Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Systematic Review Article

An Update on the Effect Of Sodium Glucose Cotransporter 2 Inhibitors on Non-Alcoholic Fatty Liver Disease: A Systematic Review of Clinical Trials

Author(s): Abdulrahman I. Alfayez, Jawaher M. Alfallaj, Mugahid A. Mobark, Abdullah A. Alalwan and Osamah M. Alfayez*

Volume 20, Issue 2, 2024

Published on: 17 July, 2023

Article ID: e250523217349 Pages: 14

DOI: 10.2174/1573399820666230525150437

Price: $65

Abstract

Non-alcoholic fatty liver disease (NAFLD) is one of the main causes of liver disease, specifically chronic liver disease. Type 2 diabetes (T2DM) is associated with the risk of NAFLD given that patients usually have insulin resistance as one of the observed complications with NAFLD. Hypoglycemic agents, including sodium glucose cotransporter 2 (SGLT-2), have shown to improve NAFLD. The objective of this study is to evaluate the effect of SGLT-2 inhibitors on NAFLD patients’ outcomes, whether they have T2DM or not. We conducted a comprehensive search using the PubMed and Ovid databases to identify published studies that addressed the use of SGLT-2 inhibitors in NAFLD patients. The outcomes assessed include changes in liver enzymes, lipid profiles, weight changes, the fibrosis-4-index (FIB4), and magnetic resonance imaging proton density-based fat fraction (MRI-PDFF). Only clinical trials that met the quality measures were included in this review. Out of 382 potential studies, we included 16 clinical trials that discussed the use of SGLT-2 inhibitors in NAFLD patients. A total of 753 patients were enrolled in these trials. The majority of the trials reported positive effects of SGLT-2 inhibitors on liver enzymes; alanine transaminase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase. All 10 trials that reported changes in body mass index (BMI) from baseline showed a statistically significant reduction with SGLT-2 inhibitor use, while 11 studies reported a significant increase in high density lipoprotein (HDL) levels, 3 studies reported a reduction in triglycerides (TG) levels, and 2 studies showed a decrease in low density lipoprotein (LDL) levels. The available evidence shows that the use of SGLT-2 inhibitors in NAFLD is associated with positive outcomes on liver enzymes, lipid profiles, and BMI. Further studies with larger sample size and longer follow-up time are warranted.

Keywords: nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, diabetes, type 2 diabetes mellitus, sodium glucose cotransporter 2 inhibitors, systematic review

[1]
Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15(1): 11-20.
[http://dx.doi.org/10.1038/nrgastro.2017.109] [PMID: 28930295]
[2]
Raza S, Rajak S, Upadhyay A, Tewari A, Sinha RA. Current treatment paradigms and emerging therapies for NAFLD/NASH. Front Biosci - Landmark 2021; 26(2): 206-37.
[3]
Byrne CD, Targher G. NAFLD: A multisystem disease. J Hepatol 2015; 62(1) (Suppl.): S47-64.
[http://dx.doi.org/10.1016/j.jhep.2014.12.012] [PMID: 25920090]
[4]
Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018; 67(1): 328-57.
[http://dx.doi.org/10.1002/hep.29367] [PMID: 28714183]
[5]
Santhekadur PK, Kumar DP, Sanyal AJ. Preclinical models of non-alcoholic fatty liver disease. J Hepatol 2018; 68(2): 230-7.
[http://dx.doi.org/10.1016/j.jhep.2017.10.031] [PMID: 29128391]
[6]
Yki-Järvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2014; 2(11): 901-10.
[http://dx.doi.org/10.1016/S2213-8587(14)70032-4] [PMID: 24731669]
[7]
Lonardo A, Leoni S, Alswat KA, Fouad Y. History of nonalcoholic fatty liver disease. Int J Mol Sci 2020; 21(16): 5888.
[http://dx.doi.org/10.3390/ijms21165888] [PMID: 32824337]
[8]
Drew L. Fatty liver disease: Turning the tide. Nat 2017; 550(7675): S101-.
[http://dx.doi.org/10.1038/550S101a]
[9]
Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol 2020; 73(1): 202-9.
[http://dx.doi.org/10.1016/j.jhep.2020.03.039] [PMID: 32278004]
[10]
Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012; 482(7384): 179-85.
[http://dx.doi.org/10.1038/nature10809] [PMID: 22297845]
[11]
Lee J, Vali Y, Boursier J, et al. Prognostic accuracy of FIB-4, NAFLD fibrosis score and APRI for NAFLD-related events: A systematic review. Liver Int 2021; 41(2): 261-70.
[http://dx.doi.org/10.1111/liv.14669] [PMID: 32946642]
[12]
Higashiura Y, Tanaka M, Mori K, et al. High fibrosis-4 index predicts the new onset of ischaemic heart disease during a 10-year period in a general population. European Heart Journal Open 2022; 2(3): oeac030.
[http://dx.doi.org/10.1093/ehjopen/oeac030] [PMID: 35919342]
[13]
Sterling RK, Lissen E, Clumeck N, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006; 43(6): 1317-25.
[http://dx.doi.org/10.1002/hep.21178] [PMID: 16729309]
[14]
Kaswala DH, Lai M, Afdhal NH. Fibrosis assessment in Nonalcoholic Fatty Liver Disease (NAFLD) in 2016. Dig Dis Sci 2016; 61(5): 1356-64.
[http://dx.doi.org/10.1007/s10620-016-4079-4] [PMID: 27017224]
[15]
Gu J, Liu S, Du S, et al. Diagnostic value of MRI-PDFF for hepatic steatosis in patients with non-alcoholic fatty liver disease: a meta-analysis. Eur Radiol 2019; 29(7): 3564-73.
[http://dx.doi.org/10.1007/s00330-019-06072-4] [PMID: 30899974]
[16]
Matteoni C, Younossi Z, Gramlich T, Boparai N, Liu Y, McCullough A. Nonalcoholic fatty liver disease: A spectrum of clinical and pathological severity. Gastroenterology 1999; 116(6): 1413-9.
[http://dx.doi.org/10.1016/S0016-5085(99)70506-8] [PMID: 10348825]
[17]
Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005; 41(6): 1313-21.
[http://dx.doi.org/10.1002/hep.20701] [PMID: 15915461]
[18]
Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol 2017; 14(1): 32-42.
[http://dx.doi.org/10.1038/nrgastro.2016.147] [PMID: 27729660]
[19]
Younossi ZM, Golabi P, de Avila L, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol 2019; 71(4): 793-801.
[http://dx.doi.org/10.1016/j.jhep.2019.06.021] [PMID: 31279902]
[20]
Cusi K, Sanyal AJ, Zhang S, et al. Non-alcoholic fatty liver disease (NAFLD) prevalence and its metabolic associations in patients with type 1 diabetes and type 2 diabetes. Diabetes Obes Metab 2017; 19(11): 1630-4.
[http://dx.doi.org/10.1111/dom.12973] [PMID: 28417532]
[21]
Caussy C, Aubin A, Loomba R. The relationship between Type 2 Diabetes, NAFLD, and cardiovascular risk. Curr Diab Rep 2021; 21(5): 15.
[http://dx.doi.org/10.1007/s11892-021-01383-7] [PMID: 33742318]
[22]
Cusi K, Isaacs S, Barb D, et al. American Association of clinical endocrinology clinical practice guideline for the diagnosis and management of nonalcoholic fatty liver disease in primary care and endocrinology clinical settings. Endocr Pract 2022; 28(5): 528-62.
[http://dx.doi.org/10.1016/j.eprac.2022.03.010] [PMID: 35569886]
[23]
Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011; 343(oct18 2): d5928.
[http://dx.doi.org/10.1136/bmj.d5928] [PMID: 22008217]
[24]
RoB 2: A revised Cochrane risk-of-bias tool for randomized trials-Cochrane Bias. Available from: https://methods.cochrane.org/bias/resources/rob-2-revised-cochrane-risk-bias-tool-randomized-trials (Accessed on: April 5, 2023).
[25]
Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Rev Esp Nutr Humana y Diet 2016; 20(2): 148-60.
[http://dx.doi.org/10.1186/2046-4053-4-1/TABLES/4]
[26]
Kahl S, Gancheva S, Straßburger K, et al. Empagliflozin effectively lowers liver fat content in well-controlled type 2 diabetes: A randomized, double-blind, phase 4, placebo-controlled trial. Diabetes Care 2020; 43(2): 298-305.
[http://dx.doi.org/10.2337/dc19-0641] [PMID: 31540903]
[27]
Kinoshita T, Shimoda M, Nakashima K, et al. Comparison of the effects of three kinds of glucose-lowering drugs on non-alcoholic fatty liver disease in patients with type 2 diabetes: A randomized, open-label, three-arm, active control study. J Diabetes Investig 2020; 11(6): 1612-22.
[http://dx.doi.org/10.1111/jdi.13279] [PMID: 32329963]
[28]
Han E, Lee Y, Lee BW, Kang ES, Cha BS. Ipragliflozin additively ameliorates non-alcoholic fatty liver disease in patients with Type 2 diabetes controlled with metformin and pioglitazone: A 24-week randomized controlled trial. J Clin Med 2020; 9(1): 259.
[http://dx.doi.org/10.3390/jcm9010259] [PMID: 31963648]
[29]
Marjot T, Green CJ, Charlton CA, et al. Sodium-glucose cotransporter 2 inhibition does not reduce hepatic steatosis in overweight, insulin-resistant patients without type 2 diabetes. JGH Open 2020; 4(3): 433-40.
[http://dx.doi.org/10.1002/jgh3.12274] [PMID: 31609493]
[30]
Ito D, Shimizu S, Inoue K, et al. Comparison of ipragliflozin and pioglitazone effects on nonalcoholic fatty liver disease in patients with Type 2 Diabetes: A randomized, 24-week, open-label, activecontrolled trial. Diabetes Care 2017; 40(10): 1364-72.
[http://dx.doi.org/10.2337/dc17-0518] [PMID: 28751548]
[31]
Kuchay MS, Krishan S, Mishra SK, et al. Effect of empagliflozin on liver fat in patients with Type 2 diabetes and nonalcoholic fatty liver disease: A randomized controlled trial (E-LIFT Trial). Diabetes Care 2018; 41(8): 1801-8.
[http://dx.doi.org/10.2337/dc18-0165] [PMID: 29895557]
[32]
Shimizu M, Suzuki K, Kato K, et al. Evaluation of the effects of dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on hepatic steatosis and fibrosis using transient elastography in patients with type 2 diabetes and non-alcoholic fatty liver disease. Diabetes Obes Metab 2019; 21(2): 285-92.
[http://dx.doi.org/10.1111/dom.13520] [PMID: 30178600]
[33]
Shibuya T, Fushimi N, Kawai M, et al. Luseogliflozin improves liver fat deposition compared to metformin in type 2 diabetes patients with non-alcoholic fatty liver disease: A prospective randomized controlled pilot study. Diabetes Obes Metab 2018; 20(2): 438-42.
[http://dx.doi.org/10.1111/dom.13061] [PMID: 28719078]
[34]
Seko Y, Nishikawa T, Umemura A, et al. Efficacy and safety of canagliflozin in type 2 diabetes mellitus patients with biopsyproven nonalcoholic steatohepatitis classified as stage 1-3 fibrosis. Diabetes Metab Syndr Obes 2018; 11: 835-43.
[http://dx.doi.org/10.2147/DMSO.S184767] [PMID: 30568471]
[35]
Bando Y, Ogawa A, Ishikura K, et al. The effects of ipragliflozin on the liver-to-spleen attenuation ratio as assessed by computed tomography and on alanine transaminase levels in Japanese patients with type 2 diabetes mellitus. Diabetol Int 2017; 8(2): 218-27.
[http://dx.doi.org/10.1007/s13340-016-0302-y]
[36]
Aso Y, Kato K, Sakurai S, et al. Impact of dapagliflozin, an SGLT2 inhibitor, on serum levels of soluble dipeptidyl peptidase-4 in patients with type 2 diabetes and non-alcoholic fatty liver disease. Int J Clin Pract 2019; 73(5): e13335.
[http://dx.doi.org/10.1111/ijcp.13335] [PMID: 30810254]
[37]
Akuta N, Kawamura Y, Watanabe C, et al. Impact of sodium glucose cotransporter 2 inhibitor on histological features and glucose metabolism of non-alcoholic fatty liver disease complicated by diabetes mellitus. Hepatol Res 2019; 49(5): 531-9.
[http://dx.doi.org/10.1111/hepr.13304] [PMID: 30577089]
[38]
Tobita H, Sato S, Miyake T, Ishihara S, Kinoshita Y. Effects of dapagliflozin on body composition and liver tests in patients with nonalcoholic steatohepatitis associated with type 2 diabetes mellitus: A prospective, open-label, uncontrolled study. Curr Ther Res Clin Exp 2017; 87: 13-9.
[http://dx.doi.org/10.1016/j.curtheres.2017.07.002] [PMID: 28912902]
[39]
Eriksson JW, Lundkvist P, Jansson PA, et al. Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic fatty liver disease in people with type 2 diabetes: a double-blind randomised placebocontrolled study. Diabetologia 2018; 61(9): 1923-34.
[http://dx.doi.org/10.1007/s00125-018-4675-2] [PMID: 29971527]
[40]
Itani T, Ishihara T. Efficacy of canagliflozin against nonalcoholic fatty liver disease: A prospective cohort study. Obes Sci Pract 2018; 4(5): 477-82.
[http://dx.doi.org/10.1002/osp4.294] [PMID: 30338118]
[41]
Inoue M, Hayashi A, Taguchi T, et al. Effects of canagliflozin on body composition and hepatic fat content in type 2 diabetes patients with non-alcoholic fatty liver disease. J Diabetes Investig 2019; 10(4): 1004-11.
[http://dx.doi.org/10.1111/jdi.12980] [PMID: 30461221]
[42]
Cai X, Yang W, Gao X, et al. The Association Between the Dosage of SGLT2 Inhibitor and Weight Reduction in Type 2 Diabetes Patients: A Meta-Analysis. Obesity (Silver Spring) 2018; 26(1): 70-80.
[http://dx.doi.org/10.1002/oby.22066] [PMID: 29165885]
[43]
Cheong AJY, Teo YN, Teo YH, et al. SGLT inhibitors on weight and body mass: A meta-analysis of 116 randomized-controlled trials. Obesity (Silver Spring) 2022; 30(1): 117-28.
[http://dx.doi.org/10.1002/oby.23331] [PMID: 34932882]
[44]
Androutsakos T, Nasiri-Ansari N, Bakasis AD, et al. SGLT-2 Inhibitors in NAFLD: Expanding Their Role beyond Diabetes and Cardioprotection. Int J Mol Sci 2022; 23(6): 3107.
[http://dx.doi.org/10.3390/ijms23063107] [PMID: 35328527]
[45]
Wei Q, Xu X, Guo L, Li J, Li L. Effect of SGLT2 Inhibitors on Type 2 Diabetes Mellitus With Non-Alcoholic Fatty Liver Disease: A Meta-Analysis of Randomized Controlled Trials. Front Endocrinol (Lausanne) 2021; 12: 635556.
[http://dx.doi.org/10.3389/fendo.2021.635556] [PMID: 34220701]
[46]
Chrysavgis L, Papatheodoridi AM, Chatzigeorgiou A, Cholongitas E. The impact of sodium glucose co-transporter 2 inhibitors on non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2021; 36(4): 893-909.
[http://dx.doi.org/10.1111/jgh.15202] [PMID: 33439540]
[47]
Fu ZD, Cai XL, Yang WJ, Zhao MM, Li R, Li YF. Novel glucose-lowering drugs for non-alcoholic fatty liver disease. World J Diabetes 2021; 12(1): 84-97.
[http://dx.doi.org/10.4239/wjd.v12.i1.84] [PMID: 33520110]
[48]
Song T, Chen S, Zhao H, et al. Meta-analysis of the effect of sodium-glucose cotransporter 2 inhibitors on hepatic fibrosis in patients with type 2 diabetes mellitus complicated with non-alcoholic fatty liver disease. Hepatol Res 2021; 51(6): 641-51.
[http://dx.doi.org/10.1111/hepr.13645] [PMID: 33847462]
[49]
Giannini EG, Testa R, Savarino V. Liver enzyme alteration: a guide for clinicians. CMAJ 2005; 172(3): 367-79.
[http://dx.doi.org/10.1503/cmaj.1040752] [PMID: 15684121]
[50]
Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 2004; 24(5): 816-23.
[http://dx.doi.org/10.1161/01.ATV.0000122852.22604.78] [PMID: 14976002]
[51]
Dixon J, Bhathal P, O’Brien P. Weight loss and non-alcoholic fatty liver disease: falls in gamma-glutamyl transferase concentrations are associated with histologic improvement. Obes Surg 2006; 16(10): 1278-86.
[http://dx.doi.org/10.1381/096089206778663805] [PMID: 17059735]
[52]
Lai LL, Yusoff WNIW, Vethakkan SR, Mustapha NRN, Mahadeva S, Chan WK. Screening for non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus using transient elastography. J Gastroenterol Hepatol 2018; 34(8): jgh.14577.
[http://dx.doi.org/10.1111/jgh.14577] [PMID: 30551263]
[53]
Kwok R, Choi KC, Wong GLH, et al. Screening diabetic patients for non-alcoholic fatty liver disease with controlled attenuation parameter and liver stiffness measurements: a prospective cohort study. Gut 2016; 65(8): 1359-68.
[http://dx.doi.org/10.1136/gutjnl-2015-309265] [PMID: 25873639]
[54]
Yokoo T, Serai SD, Pirasteh A, et al. Linearity, bias, and precision of hepatic proton density fat fraction measurements by using MR imaging: A meta-analysis. Radiology 2018; 286(2): 486-98.
[http://dx.doi.org/10.1148/radiol.2017170550] [PMID: 28892458]
[55]
Heba ER, Desai A, Zand KA, et al. Accuracy and the effect of possible subject-based confounders of magnitude-based MRI for estimating hepatic proton density fat fraction in adults, using MR spectroscopy as reference. J Magn Reson Imaging 2016; 43(2): 398-406.
[http://dx.doi.org/10.1002/jmri.25006] [PMID: 26201284]
[56]
Dewey M, Schink T, Dewey CF. Claustrophobia during magnetic resonance imaging: Cohort study in over 55,000 patients. J Magn Reson Imaging 2007; 26(5): 1322-7.
[http://dx.doi.org/10.1002/jmri.21147] [PMID: 17969166]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy