Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Synthesis and Biological Activity of 2,6-Naphthyridine Derivatives: A Mini Review

Author(s): Anna Wójcicka*

Volume 27, Issue 8, 2023

Published on: 22 June, 2023

Page: [648 - 660] Pages: 13

DOI: 10.2174/1385272827666230519165336

Price: $65

Abstract

The broad spectrum of biological activity of 2,6-naphthyridine, one of the six structural isomers of pyridopyridine, is the main reason for the development of new compounds containing this scaffold. This review paper aims to present various methods for obtaining 2,6-naphthyridine analogues and their biological activity, which have been reported in the scientific literature. Compounds containing the 2,6-naphthyridine moiety can be isolated from plants or obtained synthetically from various substrates: pyridine derivatives, other heterocyclic derivatives, or acyclic compounds. Biological investigations have shown that these compounds exhibit various biological activity; among others, they have an effect on the central nervous system or anticancer or antimicrobial activity.

Keywords: 2 6-naphthyridines, pyridopyridines, alkaloids, synthesis, heterocyclic derivatives, biological activity.

Graphical Abstract
[1]
Reissert, A. Ueber Di-(γ - amidopropyl) essigsäure (Diamino.1.7.heptanmethylsäure.4) und ihr inneres Condensationsproduct, das Octohydro.1.8.naphtyridin. Ber. Dtsch. Chem. Ges., 1893, 26(2), 2137-2144.
[http://dx.doi.org/10.1002/cber.189302602190]
[2]
Lesher, G.Y.; Froelich, E.J.; Gruett, M.D.; Bailey, J.H.; Brundage, R.P. 1,8-Naphthyridine derivatives. A new class of chemotherapeutic agents. J. Med. Pharm. Chem., 1962, 5(5), 1063-1065.
[http://dx.doi.org/10.1021/jm01240a021] [PMID: 14056431]
[3]
Wang, Y.; Lv, Z.; Chen, F.; Wang, X.; Gou, S. Discovery of 5-(3-Chlorophenylamino)benzo[ c][2,6]naphthyridine derivatives as highly selective CK2 inhibitors with potent cancer cell stemness inhibition. J. Med. Chem., 2021, 64(8), 5082-5098.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00131] [PMID: 33834781]
[4]
Pillaiyar, T.; Laufer, S. Kinases as potential therapeutic targets for anti-coronaviral therapy. J. Med. Chem., 2022, 65(2), 955-982.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00335] [PMID: 34081439]
[5]
Chabowska, G.; Barg, E.; Wójcicka, A. Biological activity of naturally derived naphthyridines. Molecules, 2021, 26(14), 4324.
[http://dx.doi.org/10.3390/molecules26144324] [PMID: 34299599]
[6]
Harkiss, K.J.; Swift, D. 4-methyl-2, 6-naphthyridine, a new plant constituent from antirrhinum majus. Tetrahedron Lett., 1970, 11(55), 4773-4774.
[http://dx.doi.org/10.1016/S0040-4039(00)89342-9]
[7]
Padwa, A.; Hennig, R.; Kappe, C.O.; Reger, T.S. A triple cascade sequence as a strategy for the construction of the erythrinane skeleton. J. Org. Chem., 1998, 63(4), 1144-1155.
[http://dx.doi.org/10.1021/jo9716183]
[8]
Dagne, E.; Steglich, W. Erymelanthine, a new type of erythrina alkaloid containing a 16-azaerythrinane skeleton. Tetrahedron Lett., 1983, 24(46), 5067-5070.
[http://dx.doi.org/10.1016/S0040-4039(00)94042-5]
[9]
Chawla, A.S.; Kapoor, V.K. Erythrina Alkaloids.Alkaloids: Chemical and Biological Perspectives; Elsevier: Amsterdam, 1995, p. 85-153.
[http://dx.doi.org/10.1016/B978-0-08-042089-9.50010-3]
[10]
Kitajima, M.; Mori, I.; Arai, K.; Kogure, N.; Takayama, H. Two new tryptamine-derived alkaloids from Chimonanthus praecox f. concolor. Tetrahedron Lett., 2006, 47(19), 3199-3202.
[http://dx.doi.org/10.1016/j.tetlet.2006.03.047]
[11]
Gordin, H.M. On the crystalline alkaloid of calycanthus glaucus. Third paper—On isocalycanthine, isomeric with calycanthine. J. Am. Chem. Soc., 1909, 31(12), 1305-1312.
[http://dx.doi.org/10.1021/ja01942a007]
[12]
Manske, R.H.F. Calycanthine I. the isolation of calycanthine from meratia praecox. J. Am. Chem. Soc., 1929, 51(6), 1836-1839.
[http://dx.doi.org/10.1021/ja01381a034]
[13]
Chebib, M.; Duke, R.K.; Duke, C.C.; Connor, M.; Mewett, K.N.; Johnston, G.A. Convulsant actions of calycanthine. Toxicol. Appl. Pharmacol., 2003, 190(1), 58-64.
[http://dx.doi.org/10.1016/S0041-008X(03)00149-2] [PMID: 12831783]
[14]
Morikawa, T.; Nakanishi, Y.; Ninomiya, K.; Matsuda, H.; Nakashima, S.; Miki, H.; Miyashita, Y.; Yoshikawa, M.; Hayakawa, T.; Muraoka, O. Dimeric pyrrolidinoindoline-type alkaloids with melanogenesis inhibitory activity in flower buds of Chimonanthus praecox. J. Nat. Med., 2014, 68(3), 539-549.
[http://dx.doi.org/10.1007/s11418-014-0832-1] [PMID: 24668298]
[15]
Zhang, J.W.; Gao, J.M.; Xu, T.; Zhang, X.C.; Ma, Y.T.; Jarussophon, S.; Konishi, Y. Antifungal activity of alkaloids from the seeds of Chimonanthus praecox. Chem. Biodivers., 2009, 6(6), 838-845.
[http://dx.doi.org/10.1002/cbdv.200800089] [PMID: 19551726]
[16]
Verotta, L.; Pilati, T.; Tatò, M.; Elisabetsky, E.; Amador, T.A.; Nunes, D.S. Pyrrolidinoindoline alkaloids from Psychotria colorata. J. Nat. Prod., 1998, 61(3), 392-396.
[http://dx.doi.org/10.1021/np9701642] [PMID: 9548883]
[17]
Bhattarai, H.D.; Paudel, B.; Chan, K.I.; Oh, H.; Yim, J.H. A new fused tetracyclic heterocyclic antioxidant from Serratia sp. PAMC 25557. Phytochem. Lett., 2013, 6(4), 536-538.
[http://dx.doi.org/10.1016/j.phytol.2013.07.006]
[18]
Giacomello, G.; Gualtieri, F.; Riccieri, F.M.; Stein, M.L. Synthesis of 2,6-naphthyridine. Tetrahedron Lett., 1965, 6(16), 1117-1121.
[http://dx.doi.org/10.1016/S0040-4039(00)90042-X] [PMID: 5828040]
[19]
Tan, R.; Taurins, A. Synthesis of 2,6-naphthyridine and some of its derivatives. Tetrahedron Lett., 1965, 6(31), 2737-2744.
[http://dx.doi.org/10.1016/S0040-4039(01)99534-6] [PMID: 5828471]
[20]
Taurins, A.; Li, R.T. Synthesis of 2,6-Naphthyridine, 4-Methyl-2,6-naphthyridine, and their derivatives. Can. J. Chem., 1974, 52(5), 843-848.
[http://dx.doi.org/10.1139/v74-133]
[21]
Alhaique, F.; Riccieri, F.M.; Santucci, E. Cyclisation of dinitriles by sodium alkoxides a new synthesis of naphthyridines. Tetrahedron Lett., 1975, 16(3), 173-174.
[http://dx.doi.org/10.1016/S0040-4039(00)71814-4]
[22]
Alhaique, F.; Riccieri, F.M.; Santucci, E.; Marchetti, M. 2,6-Naphthyridine derivatives from pyridoxine. Farmaco, 1983, 38(4), 242-247.
[23]
Han, X.; Biehl, E.R. Preparation of 1-substituted and 1,4-disubstituted derivatives of 2,6-naphthyridine. ARKIVOC, 2002, 2002(10), 40-51.
[http://dx.doi.org/10.3998/ark.5550190.0003.a06]
[24]
Van Den Haak, H.J.W.; Van Der Plas, H.C.; Van Veldhuizen, B. Amination of 2,6- and 2,7-Naphthyridine. An NMR study on σ-Adducts of heterocyclic systems with amide ions. J. Heterocycl. Chem., 1981, 18(7), 1349-1352.
[http://dx.doi.org/10.1002/jhet.5570180715]
[25]
Fisher, T.L.; Metzler, D.E. Conformationally defined imine derivative of pyridoxal: 7,8-dihydro-3-methyl-2,6-naphthyridine-4-ol. J. Am. Chem. Soc., 1969, 91(19), 5323-5328.
[http://dx.doi.org/10.1021/ja01047a022]
[26]
Govindan, C.K.; Taylor, G. Thermal electrocyclic reactions of 2-aza-1,3-butadiene derivatives. A new N-heterocyclic annelation. J. Org. Chem., 1983, 48(26), 5348-5354.
[http://dx.doi.org/10.1021/jo00174a036]
[27]
Mataka, S.; Takahashi, K.; Tashiro, M. Preparation of hexa-, penta- and tetraphenyl-2,6- and -2,7-naphthyridines. J. Heterocycl. Chem., 1983, 20(4), 971-974.
[http://dx.doi.org/10.1002/jhet.5570200424]
[28]
Numata, A.; Kondo, Y.; Sakamoto, T. General synthetic method for naphthyridines and their n-oxides containing isoquinolinic nitrogen. Synthesis, 1999, 1999(2), 306-311.
[http://dx.doi.org/10.1055/s-1999-3379]
[29]
Sakamoto, T.; Kondo, Y.; Yamanaka, H. Condensed heteroaromatic ring systems. III. Synthesis of naphthyridine derivatives by cyclization of ethynylpyridinecarboxamides. Chem. Pharm. Bull., 1985, 33(2), 626-633.
[http://dx.doi.org/10.1248/cpb.33.626]
[30]
Kamlah, A.; Bracher, F. A short synthesis of the plant alkaloid 4-Methyl-2,6-naphthyridine. Lett. Org. Chem., 2019, 16(12), 931-934.
[http://dx.doi.org/10.2174/1570178616666181116110647]
[31]
Meredith, E.L.; Ardayfio, O.; Beattie, K.; Dobler, M.R.; Enyedy, I.; Gaul, C.; Hosagrahara, V.; Jewell, C.; Koch, K.; Lee, W.; Lehmann, H.; McKinsey, T.A.; Miranda, K.; Pagratis, N.; Pancost, M.; Patnaik, A.; Phan, D.; Plato, C.; Qian, M.; Rajaraman, V.; Rao, C.; Rozhitskaya, O.; Ruppen, T.; Shi, J.; Siska, S.J.; Springer, C.; van Eis, M.; Vega, R.B.; von Matt, A.; Yang, L.; Yoon, T.; Zhang, J.H.; Zhu, N.; Monovich, L.G. Identification of orally available naphthyridine protein kinase D inhibitors. J. Med. Chem., 2010, 53(15), 5400-5421.
[http://dx.doi.org/10.1021/jm100075z] [PMID: 20684591]
[32]
Pierre, F.; Chua, P.C.; O’Brien, S.E.; Siddiqui-Jain, A.; Bourbon, P.; Haddach, M.; Michaux, J.; Nagasawa, J.; Schwaebe, M.K.; Stefan, E.; Vialettes, A.; Whitten, J.P.; Chen, T.K.; Darjania, L.; Stansfield, R.; Anderes, K.; Bliesath, J.; Drygin, D.; Ho, C.; Omori, M.; Proffitt, C.; Streiner, N.; Trent, K.; Rice, W.G.; Ryckman, D.M. Discovery and SAR of 5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer. J. Med. Chem., 2011, 54(2), 635-654.
[http://dx.doi.org/10.1021/jm101251q] [PMID: 21174434]
[33]
Siddiqui-Jain, A.; Drygin, D.; Streiner, N.; Chua, P.; Pierre, F.; O’Brien, S.E.; Bliesath, J.; Omori, M.; Huser, N.; Ho, C.; Proffitt, C.; Schwaebe, M.K.; Ryckman, D.M.; Rice, W.G.; Anderes, K. CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res., 2010, 70(24), 10288-10298.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1893] [PMID: 21159648]
[34]
Son, Y.H.; Moon, S.H.; Kim, J. The protein kinase 2 inhibitor CX-4945 regulates osteoclast and osteoblast differentiation in vitro. Mol. Cells, 2013, 36(5), 417-423.
[http://dx.doi.org/10.1007/s10059-013-0184-9] [PMID: 24293011]
[35]
Naik, R.R.; Shakya, A.K.; Aladwan, S.M.; El-Tanani, M. Kinase inhibitors as potential therapeutic agents in the treatment of COVID-19. Front. Pharmacol., 2022, 13, 806568.
[http://dx.doi.org/10.3389/fphar.2022.806568] [PMID: 35444538]
[36]
Pramanik, D.; Pawar, A.B.; Roy, S.; Singh, J.K. Mechanistic insights of key host proteins and potential repurposed inhibitors regulating SARS ‐COV ‐2 pathway. J. Comput. Chem., 2022, 43(18), 1237-1250.
[http://dx.doi.org/10.1002/jcc.26888] [PMID: 35535951]
[37]
Ahamad, S.; Gupta, D.; Kumar, V. Targeting SARS-CoV-2 nucleocapsid oligomerization: Insights from molecular docking and molecular dynamics simulations. J. Biomol. Struct. Dyn., 2022, 40(6), 2430-2443.
[http://dx.doi.org/10.1080/07391102.2020.1839563] [PMID: 33140703]
[38]
Yadav, S.; Ahamad, S.; Gupta, D.; Mathur, P. Lead optimization, pharmacophore development and scaffold design of protein kinase CK2 inhibitors as potential COVID-19 therapeutics. J. Biomol. Struct. Dyn., 2022, 41(5), 1-17.
[http://dx.doi.org/10.1080/07391102.2021.2024449] [PMID: 35014595]
[39]
Pierre, F.; Stefan, E.; Nédellec, A.S.; Chevrel, M.C.; Regan, C.F.; Siddiqui-Jain, A.; Macalino, D.; Streiner, N.; Drygin, D.; Haddach, M.; O’Brien, S.E.; Anderes, K.; Ryckman, D.M. 7-(4H-1,2,4-Triazol-3-yl)benzo[c][2,6]naph-thyridines: A novel class of Pim kinase inhibitors with potent cell antiproliferative activity. Bioorg. Med. Chem. Lett., 2011, 21(22), 6687-6692.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.059] [PMID: 21982499]
[40]
Hyvonen, M.J.; Break, P.; Spring, D.R.; Glossop, P. Preparation of benzo[ c][2,6]naphthyridine derivatives as casein kinase 2α inhibitors, compositions and therapeutic uses thereof. WO2022185041, 2022.
[41]
Letavic, M.A.; Keith, J.M.; Ly, K.S.; Barbier, A.J.; Boggs, J.D.; Wilson, S.J.; Lord, B.; Lovenberg, T.W.; Carruthers, N.I. Novel naphthyridines are histamine H3 antagonists and serotonin reuptake transporter inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(9), 2566-2569.
[http://dx.doi.org/10.1016/j.bmcl.2007.02.006] [PMID: 17307358]
[42]
Stocking, E.M.; Letavic, M.A.; Bonaventure, P.; Carruthers, N.I. Exploration of structure-activity relationships for dual serotonin transporter reuptake inhibitors-histamine H3 receptor antagonists. Curr. Top. Med. Chem., 2010, 10(5), 596-616.
[http://dx.doi.org/10.2174/156802610791111515] [PMID: 20166942]
[43]
Molina, P.; Lorenzo, A.; Aller, E. Iminophosphorane-mediated annelation of a pyridine ring into a preformed pyridine one: Synthesis of naphthyridine, pyrido[1,2-c]pyrimidine and pyrido[1,2-c]quinazoline derivatives. Tetrahedron, 1992, 48(22), 4601-4616.
[http://dx.doi.org/10.1016/S0040-4020(01)81234-5]
[44]
Brieaddy, L.E.; Wayne Mascarella, S.; Navarro, H.A.; Atkinson, R.N.; Damaj, M.I.; Martin, B.R.; Carroll, F.I. Synthesis of bridged analogs of epibatidine. 3-Chloro-5,7,8,9,9a,10-hexahydro-7,10-methanopyrrolo[1,2-b]-2,6-naphthyridine and 2-chloro-5,5a,6,7,8,10-hexahydro-5,8-methanopyrrolo[2,1-b]-1,7-naphthyridine. Tetrahedron Lett., 2001, 42(23), 3795-3797.
[http://dx.doi.org/10.1016/S0040-4039(01)00575-5]
[45]
Ames, D.E.; Dodds, W.D. Condensation of β-dicarbonyl compounds with halopyridinecarboxylic acids. Synthesis of naphthyridine derivatives. J. Chem. Soc., Perkin Trans. 1, 1972, 5, 705-710.
[http://dx.doi.org/10.1039/P19720000705]
[46]
Ikeura, Y.; Tanaka, T.; Kiyota, Y.; Morimoto, S.; Ogino, M.; Ishimaru, T.; Kamo, I.; Doi, T.; Natsugari, H. Potent NK1 receptor antagonists: Synthesis and antagonistic activity of various heterocycles with an N-[3,5-bis(trifluoromethyl)benzyl]-N-methylcarbamoyl substituent. Chem. Pharm. Bull., 1997, 45(10), 1642-1652.
[http://dx.doi.org/10.1248/cpb.45.1642] [PMID: 9353892]
[47]
van Eis, M.J.; Evenou, J.P.; Floersheim, P.; Gaul, C.; Cowan-Jacob, S.W.; Monovich, L.; Rummel, G.; Schuler, W.; Stark, W.; Strauss, A.; Matt, A.; Vangrevelinghe, E.; Wagner, J.; Soldermann, N. 2,6-Naphthyridines as potent and selective inhibitors of the novel protein kinase C isozymes. Bioorg. Med. Chem. Lett., 2011, 21(24), 7367-7372.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.025] [PMID: 22078216]
[48]
Dore, A.; Asproni, B.; Scampuddu, A.; Pinna, G.A.; Christoffersen, C.T.; Langgård, M.; Kehler, J. Synthesis and SAR study of novel tricyclic pyrazoles as potent phosphodiesterase 10A inhibitors. Eur. J. Med. Chem., 2014, 84, 181-193.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.020] [PMID: 25016376]
[49]
Nakahara, K.; Mitsuoka, Y.; Kasuya, S.; Yamamoto, T.; Yamamoto, S.; Ito, H.; Kido, Y.; Kusakabe, K. Balancing potency and basicity by incorporating fluoropyridine moieties: Discovery of a 1-amino-3,4-dihydro-2,6-naphthyridine BACE1 inhibitor that affords robust and sustained central Aβ reduction. Eur. J. Med. Chem., 2021, 216, 113270.
[http://dx.doi.org/10.1016/j.ejmech.2021.113270] [PMID: 33765486]
[50]
Giudice, M.R.D.; Mustazza, C.; Ferretti, R.; Borioni, A.; Gatta, F. Synthesis of 5-amino-1,2,3,4-tetrahydrobenzo[ b][1,7]naphthyridines and 2,3,4,4a,5,6-hexahydrobenzo[c][2,6]naphthyridines. J. Heterocycl. Chem., 1998, 35(4), 915-922.
[http://dx.doi.org/10.1002/jhet.5570350422]
[51]
Nozulak, J.; Kalkman, H.O.; Floerscheim, P.; Hoyer, D.; Schoeffter, P.; Buerki, H.R. (+)-cis-4,5,7a,8,9,10,11,11a-Octahydro-7H-10-methylindolo[1,7-bc][2,6]- naphthyridine: A 5-HT2C/2B Receptor Antagonist with Low 5-HT2A Receptor Affinity. J. Med. Chem., 1995, 38(1), 28-33.
[http://dx.doi.org/10.1021/jm00001a007] [PMID: 7837236]
[52]
Rykowski, A.; Lipinska, T. 1,2,4-Triazines in organic synthesis. 7. Inverse electron demand Diels-Alder reaction of 5-acyl-1,2,4-triazines: A new route to alkyl heteroaryl ketones. Pol. J. Chem., 1997, 71, 83-90.
[http://dx.doi.org/10.1002/chin.199719074]
[53]
Kumpan, K.; Nathubhai, A.; Zhang, C.; Wood, P.J.; Lloyd, M.D.; Thompson, A.S.; Haikarainen, T.; Lehtiö, L.; Threadgill, M.D. Structure-based design, synthesis and evaluation in vitro of arylnaphthyridinones, arylpyridopyrimidinones and their tetrahydro derivatives as inhibitors of the tankyrases. Bioorg. Med. Chem., 2015, 23(13), 3013-3032.
[http://dx.doi.org/10.1016/j.bmc.2015.05.005] [PMID: 26026769]
[54]
Gowlugari, S.; DeFalco, J.; Nguyen, M.T.; Kaub, C.; Chi, C.; Duncton, M.A.J.; Emerling, D.E.; Kelly, M.G.; Kincaid, J.; Vincent, F. Discovery of potent, non-carbonyl inhibitors of fatty acid amide hydrolase (FAAH). MedChemComm, 2012, 3(10), 1258-1263.
[http://dx.doi.org/10.1039/c2md20146a]
[55]
Silva Júnior, P.E.; Rezende, L.C.D.; Gimenes, J.P.; Maltarollo, V.G.; Dale, J.; Trossini, G.H.G.; Emery, F.S.; Ganesan, A. Synthesis of two ‘heteroaromatic rings of the future’ for applications in medicinal chemistry. RSC Advances, 2016, 6(27), 22777-22780.
[http://dx.doi.org/10.1039/C6RA01099G]
[56]
Kessar, S.V.; Gupta, Y.P.; Singh, P.; Gupta, S.K.; Pahwa, P.S. New routes to condensed polynuclear compounds: Part XVIII—Cyclisations through naphthynes and pyridynes. Proc. Indian Acad. Sci. Sect. A Phys. Sci., 1979, 88(3), 191-196.
[http://dx.doi.org/10.1007/BF02844801]
[57]
Lohani, S.; Peng, Z.; Mckeown, A.E. Synthesis of diazocino[2,1-a]naphthyridinetrione derivative in crystalline form. U.S. Patent US20080280945, 2008.
[58]
Han, W.; Egbertson, M.; Wai, J.S.; Zhuang, L.; Ruzek, R.D.; Perlow, D.S.; Obligado, V.E. Preparation of hydroxynaphthyridinediones as HIV integrase inhibitors. World Patent WO2005087767, 2005.
[59]
Matty, L., Jr; Wang, Y. Preparation of crystalline 6-(3-chloro-4- fluorobenzyl)-4-hydroxy-2-isopropyl-N,N-dimethyl-3,5-dioxo-2,3,5,6,7,8- hexahydro-2,6-naphthyridine-1-carboxamide sodium salt as an HIV integrase inhibitor. World Patent WO2006107478, 2006.
[60]
Lee, M.S.; Jung, S.H.; Kim, T.U.; Ahn, Y.G. Preparation of 2,6- naphthyridine-2-oxide derivatives as fibroblast growth factor receptor inhibitors. Korean Patent KR2019076339, 2019.
[61]
Ryckman, D.M.; Schwaebe, M. Polymorphs and salts of 5-(3- chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid kinase inhibitor. World Patent WO2011063398, 2011.
[62]
Siu, T.; Young, J.; Altman, M.; Northrup, A.; Katcher, M.; Sathyajith, E.; Kozina, E.; Peterson, S.; Childers, M. Preparation of 7,8-fused-2,6- naphthyridin-1(2H)-ones as inhibitors of janus kinases. World Patent WO2009035575, 2009.
[63]
Gangjee, A.; Donkor, I.O.; Kisliuk, R.L.; Gaumont, Y.; Thorndike, J. Synthesis and biological activity of 5,11-methylenetetrahydro-5-deazahomofolic acid. J. Med. Chem., 1991, 34(2), 611-616.
[http://dx.doi.org/10.1021/jm00106a022] [PMID: 1995884]
[64]
Fan, W.; Ye, Q.; Xu, H.W.; Jiang, B.; Wang, S.L.; Tu, S.J. Novel double [3 + 2 + 1] heteroannulation for forming unprecedented dipyrazolo-fused 2,6-naphthyridines. Org. Lett., 2013, 15(9), 2258-2261.
[http://dx.doi.org/10.1021/ol4008266] [PMID: 23597067]
[65]
Branowska, D. Synthesis of unsymmetrical annulated 2,2′-bipyridine analogues with attached cycloalkene and piperidine rings via sequential Diels-Alder Reaction of 5,5′-bi-1,2,4-triazines. Molecules, 2005, 10(1), 265-273.
[http://dx.doi.org/10.3390/10010265] [PMID: 18007295]
[66]
Ritter, J.; Gleiter, R. High Regioselectivity in polar additions to 1,6-diazacyclodeca-3,8-diynes. Liebigs Ann., 1997, 1997(6), 1179-1188.
[http://dx.doi.org/10.1002/jlac.199719970620]
[67]
Gleiter, R.; Weigl, H.; Haberhauer, G. On the electronic nature of a butadienyl biradical – experiments and ab initio MO calculations. Eur. J. Org. Chem., 1998, 1998(7), 1447-1453.
[http://dx.doi.org/10.1002/(SICI)1099-0690(199807)1998:7<1447:AID-EJOC1447>3.0.CO;2-L]
[68]
Dong, P.; Majeed, K.; Wang, L.; Guo, Z.; Zhou, F.; Zhang, Q. Transition metal-free approach to azafluoranthene scaffolds by aldol condensation/[1+2+3] annulation tandem reaction of isocyanoacetates with 8-(alkynyl)-1-naphthaldehydes. Chem. Commun., 2021, 57(39), 4855-4858.
[http://dx.doi.org/10.1039/D1CC01015H] [PMID: 33870390]
[69]
Grzybowski, M. Deperasińska, I.; Chotkowski, M.; Banasiewicz, M.; Makarewicz, A.; Kozankiewicz, B.; Gryko, D.T. Dipyrrolonaphthyridinediones – structurally unique cross-conjugated dyes. Chem. Commun., 2016, 52(29), 5108-5111.
[http://dx.doi.org/10.1039/C6CC01017B] [PMID: 26988844]
[70]
Rajamanickam, P.; Shanmugam, P. A convenient synthesis of benzo[c][2,6]naphthyridines. Synthesis, 1985, 1985(5), 541-543.
[http://dx.doi.org/10.1055/s-1985-31268]
[71]
Chilin, A.; Manzini, P.; Confente, A.; Pastorini, G.; Guiotto, A. Synthesis of some benzo[c][2,6]naphthyridin-5-ones and new tetracyclic benzofuro[4,5-c]-2,6-naphthyridin-5(6H)-ones. Tetrahedron, 2002, 58(50), 9959-9964.
[http://dx.doi.org/10.1016/S0040-4020(02)01325-X]
[72]
Zhu, S.; Ruchelman, A.L.; Zhou, N.; Liu, A.; Liu, L.F.; LaVoie, E.J. 6-Substituted 6H-dibenzo[c,h][2,6]naphthyridin-5-ones: Reversed lactam analogues of ARC-111 with potent topoisomerase I-targeting activity and cytotoxicity. Bioorg. Med. Chem., 2006, 14(9), 3131-3143.
[http://dx.doi.org/10.1016/j.bmc.2005.12.028] [PMID: 16412652]
[73]
Bishnoi, A.; Tiwari, A.K.; Singh, S.; Sethi, A.; Tripathi, C.M.; Banerjee, B. Synthesis, characterization, and biological evaluation of novel thiazole and pyrazole derivatives of quinoline-4-carboxylic acid as potential antimicrobial agents. Med. Chem. Res., 2013, 22(7), 3527-3535.
[http://dx.doi.org/10.1007/s00044-012-0333-2]
[74]
Castriconi, F.; Paolino, M.; Giuliani, G.; Anzini, M.; Campiani, G.; Mennuni, L.; Sabatini, C.; Lanza, M.; Caselli, G.; De Rienzo, F.; Menziani, M.C.; Sbraccia, M.; Molinari, P.; Costa, T.; Cappelli, A. Synthesis and structure–activity relationship studies in serotonin 5-HT4 receptor ligands based on a benzo[de][2,6]naphthridine scaffold. Eur. J. Med. Chem., 2014, 82, 36-46.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.015] [PMID: 24871995]
[75]
Yang, M-C.; Hanna, J.; Iino, H. Novel calamitic liquid crystalline organic semiconductors based on electron-deficient dibenzo[ c, h][2,6]naphthyridine: Synthesis, mesophase, and charge transport properties by the time-of-flight technique. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(42), 13192-13202.
[http://dx.doi.org/10.1039/C9TC03990B]
[76]
Ramana, C.; Swami, A. Target cum flexibility: Synthesis of indolo[1,2-b]isoquinoline derivatives via cobalt-catalyzed [2+2+2] cyclotrimerization. Synlett, 2015, 26(5), 604-608.
[http://dx.doi.org/10.1055/s-0034-1379950]
[77]
Wang, H.C.; Wang, C.C.; Chen, Y.; Cao, J.; Ren, X.; Hong, W.; Xu, Y.X. Synthesis and molecular properties of isomeric thienoisoindigo. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2021, 9(38), 13218-13225.
[http://dx.doi.org/10.1039/D1TC02948G]
[78]
Perillo, I.A.; Kremenchuzky, L.D.; Blanco, M.M. Synthesis and spectroscopic properties of novel polyfunctionally substituted 2,6- and 2,7-naphthyridines. J. Mol. Struct., 2009, 921(1-3), 307-313.
[http://dx.doi.org/10.1016/j.molstruc.2009.01.012]
[79]
Dobler, M.R.; Jewell, C.F., Jr; Meredith, E.; Monovich, L.G.; Siska, S.; Von Matt, A.; Van Eis, M.; Yoon, T.; Gaul, C.; Capparelli, M.P. Preparation of [2,6]naphthyridines as protein kinase inhibitors. World Patent WO2008122615, 2008.
[80]
Han, Z.J.; Zhang, Z.X.; Li, W.P.; Du, Z.H.; Tao, B.X.; Da, C.S.; Jiao, Z.Y.; Chen, H.; Li, Y. Ruthenium‐catalyzed double C(sp 2)−H functionalizations of fumaramides with alkynes for the divergent synthesis of pyridones and naphthyridinediones. ChemCatChem, 2020, 12(9), 2538-2547.
[http://dx.doi.org/10.1002/cctc.201902160]
[81]
Haraburda, E.; Lledó, A.; Roglans, A.; Pla-Quintana, A. Dehydrogenative [2 + 2 + 2] cycloaddition of cyano-yne-allene substrates: Convenient access to 2,6-naphthyridine scaffolds. Org. Lett., 2015, 17(12), 2882-2885.
[http://dx.doi.org/10.1021/acs.orglett.5b01554] [PMID: 26068506]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy