Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Improved Radioimmunodetection of Carcinomas with a Re-injection of Monoclonal Antibodies after Formation of Anti-mouse Antibodies

Author(s): Felix-Martin Werner* and Rafael Covenas

Volume 29, Issue 18, 2023

Published on: 01 June, 2023

Page: [1409 - 1413] Pages: 5

DOI: 10.2174/1381612829666230522092710

Price: $65

conference banner
Abstract

Scintigraphic imaging was satisfactory in animal experiments, i.e., in the radioimmunodetection with 125J anti-tissue polypeptide antigen monoclonal antibodies and implanted HELA cell carcinomas. Unlabeled anti- mouse antibodies (AMAB), in a surplus of 40:1, 200:1 and 4000:1 compared to the radioactive antibody, were administered five days after administering the 125I anti-TPA antibody (RAAB). In immunoscintigraphies, radioactivity accumulated in the liver immediately after administering the secondary antibody, and the tumor's imaging worsened. It can be expected that imunoscintigraphic imaging might improve when radioimmunodetection is re-performed after the formation of human anti-mouse antibodies (AMAB) and when the ratio of the primary to the secondary antibody is nearly equivalent because, in this ratio, the formation of immune complexes might be accelerated. It is possible to measure the quantity of formed anti-mouse antibodies (AMAB) with immunography measurements. A second administration of diagnostic or therapeutic monoclonal antibodies might lead to the formation of immune complexes if the quantities of the monoclonal antibodies and the anti-mouse antibodies have an equivalent ratio. A second performance of the radioimmunodetection four to eight weeks after the first radioimmunodetection can achieve better tumor imaging because human anti-mouse antibodies (AMAB) can be formed. Immune complexes of the radioactive antibody and the human anti-mouse antibody (AMAB) can be formed to concentrate radioactivity in the tumor.

Keywords: Anti-mouse-antibodies, tumor imaging optimization, tumor-non-tumor-ratio, RAAB, immunography, immunoscintigraphy.

[1]
Werner FM. Vergleichende Untersuchungen zum HELA-Tiermodell und zur Immunszintigraphie, insbesondere zum Einfluss eines nachinjizierten Anti-Antikörpers auf die Tumor/Nicht-Tumor-Quotienten und den Bluthintergrund im Tierexperiment. Bonn: Inaugural-Dissertation 1993.
[2]
Ullén A, Sandström P, Ahlström KR, et al. Use of anticytokeratin monclonal anti-idiotypic antibodies to improve tumor: Non-tumor ratio in experimental radioimmunolocalization. Cancer Biother 1994; 9(1): 17-28.
[http://dx.doi.org/10.1089/cbr.1994.9.17] [PMID: 7812354]
[3]
Agnese DM, Abdessalam SF, Burak WE Jr, et al. Pilot study using a humanized CC49 monoclonal antibody (HuCC49DeltaCH2) to localize recurrent colorectal carcinoma. Ann Surg Oncol 2004; 11(2): 197-202.
[http://dx.doi.org/10.1245/ASO.2004.05.010] [PMID: 14761924]
[4]
Behr TM, Becker WS, Bair HJ, et al. Comparison of complete versus fragmented technetium 99m-labeled anti-CEA monoclonal antibodies for immunoscintigraphy in colorectal cancer. Acta Oncol 1993; 32(7-8): 709-15.
[http://dx.doi.org/10.3109/02841869309096125] [PMID: 8305216]
[5]
Klee G. Human anti-mouse-antibodies. Arch Pathol Lab Med 2000; 124(6): 921-3.
[http://dx.doi.org/10.5858/2000-124-0921-HAMA]
[6]
Brumley CL, Kuhn JA. Radiolabelled monoclonal antibodies. AORN J 1995; 62(3): 343-50.
[7]
Goldenberg DM. Monoclonal antibodies in cancer detection and therapy. Am J Med 1993; 94(3): 297-312.
[http://dx.doi.org/10.1016/0002-9343(93)90062-T] [PMID: 8452154]
[8]
Delaloye AB, Delaloye B. Tumor imaging with monoclonal antibodies. Semin Nucl Med 1995; 25(2): 144-64.
[http://dx.doi.org/10.1016/S0001-2998(95)80023-9] [PMID: 7597418]
[9]
Tran L, Beijnen JH, Huitema ADR. The preparation of radiolabeled monoclonal antibodies for human use. Hum Antibodies 2009; 18(4): 145-56.
[http://dx.doi.org/10.3233/HAB-2009-0211] [PMID: 19996529]
[10]
Tjandra JJ, McKenzie I F C. Murine monoclonal antibodies in breast cancer: An overview. Br J Surg 2005; 75(11): 1067-77.
[http://dx.doi.org/10.1002/bjs.1800751107] [PMID: 3061559]
[11]
Egri G, Takáts A. The immunodiagnosis of lung cancer with monoclonal antibodies. Med Sci Monit 2005; 11(9): RA296-300.
[PMID: 16127376]
[12]
Kairemo KJA. Positron emission tomography of monoclonal antibodies. Acta Oncol 1993; 32(7-8): 825-30.
[http://dx.doi.org/10.3109/02841869309096142] [PMID: 8305232]
[13]
De Jager R, Abdel-Nabi H, Serafini A, Pecking A, Klein JL, Hanna MG Jr. Current status of cancer immunodetection with radiolabeled human monoclonal antibodies. Semin Nucl Med 1993; 23(2): 165-79.
[http://dx.doi.org/10.1016/S0001-2998(05)80096-0] [PMID: 8511602]
[14]
Volpe CM, Abdel-Nabi HH, Kulaylat MN, Doerr RJ. Results of immunoscintigraphy using a cocktail of monoclonal antibodies in the detection of colorectal cancer. Int J Biol Markers 1992; 7(3): 183-8.
[PMID: 1431343]
[15]
Goldenberg DM. Cancer imaging with CEA antibodies: Historical and current perspectives. Int J Biol Markers 1992; 7(3): 183-8.
[http://dx.doi.org/10.1177/172460089200700311] [PMID: 1431343]
[16]
Stavrou D, Mellert W, Bilzer T, Senekowitsch R, Keiditsch E, Mehraein P. Radioimmunodetection of gliomas by administration of radiolabelled monoclonal antibodies. Experimental data. Anticancer Res 1985; 5(2): 147-56.
[PMID: 3994308]
[17]
Stavrou D, Glässner H, Bilzer T, Senekowitsch R, Keiditsch E, Mehraein P. Radioimaging of experimental glioma grafts using F (ab’)2-fragments of monoclonal antibodies. Anticancer Res 1986; 6(5): 897-903.
[PMID: 3800333]
[18]
Björklund B, Wiklund B, Luning B, Andersson K, Kallin E, Björklund B. Radioimmunoassay of TPA. A laboratory test inn cancer 1980; I: 78-89.
[19]
Davidson BR, Babich J, Young H, et al. The effect of circulating antigen and radiolabel stability on the biodistribution of an indium labelled antibody. Br J Cancer 1991; 64(5): 850-6.
[http://dx.doi.org/10.1038/bjc.1991.412] [PMID: 1931605]
[20]
Crow DM, Williams L, Colcher D, Wong JYC, Raubitschek A, Shively JE. Combined radioimmunotherapy and chemotherapy of breast tumors with Y-90-labeled anti-Her2 and anti-CEA antibodies with taxol. Bioconjug Chem 2005; 16(5): 1117-25.
[http://dx.doi.org/10.1021/bc0500948] [PMID: 16173788]
[21]
Zhu H, Baxter LT, Jain RK. Potential and limitations of radioimmunodetection and radioimmunotherapy with monoclonal antibodies. J Nucl Med 1997; 38(5): 731-41.
[PMID: 9170438]
[22]
Goldenberg DM. New developments in monoclonal antibodies for cancer detection and therapy. CA Cancer J Clin 1994; 44(1): 43-64.
[http://dx.doi.org/10.3322/canjclin.44.1.43] [PMID: 8281471]
[23]
Ditzel HJ. Human monoclonal antibodies: A tool for cancer detection in vivo. Acta Pathol Microbiol Scand Suppl 1999; 107(S94): 5-42.
[http://dx.doi.org/10.1111/j.1600-0463.1999.tb05692.x] [PMID: 10437609]
[24]
Stocchi L, Nelson H. Diagnostic and therapeutic applications of monoclonal antibodies in colorectal cancer. Dis Colon Rectum 1998; 41(2): 232-50.
[http://dx.doi.org/10.1007/BF02238254] [PMID: 9556250]
[25]
Divigi CR. Status of radiolabeled monoclonal antibodies for diagnosis and therapy of cancer. Oncology 1996; 10(6): 939-53.
[26]
Van de Wiele C, Revets H, Mertens N. Radioimmunoimaging. Advances and prospects. Q J Nucl Med Mol Imaging 2004; 48(4): 317-25.
[PMID: 15640795]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy