Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

基于里程碑模型的认知筛查从轻度认知障碍到阿尔茨海默病转化的个体动态预测

卷 20, 期 2, 2023

发表于: 09 June, 2023

页: [89 - 97] 页: 9

弟呕挨: 10.2174/1567205020666230526101524

价格: $65

Open Access Journals Promotions 2
摘要

背景:在认知筛查中识别出阿尔茨海默病(AD)风险增加的轻度认知障碍(MCI)个体对于AD的早期诊断和预防具有重要意义。目的:本研究旨在提出一种基于里程碑模型的筛查策略,根据纵向神经认知测试提供mci到ad转换的动态预测概率。 方法:参与者是312名基线时患有轻度认知障碍的个体。纵向神经认知测试包括简易精神状态测试、阿尔茨海默病评估量表-认知13项、Rey听觉语言学习测试即时、学习和遗忘以及功能评估问卷。我们构建了三种类型的地标模型,并选择了最优的地标模型来动态预测2年的转换概率。数据集按7:3的比例随机分为训练集和验证集。 结果:在所有三种里程碑模型中,FAQ、RAVLT-immediate和ravlt -forget是重要的mci - ad转换纵向神经认知测试。我们将模型3作为最终的里程碑模型(C-index = 0.894, Brier评分= 0.040),选择模型3c (FAQ和RAVLT-forgetting作为神经认知测试)作为最优的里程碑模型(C-index = 0.898, Brier评分= 0.027)。 结论:我们的研究表明,结合FAQ和RAVLTforgetting的最优地标模型是可行的,可以识别mci到ad转换的风险,可以在认知筛查中实施。

关键词: 阿尔茨海默病,轻度认知障碍,认知筛查,神经认知测试,动态预测,诊断和预防。

« Previous
[1]
2021 Alzheimer’s disease facts and figures. Alzheimers Dement., 2021, 17(3), 327-406.
[http://dx.doi.org/10.1002/alz.12328] [PMID: 33756057]
[2]
Ezzati, A.; Zammit, A.R.; Harvey, D.J.; Habeck, C.; Hall, C.B.; Lipton, R.B. Optimizing machine learning methods to improve predictive models of Alzheimer’s Disease. J. Alzheimers Dis., 2019, 71(3), 1027-1036.
[http://dx.doi.org/10.3233/JAD-190262] [PMID: 31476152]
[3]
Wei, R.; Li, C.; Fogelson, N.; Li, L. Prediction of conversion from mild cognitive impairment to alzheimer’s disease using MRI and structural network features. Front. Aging Neurosci., 2016, 8, 76.
[http://dx.doi.org/10.3389/fnagi.2016.00076] [PMID: 27148045]
[4]
Beltrán, J.F.; Wahba, B.M.; Hose, N.; Shasha, D.; Kline, R.P. Alzheimer’s Disease Neuroimaging Initiative. Inexpensive, non-invasive biomarkers predict Alzheimer transition using machine learning analysis of the Alzheimer’s Disease Neuroimaging (ADNI) database. PLoS One, 2020, 15(7), e0235663.
[http://dx.doi.org/10.1371/journal.pone.0235663] [PMID: 32716914]
[5]
Davatzikos, C.; Bhatt, P.; Shaw, L.M.; Batmanghelich, K.N.; Trojanowski, J.Q. Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol. Aging, 2011, 32(12), 2322.e19-2322.e27.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.023] [PMID: 20594615]
[6]
Wu, Y.; Zhang, X.; He, Y.; Cui, J.; Ge, X.; Han, H.; Luo, Y.; Liu, L.; Wang, X.; Yu, H. Predicting Alzheimer’s disease based on survival data and longitudinally measured performance on cognitive and functional scales. Psychiatry Res., 2020, 291, 113201.
[http://dx.doi.org/10.1016/j.psychres.2020.113201] [PMID: 32559670]
[7]
Levy, B.; Tsoy, E.; Gable, S. Developing cognitive markers of Alzheimer’s Disease for primary care: Implications for behavioral and global prevention. J. Alzheimers Dis., 2016, 54(4), 1259-1272.
[http://dx.doi.org/10.3233/JAD-160309] [PMID: 27567831]
[8]
Isik, A.T.; Soysal, P.; Kaya, D.; Usarel, C. Triple test, a diagnostic observation, can detect cognitive impairment in older adults. Psychogeriatrics, 2018, 18(2), 98-105.
[http://dx.doi.org/10.1111/psyg.12289] [PMID: 29409161]
[9]
Ewers, M.; Walsh, C.; Trojanowski, J.Q.; Shaw, L.M.; Petersen, R.C.; Jack, C.R., Jr; Feldman, H.H.; Bokde, A.L.W.; Alexander, G.E.; Scheltens, P.; Vellas, B.; Dubois, B.; Weiner, M.; Hampel, H. Prediction of conversion from mild cognitive impairment to Alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance. Neurobiol. Aging, 2012, 33(7), 1203-1214.e2.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.10.019] [PMID: 21159408]
[10]
Gauthier, S.; Reisberg, B.; Zaudig, M.; Petersen, R.C.; Ritchie, K.; Broich, K.; Belleville, S.; Brodaty, H.; Bennett, D.; Chertkow, H.; Cummings, J.L.; de Leon, M.; Feldman, H.; Ganguli, M.; Hampel, H.; Scheltens, P.; Tierney, M.C.; Whitehouse, P.; Winblad, B. Mild cognitive impairment. Lancet, 2006, 367(9518), 1262-1270.
[http://dx.doi.org/10.1016/S0140-6736(06)68542-5] [PMID: 16631882]
[11]
Wang, J.; Luo, S. Joint modeling of multiple repeated measures and survival data using multidimensional latent trait linear mixed model. Stat. Methods Med. Res., 2019, 28(10-11), 3392-3403.
[http://dx.doi.org/10.1177/0962280218802300] [PMID: 30306833]
[12]
Xue, H.; Sun, Q.; Liu, L.; Zhou, L.; Liang, R.; He, R.; Yu, H. Risk factors of transition from mild cognitive impairment to Alzheimer’s disease and death: A cohort study. Compr. Psychiatry, 2017, 78, 91-97.
[http://dx.doi.org/10.1016/j.comppsych.2017.07.003] [PMID: 28806610]
[13]
Fleisher, A.S.; Sowell, B.B.; Taylor, C.; Gamst, A.C.; Petersen, R.C.; Thal, L.J. Clinical predictors of progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology, 2007, 68(19), 1588-1595.
[http://dx.doi.org/10.1212/01.wnl.0000258542.58725.4c] [PMID: 17287448]
[14]
McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; Mohs, R.C.; Morris, J.C.; Rossor, M.N.; Scheltens, P.; Carrillo, M.C.; Thies, B.; Weintraub, S.; Phelps, C.H. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 263-269.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[15]
Folstein, M.F.; Folstein, S.E.; McHugh, P.R. "Mini-mental state". J. Psychiatr. Res., 1975, 12(3), 189-198.
[http://dx.doi.org/10.1016/0022-3956(75)90026-6] [PMID: 1202204]
[16]
Mohs, R.C.; Knopman, D.; Petersen, R.C.; Ferris, S.H.; Ernesto, C.; Grundman, M.; Sano, M.; Bieliauskas, L.; Geldmacher, D.; Clark, C.; Thai, L.J. Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Study. Alzheimer Dis. Assoc. Disord., 1997, 11, 13-21.
[http://dx.doi.org/10.1097/00002093-199700112-00003] [PMID: 9236948]
[17]
Vakil, E.; Blachstein, H. Rey auditory-verbal learning test: Structure analysis. J. Clin. Psychol., 1993, 49(6), 883-890.
[http://dx.doi.org/10.1002/1097-4679(199311)49:6<883:AID-JCLP2270490616>3.0.CO;2-6] [PMID: 8300877]
[18]
Mathuranath, P.S.; Ranjith, N.; Sharma, G.; Alexander, A. Qualitative aspects of learning, recall, and recognition in dementia. Ann. Indian Acad. Neurol., 2010, 13(2), 117-122.
[http://dx.doi.org/10.4103/0972-2327.64639] [PMID: 20814495]
[19]
Pfeffer, R.I.; Kurosaki, T.T.; Harrah, C.H., Jr; Chance, J.M.; Filos, S. Measurement of functional activities in older adults in the community. J. Gerontol., 1982, 37(3), 323-329.
[http://dx.doi.org/10.1093/geronj/37.3.323] [PMID: 7069156]
[20]
Hans, C. Dynamic prediction by landmarking in event history analysis. Scandinavian journal of stats, 2007, 34(1), 70-85.
[http://dx.doi.org/10.1111/j.1467-9469.2006.00529.x]
[21]
Ferrer, L.; Putter, H.; Proust-Lima, C. Individual dynamic predictions using landmarking and joint modelling: Validation of estimators and robustness assessment. Stat. Methods Med. Res., 2019, 28(12), 3649-3666.
[http://dx.doi.org/10.1177/0962280218811837] [PMID: 30463497]
[22]
Morgan, C.J. Landmark analysis: A primer. J. Nucl. Cardiol., 2019, 26(2), 391-393.
[http://dx.doi.org/10.1007/s12350-019-01624-z] [PMID: 30719655]
[23]
Raghavan, N.; Samtani, M.N.; Farnum, M.; Yang, E.; Novak, G.; Grundman, M.; Narayan, V.; DiBernardo, A. The ADAS‐Cog revisited: Novel composite scales based on ADAS‐Cog to improve efficiency in MCI and early AD trials. Alzheimers Dement., 2013, 9(1S)(Suppl.), S21-S31.
[http://dx.doi.org/10.1016/j.jalz.2012.05.2187] [PMID: 23127469]
[24]
Brown, P.J.; Devanand, D.P.; Liu, X.; Caccappolo, E. Alzheimer’s Disease Neuroimaging Initiative. Functional impairment in elderly patients with mild cognitive impairment and mild Alzheimer disease. Arch. Gen. Psychiatry, 2011, 68(6), 617-626.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.57] [PMID: 21646578]
[25]
Visser, P.J.; Verhey, F.R.; Hofman, P.A.; Scheltens, P.; Jolles, J. Medial temporal lobe atrophy predicts Alzheimer’s disease in patients with minor cognitive impairment. J. Neurol. Neurosurg. Psychiatry, 2002, 72(4), 491-497.
[http://dx.doi.org/10.1136/jnnp.72.4.491] [PMID: 11909909]
[26]
Beier, M.; Hughes, A.J.; Williams, M.W.; Gromisch, E.S. Brief and cost-effective tool for assessing verbal learning in multiple sclerosis: Comparison of the Rey Auditory Verbal Learning Test (RAVLT) to the California Verbal Learning Test - II (CVLT-II). J. Neurol. Sci., 2019, 400, 104-109.
[http://dx.doi.org/10.1016/j.jns.2019.03.016] [PMID: 30913522]
[27]
Islam, M.M.; Parkinson, A.; Burns, K.; Woods, M.; Yen, L. A training program for primary health care nurses on timely diagnosis and management of dementia in general practice: An evaluation study. Int. J. Nurs. Stud., 2020, 105, 103550.
[http://dx.doi.org/10.1016/j.ijnurstu.2020.103550] [PMID: 32145467]
[28]
Andrinopoulou, E.R.; Nasserinejad, K.; Szczesniak, R.; Rizopoulos, D. Integrating latent classes in the Bayesian shared parameter joint model of longitudinal and survival outcomes. Stat. Methods Med. Res., 2020, 29(11), 3294-3307.
[http://dx.doi.org/10.1177/0962280220924680] [PMID: 32438854]
[29]
Suresh, K.; Taylor, J.M.G.; Spratt, D.E.; Daignault, S.; Tsodikov, A. Comparison of joint modeling and landmarking for dynamic prediction under an illness-death model. Biom. J., 2017, 59(6), 1277-1300.
[http://dx.doi.org/10.1002/bimj.201600235] [PMID: 28508545]
[30]
Rizopoulos, D.; Molenberghs, G.; Lesaffre, E.M.E.H. Dynamic predictions with time-dependent covariates in survival analysis using joint modeling and landmarking. Biom. J., 2017, 59(6), 1261-1276.
[http://dx.doi.org/10.1002/bimj.201600238] [PMID: 28792080]
[31]
Riley, R.D.; Ensor, J.; Snell, K.I.E.; Harrell, F.E., Jr; Martin, G.P.; Reitsma, J.B.; Moons, K.G.M.; Collins, G.; van Smeden, M. Calculating the sample size required for developing a clinical prediction model. BMJ, 2020, 368, m441.
[http://dx.doi.org/10.1136/bmj.m441] [PMID: 32188600]
[32]
Riley, R.D.; Collins, G.S.; Ensor, J.; Archer, L.; Booth, S.; Mozumder, S.I.; Rutherford, M.J.; Smeden, M.; Lambert, P.C.; Snell, K.I.E. Minimum sample size calculations for external validation of a clinical prediction model with a time‐to‐event outcome. Stat. Med., 2022, 41(7), 1280-1295.
[http://dx.doi.org/10.1002/sim.9275] [PMID: 34915593]
[33]
Steyerberg, E.W.; Harrell, F.E., Jr; Borsboom, G.J.J.M.; Eijkemans, M.J.C.; Vergouwe, Y.; Habbema, J.D.F. Internal validation of predictive models. J. Clin. Epidemiol., 2001, 54(8), 774-781.
[http://dx.doi.org/10.1016/S0895-4356(01)00341-9] [PMID: 11470385]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy