Review Article

Role of Dietary Phytochemicals in Targeting Human miRNAs for Cancer Prevention and Treatment

Author(s): Yasodha Kesavan, Shushrruth Sai Srinivasan, Surajit Pathak and Satish Ramalingam*

Volume 23, Issue 5, 2023

Published on: 05 June, 2023

Page: [343 - 355] Pages: 13

DOI: 10.2174/1566523223666230519124519

Price: $65

Open Access Journals Promotions 2
Abstract

MicroRNAs (miRNAs - ~22 nucleotides) are a type of non-coding RNAs that are involved in post-transcriptional gene silencing. They are known to regulate gene expression in diverse biological processes, such as apoptosis, development, and differentiation. Several studies have demonstrated that cancer initiation and progression are highly regulated by miRNA expression. The nutrients present in the diet may regulate the different stages of carcinogenesis. Interestingly, plant-based foods, like fruits and vegetables, have been shown to play a significant role in cancer prevention. Phytochemicals are bioactive compounds derived from plant sources, and they have been shown to have antiinflammatory, antioxidant, and anticancer properties. Recent findings suggest that dietary phytochemicals, such as genistein, resveratrol, and curcumin, exert significant anticancer effects by regulating various miRNAs. In this review, we focus on the role of dietary phytochemicals in cancer prevention and treatment through the modulation of miRNA expression.

Keywords: miRNA, phytochemicals, curcumin, non-coding genes, miR-21, cancer.

Graphical Abstract
[1]
Bartel DP. Metazoan MicroRNAs. Cell 2018; 173(1): 20-51.
[http://dx.doi.org/10.1016/j.cell.2018.03.006] [PMID: 29570994]
[2]
Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev 2015; 87: 3-14.
[http://dx.doi.org/10.1016/j.addr.2015.05.001] [PMID: 25979468]
[3]
Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res 2004; 14(10a): 1902-10.
[http://dx.doi.org/10.1101/gr.2722704] [PMID: 15364901]
[4]
Zeng Y, Cullen BR. Sequence requirements for micro RNA processing and function in human cells. RNA 2003; 9(1): 112-23.
[http://dx.doi.org/10.1261/rna.2780503] [PMID: 12554881]
[5]
Bartel DP. MicroRNAs. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[6]
Hibio N, Hino K, Shimizu E, Nagata Y, Ui-Tei K. Stability of miRNA 5'terminal and seed regions is correlated with experimentally observed miRNA-mediated silencing efficacy. Sci Rep 2012; 2(1): 996.
[http://dx.doi.org/10.1038/srep00996] [PMID: 23251782]
[7]
Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65(16): 7065-70.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1783] [PMID: 16103053]
[8]
Srivastava SK, Arora S, Averett C, Singh S, Singh AP. Modulation of microRNAs by phytochemicals in cancer: underlying mechanisms and translational significance. BioMed Res Int 2015; 2015: 1-9.
[http://dx.doi.org/10.1155/2015/848710] [PMID: 25853141]
[9]
Zhang L, Hou D, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA. Cell Res 2011; 22(1)107-26.doi.org/10.1038/cr.2011.158
[10]
Gismondi A, Nanni V, Monteleone V, et al. Plant miR171 modulates mTOR pathway in HEK293 cells by targeting GNA12. Mol Biol Rep 2021; 48(1): 435-9.
[http://dx.doi.org/10.1007/s11033-020-06070-6]
[11]
Vaucheret H, Chupeau Y. Ingested plant miRNAs regulate gene expression in animals. Cell Res 2011; 22(1): 3-5.
[http://dx.doi.org/10.1038/cr.2011.164]
[12]
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013; 38(1): 23-38.
[http://dx.doi.org/10.1038/npp.2012.112] [PMID: 22781841]
[13]
Hwang H-W, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 2006; 94(6): 776-80.
[http://dx.doi.org/10.1038/sj.bjc.6603023] [PMID: 16495913]
[14]
Lima RT, Busacca S, Almeida GM, Gaudino G, Fennell DA, Vasconcelos MH. MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer 2011; 47(2): 163-74.
[http://dx.doi.org/10.1016/j.ejca.2010.11.005] [PMID: 21145728]
[15]
Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev 2011; 91(3): 827-87.
[http://dx.doi.org/10.1152/physrev.00006.2010] [PMID: 21742789]
[16]
Jeker LT, Bluestone JA. MicroRNA regulation of T-cell differentiation and function. Immunol Rev 2013; 253(1): 65-81.
[http://dx.doi.org/10.1111/imr.12061] [PMID: 23550639]
[17]
Vienberg S, Geiger J, Madsen S, Dalgaard LT. MicroRNAs in metabolism. Acta Physiol 2017; 219(2): 346-61.
[http://dx.doi.org/10.1111/apha.12681] [PMID: 27009502]
[18]
Iorio MV, Croce CM. MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2012; 4(3): 143-59.
[http://dx.doi.org/10.1002/emmm.201100209] [PMID: 22351564]
[19]
Liu Q, Yang W, Luo Y, Hu S, Zhu L. Correlation between miR-21 and miR-145 and the incidence and prognosis of colorectal cancer. J BUON 2018; 23(1): 29-35.
[PMID: 29552756]
[20]
Brase JC, Wuttig D, Kuner R, Sültmann H. Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer 2010; 9(1): 306.
[http://dx.doi.org/10.1186/1476-4598-9-306] [PMID: 21110877]
[21]
Bidarra D, Constâncio V, Barros-Silva D, et al. Circulating MicroRNAs as biomarkers for prostate cancer detection and metastasis development prediction. Front Oncol 2019; 9: 900.
[http://dx.doi.org/10.3389/fonc.2019.00900] [PMID: 31572685]
[22]
Filipów S. Łaczmański Ł. Blood Circulating miRNAs as cancer biomarkers for diagnosis and surgical treatment response. Front Genet 2019; 10: 169.
[http://dx.doi.org/10.3389/fgene.2019.00169] [PMID: 30915102]
[23]
Just C, Knief J, Lazar-Karsten P, et al. MicroRNAs as potential biomarkers for chemoresistance in adenocarcinomas of the esophagogastric junction. J Oncol 2019; 2019: 1-11.
[http://dx.doi.org/10.1155/2019/4903152] [PMID: 31467538]
[24]
Huang Z, Huang D, Ni S, et al. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer 2010; 127(1): 118-26.
[http://dx.doi.org/10.1002/ijc.25007]
[25]
Li W, Wang Y, Zhang Q, et al. MicroRNA-486 as a biomarker for early diagnosis and recurrence of non-small cell lung cancer. PLoS One 2015; 10(8): e0134220.
[http://dx.doi.org/10.1371/journal.pone.0134220] [PMID: 26237047]
[26]
Li Z, Chen H. miR-34a inhibits proliferation, migration and invasion of paediatric neuroblastoma cells via targeting HNF4α. Artif Cells Nanomed Biotechnol 2019; 47(1): 3072-8.
[http://dx.doi.org/10.1080/21691401.2019.1637886] [PMID: 31343368]
[27]
Mao F, Zhang J, Cheng X, Xu Q. miR-149 inhibits cell proliferation and enhances chemosensitivity by targeting CDC42 and BCL2 in neuroblastoma. Cancer Cell Int 2019; 19(1): 357.
[http://dx.doi.org/10.1186/s12935-019-1082-9] [PMID: 31889909]
[28]
Chava S, Reynolds CP, Pathania AS, et al. miR‐15a‐5p, miR‐15b‐ 5p, and miR‐16‐5p inhibit tumor progression by directly targeting MYCN in neuroblastoma. Mol Oncol 2020; 14(1): 180-96.
[http://dx.doi.org/10.1002/1878-0261.12588] [PMID: 31637848]
[29]
Xu X, Wu J, Ren G, Hu Q. miR 181c expression in neuroblastoma children and proliferation of neuroblastoma M17 cells. Oncol Lett 2019; 18(3): 3025-30.
[http://dx.doi.org/10.3892/ol.2019.10602] [PMID: 31402960]
[30]
Liu HJ, Li GL, Lei PC. Effects of miR-144 on proliferation, apoptosis and cisplatin resistance by targeting MYCN in pediatric neuroblastoma. Zhonghua Zhong Liu Za Zhi China 2019; 41(7): 516-21.
[http://dx.doi.org/10.3760/cma.j.issn.0253-3766.2019.07.006]
[31]
Wan M-F, Yang N, Qu N-Y, Pan YY, Shan YQ, Li P. MiR-424 suppressed viability and invasion by targeting to the DCLK1 in neuroblastoma. Eur Rev Med Pharmacol Sci Italy 2020; 24(10): 5526-33.
[http://dx.doi.org/10.26355/eurrev_202005_21338] [PMID: 32495887]
[32]
Han L-L, Zhou X-J, Li F-J, et al. MiR-223-3p promotes the growth and invasion of neuroblastoma cell via targeting FOXO1. Eur Rev Med Pharmacol Sci Italy 2019; 23(20): 8984-90.
[http://dx.doi.org/10.26355/eurrev_201910_19298] [PMID: 31696486]
[33]
Zhou X, Lu H, Li F, et al. MicroRNA-429 inhibits neuroblastoma cell proliferation, migration and invasion via the NF-κB pathway. Cell Mol Biol Lett 2020; 25(1): 5.
[http://dx.doi.org/10.1186/s11658-020-0202-9] [PMID: 32082390]
[34]
Zhao J, Zhou K, Ma L, Zhang H. MicroRNA-145 overexpression inhibits neuroblastoma tumorigenesis in vitro and in vivo. Bioengineered 2020; 11(1): 219-28.
[http://dx.doi.org/10.1080/21655979.2020.1729928] [PMID: 32083506]
[35]
Kim KW, Qiao J, Kim JY, Park K, Chung DH. Overexpression of microRNA-145 inhibits tumorigenesis through autophagy in chemotherapy and radiation resistant neuroblastoma cells. Oncoscience 2020; 7(1-2): 1-9.
[http://dx.doi.org/10.18632/oncoscience.496] [PMID: 32258242]
[36]
Wang J, Zhang X, Yao H, et al. MiR-490-5p functions as tumor suppressor in childhood neuroblastoma by targeting MYEOV. Hum Cell 2020; 33(1): 261-71.
[http://dx.doi.org/10.1007/s13577-019-00302-z] [PMID: 31894478]
[37]
Senfter D, Samadaei M, Mader RM, et al. High impact of miRNA-4521 on FOXM1 expression in medulloblastoma. Cell Death Dis 2019; 10(10): 696.
[http://dx.doi.org/10.1038/s41419-019-1926-1] [PMID: 31541075]
[38]
Kanchan RK, Perumal N, Atri P, et al. MiR-1253 exerts tumor-suppressive effects in medulloblastoma via inhibition of CDK6 and CD276 Brain Pathol Switzerland 2020; B7-H3.
[http://dx.doi.org/10.1111/bpa.12829]
[39]
Huang S, Xue P, Han X, et al. Exosomal miR-130b-3p targets SIK1 to inhibit medulloblastoma tumorigenesis. Cell Death Dis 2020; 11(6): 408.
[http://dx.doi.org/10.1038/s41419-020-2621-y] [PMID: 32483145]
[40]
Ma H, Cao W, Ding M. MicroRNA-31 weakens cisplatin resistance of medulloblastoma cells via NF-κB and PI3K/AKT pathways. Biofactors 2020; 46(5): 831-8.2020.
[http://dx.doi.org/10.1002/biof.1616]
[41]
Silber J, Hashizume R, Felix T, et al. Expression of miR-124 inhibits growth of medulloblastoma cells. Neuro-oncol 2013; 15(1): 83-90.
[http://dx.doi.org/10.1093/neuonc/nos281] [PMID: 23172372]
[42]
Shi JA, Lu DL, Huang X, Tan W. miR-219 inhibits the proliferation, migration and invasion of medulloblastoma cells by targeting CD164. Int J Mol Med 2014; 34(1): 237-43.
[http://dx.doi.org/10.3892/ijmm.2014.1749] [PMID: 24756834]
[43]
Xu TJ, Qiu P, Zhang YB, Yu SY, Xu GM, Yang W. MiR-148a inhibits the proliferation and migration of glioblastoma by targeting ITGA9. Hum Cell 2019; 32(4): 548-56.
[http://dx.doi.org/10.1007/s13577-019-00279-9] [PMID: 31489579]
[44]
Sun B, Zhao X, Ming J, Liu X, Liu D, Jiang C. Stepwise detection and evaluation reveal miR-10b and miR-222 as a remarkable prognostic pair for glioblastoma. Oncogene 2019; 38(33): 6142-57.
[http://dx.doi.org/10.1038/s41388-019-0867-6] [PMID: 31289362]
[45]
Kim S, Choi JY, Seok HJ, Park MJ, Chung HY, Bae IH. miR-340-5p suppresses aggressiveness in glioblastoma multiforme by targeting Bcl-w and Sox2. Mol Ther Nucleic Acids 2019; 17: 245-55.
[http://dx.doi.org/10.1016/j.omtn.2019.05.022] [PMID: 31272074]
[46]
Zhang H, Li Y, Tan Y, et al. MiR-9-5p inhibits glioblastoma cells proliferation through directly targeting FOXP2 (Forkhead Box P2). Front Oncol 2019; 9: 1176.
[http://dx.doi.org/10.3389/fonc.2019.01176] [PMID: 31824836]
[47]
Guo X, Piao H, Zhang Y, et al. Overexpression of microRNA-129-5p in glioblastoma inhibits cell proliferation, migration, and colony-forming ability by targeting ZFP36L1. Bosn J Basic Med Sci 2020; 20(4): 459-70.
[http://dx.doi.org/10.17305/bjbms.2019.4503]
[48]
Zeng A, Yin J, Li Y, et al. miR-129-5p targets Wnt5a to block PKC/ERK/NF-κB and JNK pathways in glioblastoma. Cell Death Dis 2018; 9(3): 394.
[http://dx.doi.org/10.1038/s41419-018-0343-1] [PMID: 29531296]
[49]
Li Y, Chen F, Chu J, et al. miR-148-3p Inhibits growth of glioblastoma targeting DNA methyltransferase-1 (DNMT1). Oncol Res 2019; 27(8): 911-21.
[http://dx.doi.org/10.3727/096504019X15516966905337] [PMID: 30982493]
[50]
Huang W, Shi Y, Han B, et al. miR-802 inhibits the proliferation, invasion, and epithelial-mesenchymal transition of glioblastoma multiforme cells by directly targeting SIX4. Cell Biochem Funct 2020; 38(1): 66-76.
[http://dx.doi.org/10.1002/cbf.3451] [PMID: 31702057]
[51]
Zuo J, Yu H, Xie P, Liu W, Wang K, Ni H. miR-454-3p exerts tumor-suppressive functions by down-regulation of NFATc2 in glioblastoma. Gene 2019; 710: 233-9.
[http://dx.doi.org/10.1016/j.gene.2019.06.008] [PMID: 31181312]
[52]
Zhao P, Sun S, Zhai Y, Tian Q, Zhou T, Li J. miR-423-5p inhibits the proliferation and metastasis of glioblastoma cells by targeting phospholipase C beta 1. Int J Clin Exp Pathol 2019; 12(8): 2941-50.
[PMID: 31934130]
[53]
Kalhori MR, Irani S, Soleimani M, Arefian E, Kouhkan F. The effect of miR-579 on the PI3K/AKT pathway in human glioblastoma PTEN mutant cell lines. J Cell Biochem 2019; 120(10): 16760-74.
[http://dx.doi.org/10.1002/jcb.28935] [PMID: 31243804]
[54]
Liu J, Jiang J, Hui X, Wang W, Fang D, Ding L. Mir-758-5p suppresses glioblastoma proliferation, migration and invasion by targeting ZBTB20. Cell Physiol Biochem 2018; 48(5): 2074-83.
[http://dx.doi.org/10.1159/000492545] [PMID: 30099442]
[55]
Feng L, Ma J, Ji H, Liu Y, Hu W. miR-330-5p suppresses glioblastoma cell proliferation and invasiveness through targeting ITGA5. Biosci Rep 2017; 37(3): BSR20170019.
[http://dx.doi.org/10.1042/BSR20170019] [PMID: 28336765]
[56]
Sheng S, Xie L, Wu Y, Ding M, Zhang T, Wang X. MiR-144 inhibits growth and metastasis in colon cancer by down-regulating SMAD4. Biosci Rep 2019; 39(3): BSR20181895.
[http://dx.doi.org/10.1042/BSR20181895] [PMID: 30745456]
[57]
Yu W, Zhu K, Wang Y, Yu H, Guo J. Overexpression of miR-21-5p promotes proliferation and invasion of colon adenocarcinoma cells through targeting CHL1. Mol Med 2018; 24(1): 36.
[http://dx.doi.org/10.1186/s10020-018-0034-5] [PMID: 30134821]
[58]
Niu Z-Y, Li W-L, Jiang D-L, et al. Mir-483 inhibits colon cancer cell proliferation and migration by targeting TRAF1 Kaohsiung J Med Sci China (Republic: 1949) 2018; 34(9): 479-86.
[http://dx.doi.org/10.1016/j.kjms.2018.04.005]
[59]
Li B, Wang S, Wang S. MiR-195 suppresses colon cancer proliferation and metastasis by targeting WNT3A. Mol Genet Genomics 2018; 293(5): 1245-53.
[http://dx.doi.org/10.1007/s00438-018-1457-y] [PMID: 29948330]
[60]
Zeng M, Zhu L, Li L, Kang C. miR-378 suppresses the proliferation, migration and invasion of colon cancer cells by inhibiting SDAD1. Cell Mol Biol Lett 2017; 22(1): 12.
[http://dx.doi.org/10.1186/s11658-017-0041-5] [PMID: 28725241]
[61]
Bi WP, Xia M, Wang XJ. miR 137 suppresses proliferation, migration and invasion of colon cancer cell lines by targeting TCF4. Oncol Lett 2018; 15(6): 8744-8.
[http://dx.doi.org/10.3892/ol.2018.8364] [PMID: 29805612]
[62]
Zhu W, Luo X, Fu H, Liu L, Sun P, Wang Z. MiR-3653 inhibits the metastasis and epithelial-mesenchymal transition of colon cancer by targeting Zeb2. Pathol Res Pract 2019; 215(10): 152577.
[http://dx.doi.org/10.1016/j.prp.2019.152577] [PMID: 31405759]
[63]
Yang H, Li Q, Niu J, et al. microRNA-342-5p and miR-608 inhibit colon cancer tumorigenesis by targeting NAA10. Oncotarget 2016; 7(3): 2709-20.
[http://dx.doi.org/10.18632/oncotarget.6458] [PMID: 26646451]
[64]
Zheng Y, Zheng Y, Lei W, Xiang L, Chen M. miR-1307–3p overexpression inhibits cell proliferation and promotes cell apoptosis by targeting ISM1 in colon cancer. Mol Cell Probes 2019; 48: 101445.
[http://dx.doi.org/10.1016/j.mcp.2019.101445] [PMID: 31513891]
[65]
Shen X, Zuo X, Zhang W, Bai Y, Qin X, Hou N. MiR-370 promotes apoptosis in colon cancer by directly targeting MDM4. Oncol Lett 2018; 15(2): 1673-9.
[http://dx.doi.org/10.3892/ol.2017.7524] [PMID: 29434862]
[66]
Ma J, Zhu Y, Wang Z, et al. miR-593 inhibits proliferation of colon cancer cells in vitro by down-regulating PLK1. Nan Fang Yi Ke Da Xue Xue Bao 2019; 39(2): 144-9. (miR-593 inhibits proliferation of colon cancer cells in vitro by down-regulating PLK1).
[http://dx.doi.org/10.12122/j.issn.1673-4254.2019.09.03] [PMID: 30890500]
[67]
Zhang L, Chen T, Yan L, et al. MiR-155-3p acts as a tumor suppressor and reverses paclitaxel resistance via negative regulation of MYD88 in human breast cancer. Gene 2019; 700: 85-95.
[http://dx.doi.org/10.1016/j.gene.2019.02.066] [PMID: 30878390]
[68]
Du H-Y, Liu B. MiR-1271 as a tumor suppressor in breast cancer proliferation and progression via targeting SPIN1. Eur Rev Med Pharmacol Sci Italy 2018; 22(9): 2697-706.
[http://dx.doi.org/10.26355/eurrev_201805_14966] [PMID: 29771421]
[69]
Zhang P, Yang F, Luo Q, Yan D, Sun S. miR-1284 inhibits the growth and invasion of breast cancer cells by targeting ZIC2. Oncol Res 2019; 27(2): 253-60.
[http://dx.doi.org/10.3727/096504018X15242763477504] [PMID: 30075825]
[70]
Zhao J, Jiang G-Q. MiR-4282 inhibits proliferation, invasion and metastasis of human breast cancer by targeting Myc. Eur Rev Med Pharmacol Sci Italy 2018; 22(24): 8763-71.
[PMID: 30575917]
[71]
Jana S, Sengupta S, Biswas S, Chatterjee A, Roy H, Bhattacharyya A. miR-216b suppresses breast cancer growth and metastasis by targeting SDCBP. Biochem Biophys Res Commun 2017; 482(1): 126-33.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.003] [PMID: 27720715]
[72]
Xu B, Zhang X, Wang S, Shi B. MiR-449a suppresses cell migration and invasion by targeting PLAGL2 in breast cancer. Pathol Res Pract 2018; 214(5): 790-5.
[http://dx.doi.org/10.1016/j.prp.2017.12.012] [PMID: 29653747]
[73]
Wu J, Miao J, Ding Y, et al. MiR-4458 inhibits breast cancer cell growth, migration, and invasiveness by targeting CPSF4. Biochem Cell Biol 2019; 97(6): 722-30.
[http://dx.doi.org/10.1139/bcb-2019-0008] [PMID: 30970220]
[74]
Li X, Li Y, Lu H. miR-1193 suppresses proliferation and invasion of human breast cancer cells through directly targeting IGF2BP2. Oncol Res 2017; 25(4): 579-85.
[http://dx.doi.org/10.3727/97818823455816X14760504645779] [PMID: 27733218]
[75]
Xie F, Hosany S, Zhong S, et al. MicroRNA-193a inhibits breast cancer proliferation and metastasis by downregulating WT1. PLoS One 2017; 12(10): e0185565.
[http://dx.doi.org/10.1371/journal.pone.0185565] [PMID: 29016617]
[76]
Liu S, Wang Z, Liu Z, et al. miR-221/222 activate the Wnt/β-catenin signaling to promote triple-negative breast cancer. J Mol Cell Biol 2018; 10(4): 302-15.
[http://dx.doi.org/10.1093/jmcb/mjy041] [PMID: 30053090]
[77]
Lu Y, Qin T, Li J, et al. MicroRNA-140-5p inhibits invasion and angiogenesis through targeting VEGF-A in breast cancer. Cancer Gene Ther 2017; 24(9): 386-92.
[http://dx.doi.org/10.1038/cgt.2017.30] [PMID: 28752859]
[78]
Chi Y, Jin Q, Liu X, et al. miR-203 inhibits cell proliferation, invasion, and migration of non-small-cell lung cancer by downregulating RGS 17. Cancer Sci 2017; 108(12): 2366-72.
[http://dx.doi.org/10.1111/cas.13401] [PMID: 28921827]
[79]
Gao X, Dai M, Li Q, Wang Z, Lu Y, Song Z. HMGA2 regulates lung cancer proliferation and metastasis. Thorac Cancer 2017; 8(5): 501-10.
[http://dx.doi.org/10.1111/1759-7714.12476] [PMID: 28752530]
[80]
Shen Y-Y, Cui J-Y, Yuan J, Wang X. MiR-451a suppressed cell migration and invasion in non-small cell lung cancer through targeting ATF2. Eur Rev Med Pharmacol Sci Italy 2018; 22(17): 5554-61.
[PMID: 30229828]
[81]
Kang M, Li Y, Zhao Y, He S, Shi J. miR-33a inhibits cell proliferation and invasion by targeting CAND1 in lung cancer. Clin Transl Oncol 2018; 20(4): 457-66.
[http://dx.doi.org/10.1007/s12094-017-1730-2] [PMID: 28871425]
[82]
Chen S, Shi F, Zhang W, Zhou Y, Huang J. RETRACTED: miR-744-5p inhibits non-small cell lung cancer proliferation and invasion by directly targeting PAX2. Technol Cancer Res Treat 2019; 18.
[http://dx.doi.org/10.1177/1533033819876913] [PMID: 31522607]
[83]
Dang W, Qin Z, Fan S, et al. miR-1207-5p suppresses lung cancer growth and metastasis by targeting CSF1. Oncotarget 2016; 7(22): 32421-32.
[http://dx.doi.org/10.18632/oncotarget.8718] [PMID: 27107415]
[84]
Li Y, Zhang H, Li Y, et al. MiR-182 inhibits the epithelial to mesenchymal transition and metastasis of lung cancer cells by targeting the Met gene. Mol Carcinog 2018; 57(1): 125-36.
[http://dx.doi.org/10.1002/mc.22741] [PMID: 28940757]
[85]
Wu Y, Song Y, Xiong Y, et al. MicroRNA-21 (Mir-21) promotes cell growth and invasion by repressing tumor suppressor PTEN in colorectal cancer. Cell Physiol Biochem 2017; 43(3): 945-58.
[http://dx.doi.org/10.1159/000481648] [PMID: 28957811]
[86]
Báez-Vega PM, Vargas IME, Valiyeva F, et al. Targeting miR-21-3p inhibits proliferation and invasion of ovarian cancer cells. Oncotarget 2016; 7(24): 36321-37.
[http://dx.doi.org/10.18632/oncotarget.9216] [PMID: 27166999]
[87]
Petrović N. miR-21 might be involved in breast cancer promotion and invasion rather than in initial events of breast cancer development. Mol Diagn Ther 2016; 20(2): 97-110.
[http://dx.doi.org/10.1007/s40291-016-0186-3] [PMID: 26891730]
[88]
Xue X, Liu Y, Wang Y, et al. MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget 2016; 7(51): 84508-19.
[http://dx.doi.org/10.18632/oncotarget.13022] [PMID: 27811366]
[89]
Xiao T, Jie Z. MiR-21 promotes the invasion and metastasis of gastric cancer cells by activating epithelial-mesenchymal transition. Eur Surg Res 2019; 60(5-6): 208-18.
[http://dx.doi.org/10.1159/000504133] [PMID: 31722341]
[90]
Li G, Song Y, Li G, et al. Downregulation of microRNA 21 expression inhibits proliferation, and induces G1 arrest and apoptosis via the PTEN/AKT pathway in SKM 1 cells. Mol Med Rep 2018; 18(3): 2771-9.
[http://dx.doi.org/10.3892/mmr.2018.9255] [PMID: 30015844]
[91]
Zhou J, Zhang Y, Han Z, et al. RETRACTED ARTICLE: miR-506 contributes to malignancy of cutaneous squamous cell carcinoma via targeting of P65 and LAMC1. Cell Cycle 2019; 18(3): 333-45.
[http://dx.doi.org/10.1080/15384101.2019.1568747] [PMID: 30646812]
[92]
Zhang LY, Chen Y, Jia J, Zhu X, He Y, Wu LM. MiR-27a promotes EMT in ovarian cancer through active Wnt/휷-catenin signalling by targeting FOXO1. Cancer Biomark 2019; 24(1): 31-42.
[http://dx.doi.org/10.3233/CBM-181229] [PMID: 30614794]
[93]
Wu K, Wang J, He J, Chen Q, Yang L. miR-483-3p promotes proliferation and migration of neuroblastoma cells by targeting PUMA. Int J Clin Exp Pathol 2018; 11(2): 490-501.
[PMID: 31938135]
[94]
Yuan XL, Wen FQ, Chen XW, Jiang XP, Liu SX. miR-373 promotes neuroblastoma cell proliferation, migration, and invasion by targeting SRCIN1. OncoTargets Ther 2019; 12: 4927-36.
[http://dx.doi.org/10.2147/OTT.S205582] [PMID: 31417287]
[95]
Chen L, Guan H, Gu C, Cao Y, Shao J, Wang F. miR-383 inhibits hepatocellular carcinoma cell proliferation via targeting APRIL. Tumour Biol 2016; 37(2): 2497-507.
[http://dx.doi.org/10.1007/s13277-015-4071-1] [PMID: 26385772]
[96]
Li L, Shao MY, Zou SC, Xiao ZF, Chen ZC. MiR-101-3p inhibits EMT to attenuate proliferation and metastasis in glioblastoma by targeting TRIM44. J Neurooncol 2019; 141(1): 19-30.
[http://dx.doi.org/10.1007/s11060-018-2973-7] [PMID: 30539341]
[97]
Fujii R, Osaka E, Sato K, Tokuhashi Y. MiR-1 suppresses proliferation of osteosarcoma cells by up-regulating p21 via PAX3. Cancer Genomics Proteomics 2019; 16(1): 71-9.
[http://dx.doi.org/10.21873/cgp.20113] [PMID: 30587501]
[98]
Baselga-Escudero L, Blade C, Ribas-Latre A, et al. Resveratrol and EGCG bind directly and distinctively to miR-33a and miR-122 and modulate divergently their levels in hepatic cells. Nucleic Acids Res 2014; 42(2): 882-92.
[http://dx.doi.org/10.1093/nar/gkt1011] [PMID: 24165878]
[99]
Pan J, Shen J, Si W, et al. Resveratrol promotes MICA/B expression and natural killer cell lysis of breast cancer cells by suppressing c-Myc/miR-17 pathway. Oncotarget 2017; 8(39): 65743-58.
[http://dx.doi.org/10.18632/oncotarget.19445] [PMID: 29029468]
[100]
Toden S, Okugawa Y, Buhrmann C, et al. Novel evidence for curcumin and boswellic acid–induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer. Cancer Prev Res 2015; 8(5): 431-43.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0354] [PMID: 25712055]
[101]
Mudduluru G, George-William JN, Muppala S, et al. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep 2011; 31(3): 185-97.
[http://dx.doi.org/10.1042/BSR20100065] [PMID: 20815812]
[102]
Dou H, Shen R, Tao J, et al. Curcumin suppresses the colon cancer proliferation by inhibiting Wnt/β-Catenin pathways via miR-130a. Front Pharmacol 2017; 8: 877.
[http://dx.doi.org/10.3389/fphar.2017.00877] [PMID: 29225578]
[103]
Yang J, Cao Y, Sun J, Zhang Y. Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Med Oncol 2010; 27(4): 1114-8.
[http://dx.doi.org/10.1007/s12032-009-9344-3] [PMID: 19908170]
[104]
Liu T, Chi H, Chen J, et al. Curcumin suppresses proliferation and in vitro invasion of human prostate cancer stem cells by ceRNA effect of miR-145 and lncRNA-ROR. Gene 2017; 631: 29-38.
[http://dx.doi.org/10.1016/j.gene.2017.08.008] [PMID: 28843521]
[105]
Tili E, Michaille JJ, Alder H, et al. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochem Pharmacol 2010; 80(12): 2057-65.
[http://dx.doi.org/10.1016/j.bcp.2010.07.003] [PMID: 20637737]
[106]
Tili E, Michaille JJ, Adair B, et al. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis 2010; 31(9): 1561-6.
[http://dx.doi.org/10.1093/carcin/bgq143] [PMID: 20622002]
[107]
Liu P, Liang H, Xia Q, et al. Resveratrol induces apoptosis of pancreatic cancers cells by inhibiting miR-21 regulation of BCL-2 expression. Clin Transl Oncol 2013; 15(9): 741-6.
[http://dx.doi.org/10.1007/s12094-012-0999-4] [PMID: 23359184]
[108]
Hagiwara K, Kosaka N, Yoshioka Y, Takahashi R, Takeshita F, Ochiya T. Stilbene derivatives promote Ago2-dependent tumour-suppressive microRNA activity. Sci Rep 2012; 2(1): 314.
[http://dx.doi.org/10.1038/srep00314] [PMID: 22423322]
[109]
Del Follo-Martinez A, Banerjee N, Li X, Safe S, Mertens-Talcott S. Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a. Nutr Cancer 2013; 65(3): 494-504.
[http://dx.doi.org/10.1080/01635581.2012.725194] [PMID: 23530649]
[110]
de la Parra C, Castillo-Pichardo L, Cruz-Collazo A, et al. Soy isoflavone genistein-mediated downregulation of miR-155 contributes to the anticancer effects of genistein. Nutr Cancer 2016; 68(1): 154-64.
[http://dx.doi.org/10.1080/01635581.2016.1115104] [PMID: 26771440]
[111]
Wei D, Yang L, Lv B, Chen L. Genistein suppresses retinoblastoma cell viability and growth and induces apoptosis by upregulating miR-145 and inhibiting its target ABCE1. Mol Vis 2017; 23: 385-94.
[PMID: 28706438]
[112]
Avci CB, Susluer SY, Caglar HO, et al. Genistein-induced mir-23b expression inhibits the growth of breast cancer cells. Contemp Oncol 2015; 1(1): 32-5.
[http://dx.doi.org/10.5114/wo.2014.44121] [PMID: 26199568]
[113]
Tsang WP, Kwok TT. Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem 2010; 21(2): 140-6.
[http://dx.doi.org/10.1016/j.jnutbio.2008.12.003] [PMID: 19269153]
[114]
Chakrabarti M, Ai W, Banik NL, Ray SK. Overexpression of miR-7-1 increases efficacy of green tea polyphenols for induction of apoptosis in human malignant neuroblastoma SH-SY5Y and SK-N-DZ cells. Neurochem Res 2013; 38(2): 420-32.
[http://dx.doi.org/10.1007/s11064-012-0936-5] [PMID: 23192662]
[115]
Wang H, Bian S, Yang CS. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1. Carcinogenesis 2011; 32(12): 1881-9.
[http://dx.doi.org/10.1093/carcin/bgr218] [PMID: 21965273]
[116]
Zhou DH, Wang X, Feng Q. EGCG enhances the efficacy of cisplatin by downregulating hsa-miR-98-5p in NSCLC A549 cells. Nutr Cancer 2014; 66(4): 636-44.
[http://dx.doi.org/10.1080/01635581.2014.894101] [PMID: 24712372]
[117]
Martin SL, Kala R, Tollefsbol TO. Mechanisms for the inhibition of colon cancer cells by sulforaphane through epigenetic modulation of MicroRNA-21 and Human Telomerase Reverse Transcriptase (hTERT) down-regulation. Curr Cancer Drug Targets 2017; 18(1): 97-106.
[http://dx.doi.org/10.2174/1568009617666170206104032] [PMID: 28176652]
[118]
Zhang H, Hao Y, Yang J, et al. Genome-wide functional screening of miR-23b as a pleiotropic modulator suppressing cancer metastasis. Nat Commun 2011; 2(1): 554.
[http://dx.doi.org/10.1038/ncomms1555] [PMID: 22109528]
[119]
Slaby O, Sachlova M, Brezkova V, et al. Identification of microRNAs regulated by isothiocyanates and association of polymorphisms inside their target sites with risk of sporadic colorectal cancer. Nutr Cancer 2013; 65(2): 247-54.
[http://dx.doi.org/10.1080/01635581.2013.756530] [PMID: 23441612]
[120]
Bakirtzi K, Hatziapostolou M, Karagiannides I, et al. Neurotensin signaling activates microRNAs-21 and -155 and Akt, promotes tumor growth in mice, and is increased in human colon tumors. Gastroenterology 2011; 141(5): 1749-1761.e1.
[http://dx.doi.org/10.1053/j.gastro.2011.07.038] [PMID: 21806946]
[121]
Li Q, Eades G, Yao Y, Zhang Y, Zhou Q. Characterization of a stem-like subpopulation in basal-like ductal carcinoma in situ (DCIS) lesions. J Biol Chem 2014; 289(3): 1303-12.
[http://dx.doi.org/10.1074/jbc.M113.502278] [PMID: 24297178]
[122]
Lewinska A, Adamczyk-Grochala J, Deregowska A, Wnuk M. Sulforaphane-induced cell cycle arrest and senescence are accompanied by DNA hypomethylation and changes in microRNA profile in breast cancer cells. Theranostics 2017; 7(14): 3461-77.
[http://dx.doi.org/10.7150/thno.20657] [PMID: 28912888]
[123]
Li D, Chen L, Zhao W, Hao J, An R. MicroRNA-let-7f-1 is induced by lycopene and inhibits cell proliferation and triggers apoptosis in prostate cancer. Mol Med Rep 2016; 13(3): 2708-14.
[http://dx.doi.org/10.3892/mmr.2016.4841] [PMID: 26847233]
[124]
Ni X, Yu H, Wang S, et al. Astaxanthin inhibits PC-3 xenograft prostate tumor growth in nude mice. Mar Drugs 2017; 15(3): 66.
[http://dx.doi.org/10.3390/md15030066]
[125]
Deguchi A. Curcumin targets in inflammation and cancer. Endocr Metab Immune Disord Drug Targets 2015; 15(2): 88-96.
[http://dx.doi.org/10.2174/1871530315666150316120458] [PMID: 25772169]
[126]
Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 2007; 595: 105-25.
[http://dx.doi.org/10.1007/978-0-387-46401-5_3] [PMID: 17569207]
[127]
Li Y, Sun W, Han N, Zou Y, Yin D. Curcumin inhibits proliferation, migration, invasion and promotes apoptosis of retinoblastoma cell lines through modulation of miR-99a and JAK/STAT pathway. BMC Cancer 2018; 18(1): 1230.
[http://dx.doi.org/10.1186/s12885-018-5130-y] [PMID: 30526546]
[128]
Lampe JW. Spicing up a vegetarian diet: Chemopreventive effects of phytochemicals. Am J Clin Nutr 2003; 78(3) (Suppl.): 579S-83S.
[http://dx.doi.org/10.1093/ajcn/78.3.579S] [PMID: 12936952]
[129]
Kronski E, Fiori ME, Barbieri O, et al. miR181b is induced by the chemopreventive polyphenol curcumin and inhibits breast cancer metastasis via down-regulation of the inflammatory cytokines CXCL1 and -2. Mol Oncol 2014; 8(3): 581-95.
[http://dx.doi.org/10.1016/j.molonc.2014.01.005] [PMID: 24484937]
[130]
Qiang Z, Meng L, Yi C, Yu L, Chen W, Sha W. Curcumin regulates the miR-21/PTEN/Akt pathway and acts in synergy with PD98059 to induce apoptosis of human gastric cancer MGC-803 cells. J Int Med Res 2019; 47(3): 1288-97.
[http://dx.doi.org/10.1177/0300060518822213] [PMID: 30727807]
[131]
Liu J, Li M, Wang Y, Luo J. Curcumin sensitizes prostate cancer cells to radiation partly via epigenetic activation of miR-143 and miR-143 mediated autophagy inhibition. J Drug Target 2017; 25(7): 645-52.
[http://dx.doi.org/10.1080/1061186X.2017.1315686] [PMID: 28391715]
[132]
Alharris E, Alghetaa H, Seth R, et al. Resveratrol attenuates allergic asthma and associated inflammation in the lungs through regulation of miRNA-34a that targets FoxP3 in mice. Front Immunol 2018; 9: 2992.
[http://dx.doi.org/10.3389/fimmu.2018.02992] [PMID: 30619345]
[133]
Dhar S, Kumar A, Rimando AM, Zhang X, Levenson AS. Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting oncomiRs of the miR-17 family in prostate cancer. Oncotarget 2015; 6(29): 27214-26.
[http://dx.doi.org/10.18632/oncotarget.4877] [PMID: 26318586]
[134]
Karimi DF, Saidijam M, Amini R, Mahdavinezhad A, Heydari K, Najafi R. Resveratrol inhibits proliferation, invasion, and epithelial–mesenchymal transition by increasing miR-200c expression in HCT-116 colorectal cancer cells. J Cell Biochem 2017; 118(6): 1547-55.
[http://dx.doi.org/10.1002/jcb.25816] [PMID: 27918105]
[135]
Wu F, Cui L. Resveratrol suppresses melanoma by inhibiting NF-κB/miR-221 and inducing TFG expression. Arch Dermatol Res 2017; 309(10): 823-31.
[http://dx.doi.org/10.1007/s00403-017-1784-6] [PMID: 28936555]
[136]
Zhang W, Jiang H, Chen Y, Ren F. Resveratrol chemosensitizes adriamycin-resistant breast cancer cells by modulating miR-122-5p. J Cell Biochem 2019; 120(9): 16283-92.
[http://dx.doi.org/10.1002/jcb.28910] [PMID: 31155753]
[137]
Carter LG, D’Orazio JA, Pearson KJ. Resveratrol and cancer: Focus on in vivo evidence. Endocr Relat Cancer 2014; 21(3): R209-25.
[http://dx.doi.org/10.1530/ERC-13-0171] [PMID: 24500760]
[138]
Yang Y, Zang A, Jia Y, et al. Genistein inhibits A549 human lung cancer cell proliferation via miR-27a and MET signaling. Oncol Lett 2016; 12(3): 2189-93.
[http://dx.doi.org/10.3892/ol.2016.4817] [PMID: 27602162]
[139]
Hirata H, Hinoda Y, Shahryari V, et al. Genistein downregulates onco-miR-1260b and upregulates sFRP1 and Smad4 via demethylation and histone modification in prostate cancer cells. Br J Cancer 2014; 110(6): 1645-54.
[http://dx.doi.org/10.1038/bjc.2014.48] [PMID: 24504368]
[140]
Ma J, Cheng L, Liu H, et al. Genistein down-regulates miR-223 expression in pancreatic cancer cells. Curr Drug Targets 2013; 14(10): 1150-6.
[http://dx.doi.org/10.2174/13894501113149990187] [PMID: 23834147]
[141]
Xie J, Wang J, Zhu B. Genistein inhibits the proliferation of human multiple myeloma cells through suppression of nuclear factor-κB and upregulation of microRNA-29b. Mol Med Rep 2016; 13(2): 1627-32.
[http://dx.doi.org/10.3892/mmr.2015.4740] [PMID: 26718793]
[142]
Zhu K, Wang W. Green tea polyphenol EGCG suppresses osteosarcoma cell growth through upregulating miR-1. Tumour Biol 2016; 37(4): 4373-82.
[http://dx.doi.org/10.1007/s13277-015-4187-3] [PMID: 26499783]
[143]
Zan L, Chen Q, Zhang L, Li X. Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25. Bioengineered 2019; 10(1): 374-82.
[http://dx.doi.org/10.1080/21655979.2019.1657327] [PMID: 31431131]
[144]
Zhu Y, Huang Y, Liu M, et al. Epigallocatechin gallate inhibits cell growth and regulates miRNA expression in cervical carcinoma cell lines infected with different high-risk human papillomavirus subtypes. Exp Ther Med 2019; 17(3): 1742-8.
[http://dx.doi.org/10.3892/etm.2018.7131] [PMID: 30783443]
[145]
Lan F, Pan Q, Yu H, Yue X. Sulforaphane enhances temozolomide-induced apoptosis because of down-regulation of miR-21 via Wnt/β-catenin signaling in glioblastoma. J Neurochem 2015; 134(5): 811-8.
[http://dx.doi.org/10.1111/jnc.13174] [PMID: 25991372]
[146]
Kiani S, Akhavan-Niaki H, Fattahi S, et al. Purified sulforaphane from broccoli (Brassica oleracea var. italica) leads to alterations of CDX1 and CDX2 expression and changes in miR-9 and miR-326 levels in human gastric cancer cells. Gene 2018; 678: 115-23.
[http://dx.doi.org/10.1016/j.gene.2018.08.026] [PMID: 30096452]
[147]
Liu CM, Peng CY, Liao YW, et al. Sulforaphane targets cancer stemness and tumor initiating properties in oral squamous cell carcinomas via miR-200c induction. J Formos Med Assoc 2017; 116(1): 41-8.
[http://dx.doi.org/10.1016/j.jfma.2016.01.004] [PMID: 26879838]
[148]
Gao L, Cheng D, Yang J, Wu R, Li W, Kong AN. Sulforaphane epigenetically demethylates the CpG sites of the miR-9-3 promoter and reactivates miR-9-3 expression in human lung cancer A549 cells. J Nutr Biochem 2018; 56: 109-15.
[http://dx.doi.org/10.1016/j.jnutbio.2018.01.015] [PMID: 29525530]
[149]
Wang D, Zou Y, Zhuang X, et al. Sulforaphane suppresses EMT and metastasis in human lung cancer through miR-616-5p-mediated GSK3β/β-catenin signaling pathways. Acta Pharmacol Sin 2017; 38(2): 241-51.
[http://dx.doi.org/10.1038/aps.2016.122] [PMID: 27890917]
[150]
Avsar B, Zhao Y, Li W, Lukiw WJ. Atropa belladonna Expresses a microRNA (aba-miRNA-9497) Highly Homologous to Homo sapiens miRNA-378 (hsa-miRNA-378); both miRNAs target the 3'-untranslated region (3'-UTR) of the mRNA encoding the neurologically relevant, zinc-finger transcription factor ZNF-691. Cell Mol Neurobiol 2020; 40(1): 179-88.
[http://dx.doi.org/10.1007/s10571-019-00729-w]
[151]
Zangui M, Atkin SL, Majeed M, Sahebkar A. Current evidence and future perspectives for curcumin and its analogues as promising adjuncts to oxaliplatin: State-of-the-art. Pharmacol Res 2019; 141: 343-56.
[http://dx.doi.org/10.1016/j.phrs.2019.01.020] [PMID: 30641277]
[152]
Karthikeyan A, Senthil N, Min T. Nanocurcumin: A promising candidate for therapeutic applications. Front Pharmacol Frontiers Media SA 2020; 11: 487.
[http://dx.doi.org/10.3389/fphar.2020.00487]
[153]
Cocetta V, Quagliariello V, Fiorica F, Berretta M, Montopoli M. Resveratrol as chemosensitizer agent: State of art and future perspectives. Int J Mol Sci 2021; 22(4): 2049.
[http://dx.doi.org/10.3390/ijms22042049] [PMID: 33669559]
[154]
Preethi KA, Sekar D. Dietary microRNAs: Current status and perspective in food science. J Food Biochem 2021; 45(7): e13827.
[http://dx.doi.org/10.1111/jfbc.13827] [PMID: 34132408]
[155]
Gilligan KE, Dwyer RM. Engineering exosomes for cancer therapy. Int J Mol Sci 2017; 18(6): 1122.
[http://dx.doi.org/10.3390/ijms18061122]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy