Review Article

Role of lncRNAs and circRNAs in Orofacial Clefts

Author(s): Ratnam S. Seelan*, Robert M. Greene and M. Michele Pisano

Volume 12, Issue 3, 2023

Published on: 07 July, 2023

Page: [171 - 176] Pages: 6

DOI: 10.2174/2211536612666230524153442

Price: $65

Open Access Journals Promotions 2
Abstract

Different modes of gene regulation, such as histone modification, transcription factor binding, DNA methylation, and microRNA (miRNA) expression, are critical for the spatiotemporal expression of genes in developing orofacial tissues. Aberrant regulation in any of these modes may contribute to orofacial defects. Noncoding RNAs (ncRNAs), such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs), have been shown to alter miRNA expression, and are thus emerging as novel contributors to gene regulation. Some of these appear to function as ‘miRNA sponges’, thereby diminishing the availability of these miRNAs to inhibit the expression of target genes. Such ncRNAs are also termed competitive endogenous RNAs (ceRNAs). Here, we examine emerging data that shed light on how lncRNAs and circRNAs may alter miRNA regulation, thus affecting orofacial development and potentially contributing to orofacial clefting.

Keywords: ceRNA, circRNA, cleft palate, lncRNA, miRNA.

Graphical Abstract
[1]
Fish JL. Developmental mechanisms underlying variation in craniofacial disease and evolution. Dev Biol 2016; 415(2): 188-97.
[http://dx.doi.org/10.1016/j.ydbio.2015.12.019] [PMID: 26724698]
[2]
Seelan RS, Pisano M, Greene RM. Nucleic acid methylation and orofacial morphogenesis. Birth Defects Res 2019; 111(20): 1593-610.
[http://dx.doi.org/10.1002/bdr2.1564] [PMID: 31385455]
[3]
Greene RM, Pisano MM. Palate morphogenesis: Current understanding and future directions. Birth Defects Res C Embryo Today 2010; 90(2): 133-54.
[http://dx.doi.org/10.1002/bdrc.20180] [PMID: 20544696]
[4]
Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. Cell 2012; 149(3): 515-24.
[http://dx.doi.org/10.1016/j.cell.2012.04.005] [PMID: 22541426]
[5]
Fernandes J, Acuña S, Aoki J, Floeter-Winter L, Muxel S. Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA 2019; 5(1): 17.
[http://dx.doi.org/10.3390/ncrna5010017] [PMID: 30781588]
[6]
Brockdorff N, Bowness JS, Wei G. Progress toward understanding chromosome silencing by Xist RNA. Genes Dev 2020; 34(11-12): 733-44.
[http://dx.doi.org/10.1101/gad.337196.120] [PMID: 32482714]
[7]
Sun L, Lin JD. Function and mechanism of long noncoding RNAs in adipocyte biology. Diabetes 2019; 68(5): 887-96.
[http://dx.doi.org/10.2337/dbi18-0009] [PMID: 31010880]
[8]
Dragomir M, Chen B, Calin GA. Exosomal lncRNAs as new players in cell-to-cell communication. Transl Cancer Res 2018; 7(S2): S243-52.
[http://dx.doi.org/10.21037/tcr.2017.10.46] [PMID: 30148073]
[9]
Unfried JP, Ulitsky I. Substoichiometric action of long noncoding RNAs. Nat Cell Biol 2022; 24(5): 608-15.
[http://dx.doi.org/10.1038/s41556-022-00911-1] [PMID: 35562482]
[10]
Starke S, Jost I, Rossbach O, et al. Exon circularization requires canonical splice signals. Cell Rep 2015; 10(1): 103-11.
[http://dx.doi.org/10.1016/j.celrep.2014.12.002] [PMID: 25543144]
[11]
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495(7441): 333-8.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[12]
Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol 2014; 32(5): 453-61.
[http://dx.doi.org/10.1038/nbt.2890] [PMID: 24811520]
[13]
Xiao MS, Ai Y, Wilusz JE. Biogenesis and functions of circular RNAs come into focus. Trends Cell Biol 2020; 30(3): 226-40.
[http://dx.doi.org/10.1016/j.tcb.2019.12.004] [PMID: 31973951]
[14]
Liu CX, Chen LL. Circular RNAs: Characterization, cellular roles, and applications. Cell 2022; 185(12): 2016-34.
[http://dx.doi.org/10.1016/j.cell.2022.04.021] [PMID: 35584701]
[15]
Ma L, Cao J, Liu L, et al. LncBook: A curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res 2019; 47(D1): D128-34.
[http://dx.doi.org/10.1093/nar/gky960] [PMID: 30329098]
[16]
Zhu S, Wang Z, Xu J. Connecting versatile lncRNAs with heterogeneous nuclear ribonucleoprotein K and pathogenic disorders. Trends Biochem Sci 2019; 44(9): 733-6.
[http://dx.doi.org/10.1016/j.tibs.2019.06.001] [PMID: 31279651]
[17]
Greene J, Baird AM, Brady L, et al. Circular RNAs: Biogenesis, function and role in human diseases. Front Mol Biosci 2017; 4: 38.
[http://dx.doi.org/10.3389/fmolb.2017.00038] [PMID: 28634583]
[18]
Chen Y, Li C, Tan C, Liu X. Circular RNAs: A new frontier in the study of human diseases. J Med Genet 2016; 53(6): 359-65.
[http://dx.doi.org/10.1136/jmedgenet-2016-103758 ] [PMID: 26945092]
[19]
Sen R, Ghosal S, Das S, Balti S, Chakrabarti J. Competing endogenous RNA: The key to posttranscriptional regulation. ScientificWorldJournal 2014; 2014: 1-6.
[http://dx.doi.org/10.1155/2014/896206] [PMID: 24672386]
[20]
Cai P, Li H, Huo W, et al. Aberrant expression of LncRNA‐MIR31HG regulates cell migration and proliferation by affecting miR‐31 and miR‐31* in Hirschsprung’s disease. J Cell Biochem 2018; 119(10): 8195-203.
[http://dx.doi.org/10.1002/jcb.26830] [PMID: 29626357]
[21]
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell 2011; 146(3): 353-8.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[22]
Gao Y, Zang Q, Song H, et al. Comprehensive analysis of differentially expressed profiles of non coding RNAs in peripheral blood and ceRNA regulatory networks in non syndromic orofacial clefts. Mol Med Rep 2019; 20(1): 513-28.
[http://dx.doi.org/10.3892/mmr.2019.10261] [PMID: 31115538]
[23]
Huang W, Zhong W, He Q, et al. Time‐series expression profiles of mRNAs and lncRNAs during mammalian palatogenesis. Oral Dis 2022; odi.14237. online ahead of print
[http://dx.doi.org/10.1111/odi.14237] [PMID: 35506257]
[24]
Chen S, Jia Z, Cai M, et al. SP1-mediated upregulation of long noncoding RNA ZFAS1 involved in non-syndromic cleft lip and palate via inactivating WNT/β-catenin signaling pathway. Front Cell Dev Biol 2021; 9: 662780.
[http://dx.doi.org/10.3389/fcell.2021.662780] [PMID: 34268302]
[25]
Wang X, Guo S, Zhou X, Wang Y, Zhang T, Chen R. Exploring the molecular mechanism of lncRNA–miRNA–mRNA networks in non-syndromic cleft lip with or without cleft palate. Int J Gen Med 2021; 14: 9931-43.
[http://dx.doi.org/10.2147/IJGM.S339504] [PMID: 34938111]
[26]
Wang E, Guo Y, Gao S, et al. Long non-coding RNAs MALAT1 and NEAT1 in non-syndromic orofacial clefts. Oral Dis 2022. online ahead of print
[http://dx.doi.org/10.1111/odi.14177] [PMID: 35255186]
[27]
Yun L, Ma L, Wang M, et al. Rs2262251 in lncRNA RP11‐462G12.2 is associated with nonsyndromic cleft lip with/without cleft palate. Hum Mutat 2019; 40(11): 2057-67.
[http://dx.doi.org/10.1002/humu.23859] [PMID: 31283072]
[28]
Gao L, Yin J, Wu W. Long non-coding RNA H19-mediated mouse cleft palate induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Exp Ther Med 2016; 11(6): 2355-60.
[http://dx.doi.org/10.3892/etm.2016.3195] [PMID: 27284320]
[29]
Gao LY, Zhang FQ, Zhao WH, et al. LncRNA H19 and target gene-mediated cleft palate induced by TCDD. Biomed Environ Sci 2017; 30(9): 676-80.
[http://dx.doi.org/10.3967/bes2017.090] [PMID: 29081343]
[30]
Stewart CE, Rotwein P. Growth, differentiation, and survival: Multiple physiological functions for insulin-like growth factors. Physiol Rev 1996; 76(4): 1005-26.
[http://dx.doi.org/10.1152/physrev.1996.76.4.1005] [PMID: 8874492]
[31]
Gao L-Y, Hao X-L, Zhang L, Wan T, Liu J-Y, Cao J. Identification and characterization of differentially expressed lncRNA in 2,3,7,8-tetrachlorodibenzo- p -dioxin-induced cleft palate. Hum Exp Toxicol 2020; 39(5): 748-61.
[http://dx.doi.org/10.1177/0960327119899996] [PMID: 31961203]
[32]
He Z, Liu X, Liu X, et al. The role of MEG3 in the proliferation of palatal mesenchymal cells is related to the TGFβ/Smad pathway in TCDD inducing cleft palate. Toxicol Appl Pharmacol 2021; 419: 115517.
[http://dx.doi.org/10.1016/j.taap.2021.115517] [PMID: 33812962]
[33]
Gao L, Liu Y, Wen Y, Wu W. LncRNA H19-mediated mouse cleft palate induced by all-trans retinoic acid. Hum Exp Toxicol 2017; 36(4): 395-401.
[http://dx.doi.org/10.1177/0960327116651121] [PMID: 27307343]
[34]
Shu X, Dong Z, Zhang M, Shu S. Integrated analysis identifying long non-coding RNAs (lncRNAs) for competing endogenous RNAs (ceRNAs) network-regulated palatal shelf fusion in the development of mouse cleft palate. Ann Transl Med 2019; 7(23): 762.
[http://dx.doi.org/10.21037/atm.2019.11.93] [PMID: 32042778]
[35]
Greene RM, Pratt RM. Correlation between cyclic-AMP levels and cytochemical localization of adenylate cyclase during development of the secondary palate. J Histochem Cytochem 1979; 27(5): 924-31.
[http://dx.doi.org/10.1177/27.5.225376] [PMID: 225376]
[36]
Shu X, Cheng L, Dong Z, Shu S. Identification of circular RNA‐associated competing endogenous RNA network in the development of cleft palate. J Cell Biochem 2019; 120(9): 16062-74.
[http://dx.doi.org/10.1002/jcb.28888] [PMID: 31074068]
[37]
Shu X, Dong Z, Shu S. AMBRA1-mediated autophagy and apoptosis associated with an epithelial-mesenchymal transition in the development of cleft palate induced by all-trans retinoic acid. Ann Transl Med 2019; 7(7): 128.
[http://dx.doi.org/10.21037/atm.2019.02.22] [PMID: 31157249]
[38]
Shu X, Shu S, Cheng H. A novel lncRNA‐mediated trans ‐regulatory mechanism in the development of cleft palate in mouse. Mol Genet Genomic Med 2019; 7(2): e00522.
[http://dx.doi.org/10.1002/mgg3.522] [PMID: 30548829]
[39]
Nawshad A, LaGamba D, Hay ED. Transforming growth factor β (TGFβ) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT). Arch Oral Biol 2004; 49(9): 675-89.
[http://dx.doi.org/10.1016/j.archoralbio.2004.05.007] [PMID: 15275855]
[40]
Nawshad A, Hay ED. TGFβ3 signaling activates transcription of the LEF1 gene to induce epithelial mesenchymal transformation during mouse palate development. J Cell Biol 2003; 163(6): 1291-301.
[http://dx.doi.org/10.1083/jcb.200306024] [PMID: 14691138]
[41]
Nawshad A, Medici D, Liu CC, Hay ED. TGFβ3 inhibits E-cadherin gene expression in palate medial-edge epithelial cells through a Smad2-Smad4-LEF1 transcription complex. J Cell Sci 2007; 120(9): 1646-53.
[http://dx.doi.org/10.1242/jcs.003129] [PMID: 17452626]
[42]
Liu X, Liu H, Wu Y, et al. The role of lncRNA Meg3 in the proliferation of all-trans retinoic acid-treated mouse embryonic palate mesenchymal cells involves the Smad pathway. Reprod Toxicol 2021; 104: 1-7.
[http://dx.doi.org/10.1016/j.reprotox.2021.06.011] [PMID: 34166781]
[43]
Liu X, Zhang Y, Shen L, et al. LncRNA Meg3-mediated regulation of the Smad pathway in atRA-induced cleft palate. Toxicol Lett 2021; 341: 51-8.
[http://dx.doi.org/10.1016/j.toxlet.2021.01.017] [PMID: 33493612]
[44]
Smillie CL, Sirey T, Ponting CP. Complexities of post-transcriptional regulation and the modeling of ceRNA crosstalk. Crit Rev Biochem Mol Biol 2018; 53(3): 231-45.
[http://dx.doi.org/10.1080/10409238.2018.1447542] [PMID: 29569941]
[45]
Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics — challenges and potential solutions. Nat Rev Drug Discov 2021; 20(8): 629-51.
[http://dx.doi.org/10.1038/s41573-021-00219-z] [PMID: 34145432]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy