Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

胡芦巴对阿尔茨海默病的药理作用

卷 20, 期 2, 2023

发表于: 12 June, 2023

页: [71 - 79] 页: 9

弟呕挨: 10.2174/1567205020666230525154300

价格: $65

Open Access Journals Promotions 2
摘要

背景:一年生植物葫芦巴(Trigonellafoenum-graecum L.)在阿育吠陀医学和中医中具有众所周知的保健功效。它的叶子和种子含有生物碱、氨基酸、豆黄素、类黄酮、皂苷和其他生物活性成分。胡芦巴具有抗氧化剂、降血糖和降血脂等多种药理特性。葫芦巴碱、薯蓣皂苷元和4-羟基异亮氨酸已显示出抗阿尔茨海默病的神经保护作用,据报道,其提取物还具有抗抑郁、抗焦虑和调节认知功能的作用。这篇综述重点介绍了在动物和人类身上进行的各种研究,以预防阿尔茨海默病。 方法:本综述中的数据来自流行的搜索引擎,即Google Scholar、PubMed和Scopus。本文综述了2005年至2023年胡芦巴对神经退行性疾病(特别是AD)的保护作用的研究和临床试验。 结果:胡芦巴通过nrf2介导的抗氧化途径改善认知缺陷,并对淀粉样蛋白诱导的线粒体功能障碍提供神经保护。提高SOD和过氧化氢酶活性,清除活性氧,保护细胞器免受氧化应激。它通过调节神经生长因子使微管蛋白正常化,促进轴突生长。胡芦巴还能影响新陈代谢。 讨论:胡芦巴能显著改善神经退行性疾病,尤其是AD的病理症状,并可作为控制疾病病情的治疗剂,文献综述证实。

关键词: 胡芦巴,药理学,疾病,治疗剂,氧化应激,神经系统疾病,传统药物,降胆固醇。

[1]
Khalil, W.; Roshdy, H.; Kassem, S. The potential therapeutic role of Fenugreek saponin against Alzheimers disease: Evaluation of apoptotic and acetylcholinesterase inhibitory activities. J. Appl. Pharm. Sci., 2016, 6, 166-173.
[http://dx.doi.org/10.7324/JAPS.2016.60925]
[2]
Prema, A.; Justin Thenmozhi, A.; Manivasagam, T.; Mohamed Essa, M.; Guillemin, G.J. Fenugreek seed powder attenuated aluminum chloride-induced tau pathology, oxidative stress, and inflammation in a rat model of Alzheimer’s disease. J. Alzheimers Dis., 2017, 60(s1), S209-S220.
[http://dx.doi.org/10.3233/JAD-161103] [PMID: 28269780]
[3]
Farid, MM.; Yang, X.; Kuboyama, T.; Tohda, C. Trigonelline recovers memory function in Alzheimer’s disease model mice: Evidence of brain penetration and target molecule. Sci. Rep., 2020, 2(10), 16424.
[http://dx.doi.org/10.1038/s41598-020-73514-1]
[4]
Olaiya, C.O.; Soetan, K.O. A review of the health benefits of fenugreek (Trigonella foenum-graecum L.): Nutritional, Biochemical and pharmaceutical perspectives. Int. J. Adv. Social. Sci. Humanit, 2014, 3-12.
[5]
Gaddam, A.; Galla, C.; Thummisetti, S.; Marikanty, R.K.; Palanisamy, U.D.; Rao, P.V. Role of Fenugreek in the prevention of type 2 diabetes mellitus in prediabetes. J. Diabetes Metab. Disord., 2015, 14(1), 74.
[http://dx.doi.org/10.1186/s40200-015-0208-4] [PMID: 26436069]
[6]
Gaur, V.; Bodhankar, S.L.; Mohan, V.; Thakurdesai, P.A. Neurobehavioral assessment of hydroalcoholic extract of Trigonella foenum-graecum seeds in rodent models of Parkinson’s disease. Pharm. Biol., 2013, 51(5), 550-557.
[http://dx.doi.org/10.3109/13880209.2012.747547] [PMID: 23368940]
[7]
Baliga, M.S.; Palatty, P.L.; Adnan, M.; Naik, T.S.; Kamble, P.S.; George, T.; D’souza, J.J. Anti-diabetic effects of leaves of Trigonella foenum-graecum L. (Fenugreek): Leads from preclinical studies. Journal of Food Chemistry and Nanotechnology, 2017, 3(2), 67-71.
[http://dx.doi.org/10.17756/jfcn.2017-039]
[8]
Prema, A.; Thenmozhi, A.J.; Manivasagam, T.; Essa, M.M.; Akbar, M.D.; Akbar, M. Fenugreek seed powder nullified aluminium chloride induced memory loss, biochemical changes, Aβ burden and apoptosis via regulating Akt/GSK3β signaling pathway. PLoS One, 2016, 11(11), e0165955.
[http://dx.doi.org/10.1371/journal.pone.0165955] [PMID: 27893738]
[9]
Nathan, J.; Panjwani, S.; Mohan, V.; Joshi, V.; Thakurdesai, P.A. Efficacy and safety of standardized extract of Trigonella foenum-graecum L seeds as an adjuvant to L-Dopa in the management of patients with Parkinson’s disease. Phytother. Res., 2014, 28(2), 172-178.
[http://dx.doi.org/10.1002/ptr.4969] [PMID: 23512705]
[10]
Mirzaie, M.; Khalili, M.; Kiasalari, Z.; Roghani, M. Neuroprotective and antiapoptotic potential of trigonelline in a striatal 6-hydroxydopamine rat model of Parkinson’s disease. Neurophysiology, 2016, 48(3), 176-183.
[http://dx.doi.org/10.1007/s11062-016-9586-6]
[11]
Pujari, R.; Thakurdesai, P. Fenugreek in Management of Neurological and Psychological Disorders; Fenugreek, 2022, pp. 229-257.
[http://dx.doi.org/10.1201/9781003082767-20]
[12]
Zameer, S.; Najmi, A.K.; Vohora, D.; Akhtar, M. A review on therapeutic potentials of Trigonella foenum graecum (fenugreek) and its chemical constituents in neurological disorders: Complementary roles to its hypolipidemic, hypoglycemic, and antioxidant potential. Nutr. Neurosci., 2018, 21(8), 539-545.
[http://dx.doi.org/10.1080/1028415X.2017.1327200] [PMID: 28504078]
[13]
Zhou, J.; Chan, L.; Zhou, S. Trigonelline: A plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr. Med. Chem., 2012, 19(21), 3523-3531.
[http://dx.doi.org/10.2174/092986712801323171] [PMID: 22680628]
[14]
Anjomshoa, M.; Boroujeni, S.N.; Bagheri, E.; Lorigooini, Z.; Amini-Khoei, H. Possible involvement of N-methyl-D-aspartate receptor (NMDA-R) in the antidepressant-like effect of trigonelline in male mice. Curr. Pharm. Des., 2020, 26(39), 5067-5071.
[http://dx.doi.org/10.2174/1381612826666200610181259] [PMID: 32520677]
[15]
Fahanik-Babaei, J.; Baluchnejadmojarad, T.; Nikbakht, F.; Roghani, M. Trigonelline ameliorates learning and memory and synaptic plasticity impairment in intrahippocampal amyloid beta (1-40) rat model of alzheimer’s disease. Acta Med. Iran., 2018, 625-634.
[16]
Farid, M.M.; Nagase, T.; Yang, X.; Nomoto, K.; Kuboyama, T.; Inada, Y.; Tohda, C. Effects of Trigonellafoenum-graecum seeds extract on Alzheimer’s disease transgenic model mouse and its potential active compound transferred to the brain. Japanese J Food Chem Safety., 2021, 28, 63-70.
[17]
Tohda, C.; Urano, T.; Umezaki, M.; Nemere, I.; Kuboyama, T. Diosgenin is an exogenous activator of 1,25D3-MARRS/Pdia3/ERp57 and improves Alzheimer’s disease pathologies in 5XFAD mice. Sci. Rep., 2012, 2(1), 535.
[http://dx.doi.org/10.1038/srep00535] [PMID: 22837815]
[18]
Li, B.; Xu, P.; Wu, S.; Jiang, Z.; Huang, Z.; Li, Q.; Chen, D. Diosgenin attenuates lipopolysaccharide-induced Parkinson’s disease by inhibiting the TLR/NF-κB pathway. J. Alzheimers Dis., 2018, 64(3), 943-955.
[http://dx.doi.org/10.3233/JAD-180330] [PMID: 29966203]
[19]
Chiu, C.S.; Chiu, Y.J.; Wu, L.Y.; Lu, T.C.; Huang, T.H.; Hsieh, M.T.; Lu, C.Y.; Peng, W.H. Diosgenin ameliorates cognition deficit and attenuates oxidative damage in senescent mice induced by D-galactose. Am. J. Chin. Med., 2011, 39(3), 551-563.
[http://dx.doi.org/10.1142/S0192415X11009020] [PMID: 21598421]
[20]
Cai, B.; Zhang, Y.; Wang, Z.; Xu, D.; Jia, Y.; Guan, Y.; Liao, A.; Liu, G.; Chun, C.; Li, J. Therapeutic potential of diosgenin and its major derivatives against neurological diseases: recent advances. Oxid. Med. Cell. Longev., 2020, 2020, 1-16.
[http://dx.doi.org/10.1155/2020/3153082] [PMID: 32215172]
[21]
Koh, E.K.; Yun, W.B.; Kim, J.E.; Song, S.H.; Sung, J.E.; Lee, H.A.; Seo, E.J.; Jee, S.W.; Bae, C.J.; Hwang, D.Y. Beneficial effect of diosgenin as a stimulator of NGF on the brain with neuronal damage induced by Aβ-42 accumulation and neurotoxicant injection. Lab. Anim. Res., 2016, 32(2), 105-115.
[http://dx.doi.org/10.5625/lar.2016.32.2.105] [PMID: 27382379]
[22]
Yang, X.; Tohda, C. Diosgenin restores Aβ-induced axonal degeneration by reducing the expression of heat shock cognate 70 (HSC70). Sci. Rep., 2018, 8(1), 11707.
[http://dx.doi.org/10.1038/s41598-018-30102-8] [PMID: 30076345]
[23]
Gaur, V.; Bodhankar, S.L.; Mohan, V.; Thakurdesai, P. Antidepressant-like effect of 4-hydroxyisoleucine from Trigonella foenum graecum L. seeds in mice. Biomed. Aging Pathol., 2012, 2(3), 121-125.
[http://dx.doi.org/10.1016/j.biomag.2012.07.002]
[24]
Syed, Q.A.; Rashid, Z.; Ahmad, M.H.; Shukat, R.; Ishaq, A.; Muhammad, N.; Rahman, H.U.U. Nutritional and therapeutic properties of fenugreek ( Trigonella foenum-graecum ): a review. Int. J. Food Prop., 2020, 23(1), 1777-1791.
[http://dx.doi.org/10.1080/10942912.2020.1825482]
[25]
Assad, T.; Khan, R.A.; Rajput, M.A. Effect of Trigonella foenum-graecum Linn. seeds methanol extract on learning and memory. Metab. Brain Dis., 2018, 33(4), 1275-1280.
[http://dx.doi.org/10.1007/s11011-018-0235-1] [PMID: 29681009]
[26]
Beg, T.; Jyoti, S.; Naz, F. Rahul, ; Ali, F.; Ali, S.K.; Reyad, A.M.; Siddique, Y.H. Protective effect of kaempferol on the transgenic Drosophila model of Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2018, 17(6), 421-429.
[http://dx.doi.org/10.2174/1871527317666180508123050] [PMID: 29745345]
[27]
Ali, F. Rahul, ; Naz, F.; Jyoti, S.; Siddique, Y.H. Health functionality of apigenin: A review. Int. J. Food Prop., 2017, 20(6), 1197-1238.
[http://dx.doi.org/10.1080/10942912.2016.1207188]
[28]
Thillaivanan, S.; Samraj, K. Challenges, constraints and opportunities in herbal medicines-a review. Int. J. Herb. Med., 2014, 2, 21-24.
[29]
Sharma, P.; Manchanda, R.; Goswami, R.; Chawla, S. Biodiversity and therapeutic potential of medicinal plants. In: Environmental Concerns and Sustainable Development; Shukla, V.; Kumar, N., Eds.; 27-44.
[http://dx.doi.org/10.1007/978-981-13-6358-0_2]
[30]
Elkordy, AA.; Haj-Ahmad, RR.; Awaad, AS.; Zaki, RM. An overview on natural product drug formulations from conventional medicines to nanomedicines: Past, present and future. J. Drug. Del. Sci. Tech., 2021, 1(63), 102459.
[31]
Saklani, A.; Kutty, S. Plant-derived compounds in clinical trials. Drug Discov. Today, 2008, 13(3-4), 161-171.
[http://dx.doi.org/10.1016/j.drudis.2007.10.010] [PMID: 18275914]
[32]
Foroumandi, E.; Javan, R.; Moayed, L.; Fahimi, H.; Kheirabadi, F.; Neamatshahi, M.; Shogofteh, F.; Zarghi, A. The effects of fenugreek seed extract supplementation in patients with Alzheimer’s disease: A randomized, double‐blind, placebo‐controlled trial. Phytother. Res., 2023, 37(1), 285-294.
[http://dx.doi.org/10.1002/ptr.7612] [PMID: 36199177]
[33]
Fridlender, M.; Kapulnik, Y.; Koltai, H. Plant derived substances with anti-cancer activity: From folklore to practice. Front. Plant Sci., 2015, 6, 799.
[http://dx.doi.org/10.3389/fpls.2015.00799] [PMID: 26483815]
[34]
Rai, K.S.; Bhat, K.M. Therapeutic Efficacy of Fenugreek Extract or/and Choline with Docosahexaenoic Acid in Attenuating Learning and Memory Deficits in Ovariectomized Rats. J Krishna Institute Med Sci, 2018, 1, 7.
[35]
Chowdhury, A.A.; Gawali, N.B.; Munshi, R.; Juvekar, A.R. Trigonelline insulates against oxidative stress, proinflammatory cytokines and restores BDNF levels in lipopolysaccharide induced cognitive impairment in adult mice. Metab. Brain Dis., 2018, 33(3), 681-691.
[http://dx.doi.org/10.1007/s11011-017-0147-5] [PMID: 29277879]
[36]
Chowdhury, A.A.; Gawali, N.B.; Bulani, V.D.; Kothavade, P.S.; Mestry, S.N.; Deshpande, P.S.; Juvekar, A.R. In vitro antiglycating effect and in vivo neuroprotective activity of Trigonelline in d -galactose induced cognitive impairment. Pharmacol. Rep., 2018, 70(2), 372-377.
[http://dx.doi.org/10.1016/j.pharep.2017.09.006] [PMID: 29477946]
[37]
Nasiri, L.; Zardooz, H.; Reineh, Z.K.; Roghani, M. The effect of fenugreek methanolic extract on learning and memory in experimental model of Alzheimer’s disease in rat. J. Basic Clin Pathophysiol, 2019, 7, 486.
[38]
Nikbakht, F.; Roghani, M.; Fahanik-Babaei, J.; Baluchnejadmojarad, T. Trigonelline protects hippocampus against intracerebral A?(1–40) as a model of Alzheimer’s disease in the rat: Insights into underlying mechanisms. Metab. Brain Dis., 2019, 1, 34.
[http://dx.doi.org/10.1007/s11011-018-0338-8]
[39]
Algridi, M.A.; Azab, A.E. Ameliorating effects of fenugreek seeds powder against hematotoxicity induced by aluminum chloride in male rabbits. J. Biotechnology and Bioprocessing., 2021, 2, 2766-314.
[40]
Zeng, W.Y.; Tan, L.; Han, C.; Zheng, Z.Y.; Wu, G.S.; Luo, H.R.; Li, S.L. Trigonelline extends the lifespan of C. Elegans and delays the progression of age-related diseases by activating AMPK, DAF-16, and HSF-1. Oxid. Med. Cell. Longev., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/7656834] [PMID: 34616504]
[41]
Cheng, S.M.; Ho, Y.J.; Yu, S.H.; Liu, Y.F.; Lin, Y.Y.; Huang, C.Y.; Ou, H.C.; Huang, H.L.; Lee, S.D. Anti-apoptotic effects of diosgenin in D-galactose-induced aging brain. Am. J. Chin. Med., 2020, 48(2), 391-406.
[http://dx.doi.org/10.1142/S0192415X20500202] [PMID: 32138534]
[42]
Hussain, SM.; Almutairi, N.; Alrakaf, F.; Aljameli, M.; Alshammari, M.; Alnasser, S. Nootropic effect of fenugreek seed extract against scopolamine induced cognitive decline in experimental mice. Psychology, 2020.
[43]
Roghani, M.; Sanaeierad, A.; Reineh, Z.K.; Mahmoudi, N.; Kiasalari, Z.; Rahmani, T. Diosgenin attenuates cognitive impairment in streptozotocin-induced diabetic rats: Underlying mechanisms. Neuropsychobiology, 2021, 80(1), 25-35.
[PMID: 32526752]
[44]
Belaïd-Nouira, Y.; Bakhta, H.; Bouaziz, M.; Flehi-Slim, I.; Haouas, Z.; Ben Cheikh, H. Study of lipid profile and parieto-temporal lipid peroxidation in AlCl3 mediated neurotoxicity. modulatory effect of fenugreek seeds. Lipids Health Dis., 2012, 11(1), 16.
[http://dx.doi.org/10.1186/1476-511X-11-16] [PMID: 22280491]
[45]
Moghadam, F.H.; Vakili-Zarch, B.; Shafiee, M.; Mirjalili, A. Fenugreek seed extract treats peripheral neuropathy in pyridoxine induced neuropathic mice. EXCLI J., 2013, 12, 282-290.
[PMID: 26417231]
[46]
Ahmed, S.I.; Hayat, M.Q.; Zahid, S.; Tahir, M.; Mansoor, Q.; Ismail, M.; Keck, K.; Bates, R. Isolation and identification of flavonoids from anticancer and neuroprotective extracts of <i>Trigonella foenum</i> graecum. Trop. J. Pharm. Res., 2017, 16(6), 1391-1398.
[http://dx.doi.org/10.4314/tjpr.v16i6.25]
[47]
Yousef nasab, F.; Hajinezhad, M.R.; Hashemi, H.; Miri, A. Comparison the effects of Trigonella foenum-graecum L. Seed and Cordia myxa fruit extracts on diabetes induced memory impairment in rats. International Journal of Basic Science in Medicine, 2017, 2(4), 184-188.
[http://dx.doi.org/10.15171/ijbsm.2017.34]
[48]
Khalili, M.; Alavi, M.; Esmaeil-Jamaat, E.; Baluchnejadmojarad, T.; Roghani, M. Trigonelline mitigates lipopolysaccharide-induced learning and memory impairment in the rat due to its anti-oxidative and anti-inflammatory effect. Int. Immunopharmacol., 2018, 61(61), 355-362.
[http://dx.doi.org/10.1016/j.intimp.2018.06.019] [PMID: 29935483]
[49]
Bafadam, S.; Beheshti, F.; Khodabakhshi, T.; Asghari, A.; Ebrahimi, B.; Sadeghnia, H.R.; Mahmoudabady, M.; Niazmand, S.; Hosseini, M. Trigonella foenum-graceum seed (Fenugreek) hydroalcoholic extract improved the oxidative stress status in a rat model of diabetes-induced memory impairment. Horm. Mol. Biol. Clin. Investig., 2019, 39(2), 20180074.
[http://dx.doi.org/10.1515/hmbci-2018-0074] [PMID: 31188777]
[50]
Varshney, V.; Garabadu, D. Ang(1–7) exerts Nrf2-mediated neuroprotection against amyloid beta-induced cognitive deficits in rodents. Mol. Biol. Rep., 2021, 48(5), 4319-4331.
[http://dx.doi.org/10.1007/s11033-021-06447-1] [PMID: 34075536]
[51]
Som, S.; Antony, J.; Dhanabal, S.P.; Ponnusankar, S. Neuroprotective role of Diosgenin, a NGF stimulator, against Aβ (1–42) induced neurotoxicity in animal model of Alzheimer’s disease. Metab. Brain Dis., 2022, 37(2), 359-372.
[http://dx.doi.org/10.1007/s11011-021-00880-8] [PMID: 35023028]
[52]
Tohda, C.; Lee, Y.A.; Goto, Y.; Nemere, I. Diosgenin-induced cognitive enhancement in normal mice is mediated by 1,25D3-MARRS. Sci. Rep., 2013, 3(1), 3395.
[http://dx.doi.org/10.1038/srep03395] [PMID: 24292207]
[53]
Fernandes, F; Barroso, MF De Simone, A Multi-target neuroprotective effects of herbal medicines for Alzheimer's disease. J. Ethnopharmacol., 2022, 23(290), 115107.2022.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy