, M.A. Three new seco-ursadiene triterpenoids from Salvia syriaca. Nat. Prod. Res., 2015, 29(2), 102-108.
[http://dx.doi.org/10.1080/14786419.2014.959518] [PMID: 25226348]
[27]
Terças, A.G.; Monteiro, A.S.; Moffa, E.B.; Santos, J.R.A.; Sousa, E.M.; Pinto, A.R.B.; Costa, P.C.S.; Borges, A.C.R.; Torres, L.M.B.; Barros Filho, A.K.D.; Fernandes, E.S.; Monteiro, C.A. Phytochemical characterization of Terminalia catappa Linn. extracts and their antifungal activities against Candida spp. Front. Microbiol., 2017, 8, 595.
[http://dx.doi.org/10.3389/fmicb.2017.00595] [PMID: 28443078]
[28]
Oguro, D.; Watanabe, H. Asymmetric synthesis and sensory evaluation of sedanenolide. Biosci. Biotechnol. Biochem., 2011, 75(8), 1502-1505.
[http://dx.doi.org/10.1271/bbb.110206] [PMID: 21821949]
[29]
Hayaza, S.; Istiqomah, S.; Susilo, R.J.K.; Inayatillah, B.; Ansori, A.N.M.; Winarni, D. Antidiabetic activity of ketapang (Terminalia catappa L.) leaves extract in streptozotocin-induced diabetic mice. Indian Vet. J., 2019, 96(12), 11-13.
[30]
Jagannathan, R.; Neves, J.S.; Dorcely, B.; Chung, S.T.; Tamura, K.; Rhee, M.; Bergman, M. The oral glucose tolerance test: 100 years later. Diabetes. Diabetes Metab. Syndr. Obes., 2020, 13, 3787-3805.
[http://dx.doi.org/10.2147/DMSO.S246062] [PMID: 33116727]
[31]
Ahmed, S.M.; Vrushabendra, S.B.; Gopkumar, P.; Dhanapal, R.; Chandrashekara, V.M. Antidiabetic activity of Terminalia catappa Linn. leaf extracts in alloxan-induced diabetic rats. Iranian J. Pharmacol Ther., 2005, 4(1), 36-39.
[32]
Vedasree, N.; Peddanna, K.; Rajasekhar, A.; ParthaSarathi, C.; Munirajeswari, P.; Sireesha, Y.; Chippada, A.R. Efficacy of Cyanotis tuberosa (Roxb.) Schult. &Schult. f. root tubers’ active fraction as anti-diabetic, antihyperlipidemic and antioxidant in Streptozotocin-induced diabetic rats. J. Ethnopharmacol., 2022, 285, 114856.
[http://dx.doi.org/10.1016/j.jep.2021.114856] [PMID: 34808300]
[33]
Russo, B.; Picconi, F.; Malandrucco, I.; Frontoni, S. Flavonoids and insulin-resistance: From molecular evidences to clinical trials. Int. J. Mol. Sci., 2019, 20(9), 2061.
[http://dx.doi.org/10.3390/ijms20092061] [PMID: 31027340]
[34]
Mahmoud, A.M. Hematological alterations in diabetic rats - Role of adipocytokines and effect of citrus flavonoids. EXCLI J., 2013, 12, 647-657.
[PMID: 26966427]
[35]
Zhang, H.; Yang, Z.; Zhang, W.; Niu, Y.; Li, X.; Qin, L.; Su, Q. White blood cell subtypes and risk of type 2 diabetes. J. Diabetes Complications, 2017, 31(1), 31-37.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.10.029] [PMID: 27863973]
[36]
Zaruwa, M.Z.; Ibok, N.I.; Ibok, I.U.; Onyenonachi, E.C.; Danchal, C.; Ahmed, A.G. Effects of Sterculia setigera Del. Stem bark extract on hematological and biochemical parameters of wistar rats. Biochem. Insights, 2016, 9, 19-22.
[37]
Obakiro, S.B.; Kiprop, A.; Kigondu, E.; K’owino, I.; Kiyimba, K.; Drago Kato, C.; Gavamukulya, Y. Sub-acute toxicity effects of methanolic stem bark extract of Entada abyssinica on biochemical, haematological and histopathological parameters in Wistar albino rats. Front. Pharmacol., 2021, 12, 740305-740313.
[http://dx.doi.org/10.3389/fphar.2021.740305] [PMID: 34557104]
[38]
Atangwho, I.J.; Ebong, P.E.; Eyong, E.U.; Eteng, M.U.; Obi, A.U. Effect of Vernonia amygdalina Del. leaf on kidney function of diabetic rats. Int. J. Pharm., 2007, 3, 142-148.
[39]
Okokon, J.E.; Davies, K.; John, L.; Iwara, K.; Li, W.W.; Thomas, P.S. Phytochemical characterization, antihyperglycaemic and antihyperlipidemic activities of Setaria megaphylla in alloxan-induced diabetic rats. Phytomedicine Plus, 2022, 2(1), 100182.
[http://dx.doi.org/10.1016/j.phyplu.2021.100182]
[40]
Mukherjee, P.K.; Maiti, K.; Mukherjee, K.; Houghton, P.J. Leads from Indian medicinal plants with hypoglycemic potentials. J. Ethnopharmacol., 2006, 106(1), 1-28.
[http://dx.doi.org/10.1016/j.jep.2006.03.021] [PMID: 16678368]
[41]
Zang, Y.; Sato, H.; Igarashi, K. Anti-diabetic effects of a kaempferol glycoside-rich fraction from unripe soybean (Edamame, Glycine max L. Merrill. ‘Jindai’) leaves on KK-A(y) mice. Biosci. Biotechnol. Biochem., 2011, 75(9), 1677-1684.
[http://dx.doi.org/10.1271/bbb.110168] [PMID: 21897048]
[42]
Divya, N.; Rengarajan, R.L.; Radhakrishnan, R.; Fathi Abd Allah, E.; Alqarawi, A.A.; Hashem, A.; Manikandan, R.; Vijaya Anand, A. Phytotherapeutic efficacy of the medicinal plant Terminalia catappa L. Saudi J. Biol. Sci., 2019, 26(5), 985-988.
[http://dx.doi.org/10.1016/j.sjbs.2018.12.010] [PMID: 31303829]
[43]
Zhang, Y.; Liu, D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur. J. Pharmacol., 2011, 670(1), 325-332.
[http://dx.doi.org/10.1016/j.ejphar.2011.08.011] [PMID: 21914439]
[44]
Rao, A.V.; Gurfinkel, D.M. The bioactivity of saponins: Triterpenoid and steroidal glycosides. Drug Metabol. Drug Interact., 2000, 17(1-4), 211-235.
[http://dx.doi.org/10.1515/DMDI.2000.17.1-4.211] [PMID: 11201296]
[45]
Nazaruk, J.; Borzym-Kluczyk, M. The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem. Rev., 2015, 14(4), 675-690.
[http://dx.doi.org/10.1007/s11101-014-9369-x] [PMID: 26213526]
[46]
Wang, J.; Ha, T.K.Q.; Shi, Y.P.; Oh, W.K.; Yang, J.L. Hypoglycemic triterpenes from Gynostemma pentaphyllum. Phytochemistry, 2018, 155, 171-181.
[http://dx.doi.org/10.1016/j.phytochem.2018.08.008] [PMID: 30130690]
[47]
Liu, J.; He, T.; Lu, Q.; Shang, J.; Sun, H.; Zhang, L. Asiatic acid preserves beta cell mass and mitigates hyperglycemia in streptozocin-induced diabetic rats. Diabetes Metab. Res. Rev., 2010, 26(6), 448-454.
[http://dx.doi.org/10.1002/dmrr.1101] [PMID: 20809533]
[48]
Ramachandran, V.; Saravanan, R. Efficacy of asiatic acid, a pentacyclic triterpene on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-induced diabetic rats. Phytomedicine, 2013, 20(3-4), 230-236.
[http://dx.doi.org/10.1016/j.phymed.2012.09.023] [PMID: 23102509]
[49]
Brás, N.F.; Neves, R.P.P.; Lopes, F.A.A.; Correia, M.A.S.; Palma, A.S.; Sousa, S.F.; Ramos, M.J. Combined in silico and in vitro studies to identify novel antidiabetic flavonoids targeting glycogen phosphorylase. Bioorg. Chem., 2021, 108, 104552.
[http://dx.doi.org/10.1016/j.bioorg.2020.104552] [PMID: 33357981]
[50]
Singh, S.; Bansal, A.; Singh, V.; Chopra, T.; Poddar, J. Flavonoids, alkaloids and terpenoids: A new hope for the treatment of diabetes mellitus. J. Diabetes Metab. Disord., 2022, 21(1), 941-950.
[http://dx.doi.org/10.1007/s40200-021-00943-8] [PMID: 35673446]
[51]
Jain, D.; Arya, R. Anomalies in alloxan-induced diabetic model: It is better to standardize it first. Indian J. Pharmacol., 2011, 43(1), 91.
[http://dx.doi.org/10.4103/0253-7613.75684] [PMID: 21455436]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy