Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Anti-obesity Properties of Phytochemicals: Highlighting their Molecular Mechanisms against Obesity

Author(s): Efthymios Poulios, Stergia Koukounari, Evmorfia Psara, Georgios K. Vasios, Christina Sakarikou and Constantinos Giaginis*

Volume 31, Issue 1, 2024

Published on: 14 June, 2023

Page: [25 - 61] Pages: 37

DOI: 10.2174/0929867330666230517124033

Price: $65

Open Access Journals Promotions 2
Abstract

Obesity is a complex, chronic and inflammatory disease that affects more than one-third of the world’s population, leading to a higher incidence of diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and some types of cancer. Several phytochemicals are used as flavoring and aromatic compounds, also exerting many benefits for public health. This study aims to summarize and scrutinize the beneficial effects of the most important phytochemicals against obesity. Systematic research of the current international literature was carried out in the most accurate scientific databases, e.g., Pubmed, Scopus, Web of Science and Google Scholar, using a set of critical and representative keywords, such as phytochemicals, obesity, metabolism, metabolic syndrome, etc. Several studies unraveled the potential positive effects of phytochemicals such as berberine, carvacrol, curcumin, quercetin, resveratrol, thymol, etc., against obesity and metabolic disorders. Mechanisms of action include inhibition of adipocyte differentiation, browning of the white adipose tissue, inhibition of enzymes such as lipase and amylase, suppression of inflammation, improvement of the gut microbiota, and downregulation of obesity-inducing genes. In conclusion, multiple bioactive compounds-phytochemicals exert many beneficial effects against obesity. Future molecular and clinical studies must be performed to unravel the multiple molecular mechanisms and anti-obesity activities of these naturally occurring bioactive compounds.

Keywords: Phytochemicals, obesity, metabolism, metabolic diseases, inflammation, oxidative stress, molecular mechanisms.

« Previous
[1]
Barakat, B.; Almeida, M.E.F. Biochemical and immunological changes in obesity. Arch. Biochem. Biophys., 2021, 708, 108951.
[http://dx.doi.org/10.1016/j.abb.2021.108951] [PMID: 34102165]
[2]
Hruby, A.; Hu, F.B. The epidemiology of obesity: A big picture. PharmacoEconomics, 2015, 33(7), 673-689.
[http://dx.doi.org/10.1007/s40273-014-0243-x] [PMID: 25471927]
[3]
Jebeile, H.; Kelly, A.S.; O'Malley, G.; Baur, L.A. Obesity in children and adolescents: Epidemiology, causes, assessment, and management. Lancet Diabetes Endocrinol., 2022, 10(5), 351-365.
[http://dx.doi.org/10.1016/S2213-8587(22)00047-X]
[4]
Wallis, N.; Raffan, E. The genetic basis of obesity and related metabolic diseases in humans and companion animals. Genes, 2020, 11(11), 1378.
[http://dx.doi.org/10.3390/genes11111378] [PMID: 33233816]
[5]
Włodarczyk, M.; Nowicka, G. Obesity, DNA Damage, and development of obesity-related diseases. Int. J. Mol. Sci., 2019, 20(5), 1146.
[http://dx.doi.org/10.3390/ijms20051146] [PMID: 30845725]
[6]
Chiurazzi, M.; Cozzolino, M.; Orsini, R.C.; Di Maro, M.; Di Minno, M.N.D.; Colantuoni, A. Impact of Genetic variations and epigenetic mechanisms on the risk of obesity. Int. J. Mol. Sci., 2020, 21(23), 9035.
[http://dx.doi.org/10.3390/ijms21239035] [PMID: 33261141]
[7]
Bouchard, C. Genetics of obesity: What we have learned over decades of research. Obesity, 2021, 29(5), 802-820.
[http://dx.doi.org/10.1002/oby.23116] [PMID: 33899337]
[8]
Obri, A.; Serra, D.; Herrero, L.; Mera, P. The role of epigenetics in the development of obesity. Biochem. Pharmacol., 2020, 177, 113973.
[http://dx.doi.org/10.1016/j.bcp.2020.113973] [PMID: 32283053]
[9]
Yin, L.; Zhu, X.; Novák, P.; Zhou, L.; Gao, L.; Yang, M.; Zhao, G.; Yin, K. The epitranscriptome of long noncoding RNAs in metabolic diseases. Clin. Chim. Acta, 2021, 515, 80-89.
[http://dx.doi.org/10.1016/j.cca.2021.01.001] [PMID: 33422492]
[10]
Wu, D.; Wang, H.; Xie, L.; Hu, F. Cross-Talk between gut microbiota and adipose tissues in obesity and related metabolic diseases. Front. Endocrinol., 2022, 13, 908868.
[http://dx.doi.org/10.3389/fendo.2022.908868] [PMID: 35865314]
[11]
Song, X.; Wang, L.; Liu, Y.; Zhang, X.; Weng, P.; Liu, L.; Zhang, R.; Wu, Z. The gut microbiota–brain axis: Role of the gut microbial metabolites of dietary food in obesity. Food Res. Int., 2022, 153, 110971.
[http://dx.doi.org/10.1016/j.foodres.2022.110971] [PMID: 35227482]
[12]
Palou, A.; Bonet, M.L. Challenges in obesity research. Nutr. Hosp., 2013, 28(Suppl. 5), 144-153.
[http://dx.doi.org/10.3305/nh.2013.28.sup5.6930] [PMID: 24010755]
[13]
Wen, X.; Zhang, B.; Wu, B.; Xiao, H.; Li, Z.; Li, R.; Xu, X.; Li, T. Signaling pathways in obesity: Mechanisms and therapeutic interventions. Signal Transduct. Target. Ther., 2022, 7(1), 298.
[http://dx.doi.org/10.1038/s41392-022-01149-x] [PMID: 36031641]
[14]
Conceição-Furber, E.; Coskun, T.; Sloop, K.W.; Samms, R.J. Is glucagon receptor activation the thermogenic solution for treating obesity? Front. Endocrinol., 2022, 13, 868037.
[http://dx.doi.org/10.3389/fendo.2022.868037] [PMID: 35547006]
[15]
Reja, D.; Zhang, C.; Sarkar, A. Endoscopic bariatrics: Current therapies and future directions. Transl. Gastroenterol. Hepatol., 2022, 7, 21.
[http://dx.doi.org/10.21037/tgh.2020.03.09] [PMID: 35548475]
[16]
Wang, Y.F.; Shen, Z.C.; Li, J.; Liang, T.; Lin, X.F.; Li, Y.P.; Zeng, W.; Zou, Q.; Shen, J.L.; Wang, X.Y. Phytochemicals, biological activity, and industrial application of lotus seedpod (Receptaculum Nelumbinis): A review. Front. Nutr., 2022, 9, 1022794.
[http://dx.doi.org/10.3389/fnut.2022.1022794] [PMID: 36267901]
[17]
Jit, B.P.; Pattnaik, S.; Arya, R.; Dash, R.; Sahoo, S.S.; Pradhan, B.; Bhuyan, P.P.; Behera, P.K.; Jena, M.; Sharma, A.; Agrawala, P.K.; Behera, R.K. Phytochemicals: A potential next generation agent for radioprotection. Phytomedicine, 2022, 106, 154188.
[http://dx.doi.org/10.1016/j.phymed.2022.154188] [PMID: 36029645]
[18]
Santhiravel, S.; Bekhit, A.EA.; Mendis, E.; Jacobs, J.L.; Dunshe, F.R.; Rajapakse, N.; Ponnampalam, E.N. The impact of plant phytochemicals on the gut microbiota of humans for a balanced life. Int J Mol Sci., 2022, 23(15), 8124.
[http://dx.doi.org/10.3390/ijms23158124]
[19]
Yisimayili, Z.; Chao, Z. A review on phytochemicals, metabolic profiles and pharmacokinetics studies of the different parts (juice, seeds, peel, flowers, leaves and bark) of pomegranate (Punica granatum L.). Food Chem., 2022, 395, 133600.
[http://dx.doi.org/10.1016/j.foodchem.2022.133600]
[20]
Shi, M.; Gu, J.; Wu, H.; Rauf, A.; Emran, T.B.; Khan, Z.; Mitra, S.; Aljohani, A.S.M.; Alhumaydhi, F.A.; Al-Awthan, Y.S.; Bahattab, O.; Thiruvengadam, M.; Suleria, H.A.R. Phytochemicals, nutrition, metabolism, bioavailability, and health benefits in Lettuce - A comprehensive review. Antioxidants, 2022, 11(6), 1158.
[http://dx.doi.org/10.3390/antiox11061158] [PMID: 35740055]
[21]
Hao, J.; Gao, Y.; Xue, J.; Yang, Y.; Yin, J.; Wu, T.; Zhang, M. Phytochemicals, pharmacological effects and molecular mechanisms of mulberry. Foods, 2022, 11(8), 1170.
[http://dx.doi.org/10.3390/foods11081170] [PMID: 35454757]
[22]
Poulios, E.; Giaginis, C.; Vasios, G.K. Current advances on the extraction and identification of bioactive components of sage (Salvia spp.). Curr. Pharm. Biotechnol., 2019, 20(10), 845-857.
[http://dx.doi.org/10.2174/1389201020666190722130440] [PMID: 31333123]
[23]
Lim, X.Y.; The, B.P.; Tan, T.Y.C. Medicinal plants in COVID-19: Potential and limitations. Front Pharmacol., 2021, 12, 611408.
[http://dx.doi.org/10.3389/fphar.2021.611408]
[24]
Poulios, E.; Vasios, G.K.; Psara, E.; Giaginis, C. Medicinal plants consumption against urinary tract infections: A narrative review of the current evidence. Expert Rev. Anti Infect. Ther., 2021, 19(4), 519-528.
[http://dx.doi.org/10.1080/14787210.2021.1828061] [PMID: 33016791]
[25]
Ayaz, M.; Ullah, F.; Sadiq, A.; Ullah, F.; Ovais, M.; Ahmed, J.; Devkota, H.P. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem. Biol. Interact., 2019, 308, 294-303.
[http://dx.doi.org/10.1016/j.cbi.2019.05.050] [PMID: 31158333]
[26]
Gregory, J.; Vengalasetti, Y.V.; Bredesen, D.E.; Rao, R.V. Neuroprotective herbs for the management of alzheimer’s disease. Biomolecules, 2021, 11(4), 543.
[http://dx.doi.org/10.3390/biom11040543] [PMID: 33917843]
[27]
Naoi, M.; Maruyama, W.; Shamoto-Nagai, M. Disease-modifying treatment of Parkinson’s disease by phytochemicals: Targeting multiple pathogenic factors. J. Neural Transm., 2021, 2021
[http://dx.doi.org/10.1007/s00702-021-02427-8] [PMID: 34654977]
[28]
Zhao, X.; Kim, Y.R.; Min, Y.; Zhao, Y.; Do, K.; Son, Y.O. Natural plant extracts and compounds for Rheumatoid Arthritis Therapy. Medicina, 2021, 57(3), 266.
[http://dx.doi.org/10.3390/medicina57030266] [PMID: 33803959]
[29]
Kumar, S.; Mittal, A.; Babu, D.; Mittal, A. Herbal medicines for diabetes management and its secondary complications. Curr. Diabetes Rev., 2021, 17(4), 437-456.
[http://dx.doi.org/10.2174/18756417MTExfMTQ1z] [PMID: 33143632]
[30]
Cote, B.; Elbarbry, F.; Bui, F.; Su, J.W.; Seo, K.; Nguyen, A.; Lee, M.; Rao, D.A. Mechanistic basis for the role of phytochemicals in inflammation-associated chronic diseases. Molecules, 2022, 27(3), 781.
[http://dx.doi.org/10.3390/molecules27030781] [PMID: 35164043]
[31]
Aba, P.E.; Ihedioha, J.I.; Asuzu, I.U. A review of the mechanisms of anti-cancer activities of some medicinal plants–biochemical perspectives. J. Basic Clin. Physiol. Pharmacol., 2021, 0(0)
[http://dx.doi.org/10.1515/jbcpp-2021-0257] [PMID: 34936737]
[32]
Saqib, U.; Khan, M.A.; Alagumuthu, M.; Parihar, S.P.; Baig, M.S. Natural compounds as antiatherogenic agents. Cell. Mol. Biol., 2021, 67(1), 177-188.
[http://dx.doi.org/10.14715/cmb/2021.67.1.27] [PMID: 34817349]
[33]
Kamyab, R.; Namdar, H.; Torbati, M.; Ghojazadeh, M.; Araj-Khodaei, M.; Fazljou, S.M.B. Medicinal plants in the treatment of hypertension: A review. Adv. Pharm. Bull., 2020, 11(4), 601-617.
[http://dx.doi.org/10.34172/apb.2021.090] [PMID: 34888207]
[34]
Dincer, Y.; Yuksel, S. Antiobesity effects of phytochemicals from an epigenetic perspective. Nutrition, 2021, 84, 111119.
[http://dx.doi.org/10.1016/j.nut.2020.111119] [PMID: 33476999]
[35]
Chang, Y.H.; Hung, H.Y. Recent advances in natural anti-obesity compounds and derivatives based on in vivo evidence: A mini-review. Eur. J. Med. Chem., 2022, 237, 114405.
[http://dx.doi.org/10.1016/j.ejmech.2022.114405] [PMID: 35489224]
[36]
Ma, P.Y.; Li, X.Y.; Wang, Y.L.; Lang, D.Q.; Liu, L.; Yi, Y.K.; Liu, Q.; Shen, C.Y. Natural bioactive constituents from herbs and nutraceuticals promote browning of white adipose tissue. Pharmacol. Res., 2022, 178, 106175.
[http://dx.doi.org/10.1016/j.phrs.2022.106175] [PMID: 35283301]
[37]
Li, H.; Qi, J.; Li, L. Phytochemicals as potential candidates to combat obesity via adipose non-shivering thermogenesis. Pharmacol. Res., 2019, 147, 104393.
[http://dx.doi.org/10.1016/j.phrs.2019.104393] [PMID: 31401211]
[38]
Atazadegan, M.A.; Bagherniya, M.; Fakheran, O.; Sathyapalan, T.; Sahebkar, A. The effect of herbal medicine and natural bioactive compounds on plasma adiponectin: A clinical review. Adv. Exp. Med. Biol., 2021, 1328, 37-57.
[http://dx.doi.org/10.1007/978-3-030-73234-9_4] [PMID: 34981470]
[39]
Hofer, S.J.; Davinelli, S.; Bergmann, M.; Scapagnini, G.; Madeo, F. Caloric restriction mimetics in nutrition and clinical trials. Front. Nutr., 2021, 8, 717343.
[http://dx.doi.org/10.3389/fnut.2021.717343] [PMID: 34552954]
[40]
Xu, X.; Yi, H.; Wu, J.; Kuang, T.; Zhang, J.; Li, Q.; Du, H.; Xu, T.; Jiang, G.; Fan, G. Therapeutic effect of berberine on metabolic diseases: Both pharmacological data and clinical evidence. Biomed. Pharmacother., 2021, 133, 110984.
[http://dx.doi.org/10.1016/j.biopha.2020.110984] [PMID: 33186794]
[41]
Habtemariam, S. Berberine pharmacology and the gut microbiota: A hidden therapeutic link. Pharmacol. Res., 2020, 155, 104722.
[http://dx.doi.org/10.1016/j.phrs.2020.104722] [PMID: 32105754]
[42]
Zhang, L.; Wu, X.; Yang, R.; Chen, F.; Liao, Y.; Zhu, Z.; Wu, Z.; Sun, X.; Wang, L. Effects of Berberine on the Gastrointestinal Microbiota. Front. Cell. Infect. Microbiol., 2021, 10, 588517.
[http://dx.doi.org/10.3389/fcimb.2020.588517] [PMID: 33680978]
[43]
Sun, R.; Yang, N.; Kong, B.; Cao, B.; Feng, D.; Yu, X.; Ge, C.; Huang, J.; Shen, J.; Wang, P.; Feng, S.; Fei, F.; Guo, J.; He, J.; Aa, N.; Chen, Q.; Pan, Y.; Schumacher, J.D.; Yang, C.S.; Guo, G.L.; Aa, J.; Wang, G. Orally administered berberine modulates hepatic lipid metabolism by altering microbial bile acid metabolism and the intestinal fxr signaling pathway. Mol. Pharmacol., 2017, 91(2), 110-122.
[http://dx.doi.org/10.1124/mol.116.106617] [PMID: 27932556]
[44]
Zhang, X.; Zhao, Y.; Zhang, M.; Pang, X.; Xu, J.; Kang, C.; Li, M.; Zhang, C.; Zhang, Z.; Zhang, Y.; Li, X.; Ning, G.; Zhao, L. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One, 2012, 7(8), e42529.
[http://dx.doi.org/10.1371/journal.pone.0042529] [PMID: 22880019]
[45]
Ferdous, M.R.; Abdalla, M.; Yang, M.; Xiaoling, L.; Song, Y. Berberine chloride (dual topoisomerase I and II inhibitor) modulate mitochondrial uncoupling protein (UCP1) in molecular docking and dynamic with in-vitro cytotoxic and mitochondrial ATP production. J. Biomol. Struct. Dyn., 2022, 25, 1-11.
[http://dx.doi.org/10.1080/07391102.2021.2024255] [PMID: 35612892]
[46]
Singh, S.; Pathak, N.; Fatima, E.; Negi, A.S. Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. Eur. J. Med. Chem., 2021, 226, 113839.
[http://dx.doi.org/10.1016/j.ejmech.2021.113839] [PMID: 34536668]
[47]
Wu, Y.Y.; Huang, X.M.; Liu, J.; Cha, Y.; Chen, Z.P.; Wang, F.; Xu, J.; Sheng, L.; Ding, H.Y. Functional study of the upregulation of miRNA-27a and miRNA-27b in 3T3-L1 cells in response to berberine. Mol. Med. Rep., 2016, 14(3), 2725-2731.
[http://dx.doi.org/10.3892/mmr.2016.5545] [PMID: 27484069]
[48]
Wang, M.; Xu, R.; Liu, X.; Zhang, L.; Qiu, S.; Lu, Y.; Zhang, P.; Yan, M.; Zhu, J. A co-crystal berberine-ibuprofen improves obesity by inhibiting the protein kinases TBK1 and IKKɛ. Commun. Biol., 2022, 5(1), 807.
[http://dx.doi.org/10.1038/s42003-022-03776-0] [PMID: 35962183]
[49]
Noh, J.W.; Jun, M.S.; Yang, H.K.; Lee, B.C. Cellular and molecular mechanisms and effects of berberine on obesity-induced inflammation. Biomedicines, 2022, 10(7), 1739.
[http://dx.doi.org/10.3390/biomedicines10071739] [PMID: 35885044]
[50]
Han, Y.B.; Tian, M.; Wang, X.X.; Fan, D.H.; Li, W.Z.; Wu, F.; Liu, L. Berberine ameliorates obesity-induced chronic inflammation through suppression of ER stress and promotion of macrophage M2 polarization at least partly via downregulating lncRNA Gomafu. Int. Immunopharmacol., 2020, 86, 106741.
[http://dx.doi.org/10.1016/j.intimp.2020.106741] [PMID: 32650294]
[51]
Ilyas, Z.; Perna, S.; Al-thawadi, S.; Alalwan, T.A.; Riva, A.; Petrangolini, G.; Gasparri, C.; Infantino, V.; Peroni, G.; Rondanelli, M. The effect of Berberine on weight loss in order to prevent obesity: A systematic review. Biomed. Pharmacother., 2020, 127, 110137.
[http://dx.doi.org/10.1016/j.biopha.2020.110137] [PMID: 32353823]
[52]
Ye, Y.; Liu, X.; Wu, N.; Han, Y.; Wang, J.; Yu, Y.; Chen, Q. Efficacy and safety of berberine alone for several metabolic disorders: A systematic review and meta-analysis of randomized clinical trials. Front. Pharmacol., 2021, 12, 653887.
[http://dx.doi.org/10.3389/fphar.2021.653887] [PMID: 33981233]
[53]
Xiong, P.; Niu, L.; Talaei, S.; Kord-Varkaneh, H.; Clark, C.C.T.; Găman, M.A.; Rahmani, J.; Dorosti, M.; Mousavi, S.M.; Zarezadeh, M.; Taghizade-Bilondi, H.; Zhang, J. The effect of berberine supplementation on obesity indices: A dose– response meta-analysis and systematic review of randomized controlled trials. Complement. Ther. Clin. Pract., 2020, 39, 101113.
[http://dx.doi.org/10.1016/j.ctcp.2020.101113] [PMID: 32379652]
[54]
Asbaghi, O.; Ghanbari, N.; shekari, M.; Reiner, Ž.; Amirani, E.; Hallajzadeh, J.; Mirsafaei, L.; Asemi, Z. The effect of berberine supplementation on obesity parameters, inflammation and liver function enzymes: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. ESPEN, 2020, 38, 43-49.
[http://dx.doi.org/10.1016/j.clnesp.2020.04.010] [PMID: 32690176]
[55]
Wu, L.; Meng, J.; Shen, Q.; Zhang, Y.; Pan, S.; Chen, Z.; Zhu, L.Q.; Lu, Y.; Huang, Y.; Zhang, G. Caffeine inhibits hypothalamic A1R to excite oxytocin neuron and ameliorate dietary obesity in mice. Nat. Commun., 2017, 8(1), 15904.
[http://dx.doi.org/10.1038/ncomms15904] [PMID: 28654087]
[56]
Dangol, M.; Kim, S.; Li, C.G.; Fakhraei Lahiji, S.; Jang, M.; Ma, Y.; Huh, I.; Jung, H. Anti-obesity effect of a novel caffeine-loaded dissolving microneedle patch in high-fat diet-induced obese C57BL/6J mice. J. Control. Release, 2017, 265, 41-47.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.400] [PMID: 28389409]
[57]
Kim, H.; Lee, M.; Park, H.; Park, Y.; Shon, J.; Liu, K.H.; Lee, C. Urine and serum metabolite profiling of rats fed a high-fat diet and the anti-obesity effects of caffeine consumption. Molecules, 2015, 20(2), 3107-3128.
[http://dx.doi.org/10.3390/molecules20023107] [PMID: 25689639]
[58]
Xu, Y.; Zhang, M.; Wu, T.; Dai, S.; Xu, J.; Zhou, Z. The anti-obesity effect of green tea polysaccharides, polyphenols and caffeine in rats fed with a high-fat diet. Food Funct., 2015, 6(1), 296-303.
[http://dx.doi.org/10.1039/C4FO00970C] [PMID: 25431018]
[59]
Shanmugham, V.; Subban, R. Comparison of the Anti-Obesity Effect of Enriched Capsanthin and Capsaicin from Capsicum annuum L. Fruit in Obesity-Induced C57BL/6J Mouse Model. Food Technol. Biotechnol., 2022, 60(2), 202-212.
[http://dx.doi.org/10.17113/ftb.60.02.22.7376] [PMID: 35910274]
[60]
Li, R.; Lan, Y.; Chen, C.; Cao, Y.; Huang, Q.; Ho, C.T.; Lu, M. Anti-obesity effects of capsaicin and the underlying mechanisms: A review. Food Funct., 2020, 11(9), 7356-7370.
[http://dx.doi.org/10.1039/D0FO01467B] [PMID: 32820787]
[61]
Wang, Y.; Tang, C.; Tang, Y.; Yin, H.; Liu, X. Capsaicin has an anti-obesity effect through alterations in gut microbiota populations and short-chain fatty acid concentrations. Food Nutr. Res., 2020, 64(0)
[http://dx.doi.org/10.29219/fnr.v64.3525] [PMID: 32180694]
[62]
Kang, C.; Wang, B.; Kaliannan, K.; Wang, X.; Lang, H.; Hui, S.; Huang, L.; Zhang, Y.; Zhou, M.; Chen, M.; Mi, M. Gut microbiota mediates the protective effects of dietary capsaicin against chronic low-grade inflammation and associated obesity induced by high-fat diet. MBio, 2017, 8(3), e00470-17.
[http://dx.doi.org/10.1128/mBio.00470-17] [PMID: 28536285]
[63]
Kang, J.H.; Tsuyoshi, G.; Han, I.S.; Kawada, T.; Kim, Y.M.; Yu, R. Dietary capsaicin reduces obesity-induced insulin resistance and hepatic steatosis in obese mice fed a high-fat diet. Obesity, 2010, 18(4), 780-787.
[http://dx.doi.org/10.1038/oby.2009.301] [PMID: 19798065]
[64]
Shen, W.; Shen, M.; Zhao, X.; Zhu, H.; Yang, Y.; Lu, S.; Tan, Y.; Li, G.; Li, M.; Wang, J.; Hu, F.; Le, S. Anti-obesity effect of capsaicin in mice fed with high-fat diet is associated with an increase in population of the Gut Bacterium Akkermansia muciniphila. Front. Microbiol., 2017, 8, 272.
[http://dx.doi.org/10.3389/fmicb.2017.00272] [PMID: 28280490]
[65]
Baskaran, P.; Krishnan, V.; Ren, J.; Thyagarajan, B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br. J. Pharmacol., 2016, 173(15), 2369-2389.
[http://dx.doi.org/10.1111/bph.13514] [PMID: 27174467]
[66]
Lu, M.; Cao, Y.; Ho, C.T.; Huang, Q. The enhanced anti-obesity effect and reduced gastric mucosa irritation of capsaicin-loaded nanoemulsions. Food Funct., 2017, 8(5), 1803-1809.
[http://dx.doi.org/10.1039/C7FO00173H] [PMID: 28443906]
[67]
Zheng, J.; Zheng, S.; Feng, Q.; Zhang, Q.; Xiao, X. Dietary capsaicin and its anti-obesity potency: From mechanism to clinical implications. Biosci. Rep., 2017, 37(3), BSR20170286.
[http://dx.doi.org/10.1042/BSR20170286] [PMID: 28424369]
[68]
Fattori, V.; Hohmann, M.; Rossaneis, A.; Pinho-Ribeiro, F.; Verri, W. Capsaicin: Current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules, 2016, 21(7), 844.
[http://dx.doi.org/10.3390/molecules21070844] [PMID: 27367653]
[69]
Leung, F.W. Capsaicin as an anti-obesity drug. Prog. Drug Res., 2014, 68, 171-179.
[http://dx.doi.org/10.1007/978-3-0348-0828-6_7] [PMID: 24941669]
[70]
Zsiborás, C.; Mátics, R.; Hegyi, P.; Balaskó, M.; Pétervári, E.; Szabó, I.; Sarlós, P.; Mikó, A.; Tenk, J.; Rostás, I.; Pécsi, D.; Garami, A.; Rumbus, Z.; Huszár, O.; Solymár, M. Capsaicin and capsiate could be appropriate agents for treatment of obesity: A meta-analysis of human studies. Crit. Rev. Food Sci. Nutr., 2018, 58(9), 1419-1427.
[http://dx.doi.org/10.1080/10408398.2016.1262324] [PMID: 28001433]
[71]
Shi, X.D.; Zhang, J.X.; Hu, X.D.; Zhuang, T.; Lu, N.; Ruan, C.C. Leonurine attenuates obesity-related vascular dysfunction and inflammation. Antioxidants, 2022, 11(7), 1338.
[http://dx.doi.org/10.3390/antiox11071338] [PMID: 35883829]
[72]
Kotha, R.R.; Luthria, D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules, 2019, 24(16), 2930.
[http://dx.doi.org/10.3390/molecules24162930] [PMID: 31412624]
[73]
Zhao, Y.; Chen, B.; Shen, J.; Wan, L.; Zhu, Y.; Yi, T.; Xiao, Z. The beneficial effects of Quercetin, Curcumin, and Resveratrol in obesity. Oxid. Med. Cell. Longev., 2017, 2017, 1-8.
[http://dx.doi.org/10.1155/2017/1459497] [PMID: 29138673]
[74]
Martínez-Morúa, A.; Soto-Urquieta, M.G.; Franco-Robles, E.; Zúñiga-Trujillo, I.; Campos-Cervantes, A.; Pérez-Vázquez, V.; Ramírez-Emiliano, J. Curcumin decreases oxidative stress in mitochondria isolated from liver and kidneys of high-fat diet-induced obese mice. J. Asian Nat. Prod. Res., 2013, 15(8), 905-915.
[http://dx.doi.org/10.1080/10286020.2013.802687] [PMID: 23782307]
[75]
Ariamoghaddam, A.; Ebrahimi-Hosseinzadeh, B.; Hatamian-Zarmi, A.; Sahraeian, R. In vivo anti-obesity efficacy of curcumin loaded nanofibers transdermal patches in high-fat diet induced obese rats. Mater. Sci. Eng. C, 2018, 92, 161-171.
[http://dx.doi.org/10.1016/j.msec.2018.06.030] [PMID: 30184739]
[76]
Bradford, P.G. Curcumin and obesity. Biofactors, 2013, 39(1), 78-87.
[http://dx.doi.org/10.1002/biof.1074] [PMID: 23339049]
[77]
Pan, S.; Chen, Y.; Zhang, L.; Liu, Z.; Xu, X.; Xing, H. Curcumin represses lipid accumulation through inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis in porcine subcutaneous preadipocytes. Animal Bioscience, 2022, 35(5), 763-777.
[http://dx.doi.org/10.5713/ab.21.0371] [PMID: 34727633]
[78]
Maithilikarpagaselvi, N.; Sridhar, M.G.; Swaminathan, R.P.; Sripradha, R. Preventive effect of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed obese rats. J. Complement. Integr. Med., 2016, 13(2), 137-143.
[http://dx.doi.org/10.1515/jcim-2015-0070] [PMID: 26845728]
[79]
Mokgalaboni, K.; Ntamo, Y.; Ziqubu, K.; Nyambuya, T.M.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Gabuza, K.B.; Chellan, N.; Tiano, L.; Dludla, P.V. Curcumin supplementation improves biomarkers of oxidative stress and inflammation in conditions of obesity, type 2 diabetes and NAFLD: Updating the status of clinical evidence. Food Funct., 2021, 12(24), 12235-12249.
[http://dx.doi.org/10.1039/D1FO02696H] [PMID: 34847213]
[80]
Kobori, M.; Takahashi, Y.; Takeda, H.; Takahashi, M.; Izumi, Y.; Akimoto, Y.; Sakurai, M.; Oike, H.; Nakagawa, T.; Itoh, M.; Bamba, T.; Kimura, T. Dietary intake of curcumin improves eif2 signaling and reduces lipid levels in the white adipose tissue of obese mice. Sci. Rep., 2018, 8(1), 9081.
[http://dx.doi.org/10.1038/s41598-018-27105-w] [PMID: 29899429]
[81]
Wu, L.Y.; Chen, C.W.; Chen, L.K.; Chou, H.Y.; Chang, C.L.; Juan, C.C. Curcumin Attenuates adipogenesis by inducing preadipocyte apoptosis and inhibiting adipocyte differentiation. Nutrients, 2019, 11(10), 2307.
[http://dx.doi.org/10.3390/nu11102307] [PMID: 31569380]
[82]
Tian, L.; Song, Z.; Shao, W.; Du, W.W.; Zhao, L.R.; Zeng, K.; Yang, B.B.; Jin, T. Curcumin represses mouse 3T3-L1 cell adipogenic differentiation via inhibiting miR-17-5p and stimulating the Wnt signalling pathway effector Tcf7l2. Cell Death Dis., 2017, 8(1), e2559.
[http://dx.doi.org/10.1038/cddis.2016.455] [PMID: 28102847]
[83]
Zhao, D.; Pan, Y.; Yu, N.; Bai, Y.; Ma, R.; Mo, F.; Zuo, J.; Chen, B.; Jia, Q.; Zhang, D.; Liu, J.; Jiang, G.; Gao, S. Curcumin improves adipocytes browning and mitochondrial function in 3T3-L1 cells and obese rodent model. R. Soc. Open Sci., 2021, 8(3), 200974.
[http://dx.doi.org/10.1098/rsos.200974] [PMID: 33959308]
[84]
Sakuma, S.; Sumida, M.; Endoh, Y.; Kurita, A.; Yamaguchi, A.; Watanabe, T.; Kohda, T.; Tsukiyama, Y.; Fujimoto, Y. Curcumin inhibits adipogenesis induced by benzyl butyl phthalate in 3T3-L1 cells. Toxicol. Appl. Pharmacol., 2017, 329, 158-164.
[http://dx.doi.org/10.1016/j.taap.2017.05.036] [PMID: 28595985]
[85]
Chen, Y.; Wu, R.; Chen, W.; Liu, Y.; Liao, X.; Zeng, B.; Guo, G.; Lou, F.; Xiang, Y.; Wang, Y.; Wang, X. Curcumin prevents obesity by targeting TRAF4-induced ubiquitylation in m 6 A-dependent manner. EMBO Rep., 2021, 22(5), e52146.
[http://dx.doi.org/10.15252/embr.202052146] [PMID: 33880847]
[86]
Ferguson, B.S.; Nam, H.; Morrison, R.F. Curcumin inhibits 3T3-L1 preadipocyte proliferation by mechanisms involving post-transcriptional p27 regulation. Biochem. Biophys. Rep., 2016, 5, 16-21.
[http://dx.doi.org/10.1016/j.bbrep.2015.11.014] [PMID: 26688832]
[87]
Zhu, L.; Han, M.B.; Gao, Y.; Wang, H.; Dai, L.; Wen, Y.; Na, L.X. Curcumin triggers apoptosis via upregulation of Bax/Bcl-2 ratio and caspase activation in SW872 human adipocytes. Mol. Med. Rep., 2015, 12(1), 1151-1156.
[http://dx.doi.org/10.3892/mmr.2015.3450] [PMID: 25760477]
[88]
Valentine, C.; Ohnishi, K.; Irie, K.; Murakami, A. Curcumin may induce lipolysis via proteo-stress in Huh7 human hepatoma cells. J. Clin. Biochem. Nutr., 2019, 65(2), 91-98.
[http://dx.doi.org/10.3164/jcbn.19-7] [PMID: 31592057]
[89]
Zingg, J.M.; Hasan, S.T.; Nakagawa, K.; Canepa, E.; Ricciarelli, R.; Villacorta, L.; Azzi, A.; Meydani, M. Modulation of cAMP levels by high-fat diet and curcumin and regulatory effects on CD36/FAT scavenger receptor/fatty acids transporter gene expression. Biofactors, 2017, 43(1), 42-53.
[http://dx.doi.org/10.1002/biof.1307] [PMID: 27355903]
[90]
Ding, L.; Li, J.; Song, B.; Xiao, X.; Zhang, B.; Qi, M.; Huang, W.; Yang, L.; Wang, Z. Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway. Toxicol. Appl. Pharmacol., 2016, 304, 99-109.
[http://dx.doi.org/10.1016/j.taap.2016.05.011] [PMID: 27208389]
[91]
Shen, L.; Liu, L.; Ji, H.F. Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications. Food Nutr. Res., 2017, 61(1), 1361780.
[http://dx.doi.org/10.1080/16546628.2017.1361780] [PMID: 28814952]
[92]
Islam, T.; Koboziev, I.; Albracht-Schulte, K.; Mistretta, B.; Scoggin, S.; Yosofvand, M.; Moussa, H.; Zabet-Moghaddam, M.; Ramalingam, L.; Gunaratne, P.H.; Moustaid-Moussa, N. Curcumin reduces adipose tissue inflammation and alters gut microbiota in diet-induced obese male mice. Mol. Nutr. Food Res., 2021, 65(22), 2100274.
[http://dx.doi.org/10.1002/mnfr.202100274] [PMID: 34510720]
[93]
Li, S.; You, J.; Wang, Z.; Liu, Y.; Wang, B.; Du, M.; Zou, T. Curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice. Food Res. Int., 2021, 143, 110270.
[http://dx.doi.org/10.1016/j.foodres.2021.110270] [PMID: 33992371]
[94]
Han, Z.; Yao, L.; Zhong, Y.; Xiao, Y.; Gao, J.; Zheng, Z.; Fan, S.; Zhang, Z.; Gong, S.; Chang, S.; Cui, X.; Cai, J. Gut microbiota mediates the effects of curcumin on enhancing Ucp1-dependent thermogenesis and improving high-fat diet-induced obesity. Food Funct., 2021, 12(14), 6558-6575.
[http://dx.doi.org/10.1039/D1FO00671A] [PMID: 34096956]
[95]
Al-Saud, N.B.S. Impact of curcumin treatment on diabetic albino rats. Saudi J. Biol. Sci., 2020, 27(2), 689-694.
[http://dx.doi.org/10.1016/j.sjbs.2019.11.037] [PMID: 32210689]
[96]
Shabbir, U.; Rubab, M.; Daliri, E.B.M.; Chelliah, R.; Javed, A.; Oh, D.H. Curcumin, Quercetin, Catechins and Metabolic Diseases: The Role of Gut Microbiota. Nutrients, 2021, 13(1), 206.
[http://dx.doi.org/10.3390/nu13010206] [PMID: 33445760]
[97]
Koboziev, I.; Scoggin, S.; Gong, X.; Mirzaei, P.; Zabet-Moghaddam, M.; Yosofvand, M.; Moussa, H.; Jones-Hall, Y.; Moustaid-Moussa, N. Effects of curcumin in a mouse model of very high fat diet-induced obesity. Biomolecules, 2020, 10(10), 1368.
[http://dx.doi.org/10.3390/biom10101368] [PMID: 32992936]
[98]
Costa, M.C.; Lima, T.F.O.; Arcaro, C.A.; Inacio, M.D.; Batista-Duharte, A.; Carlos, I.Z.; Spolidorio, L.C.; Assis, R.P.; Brunetti, I.L.; Baviera, A.M. Trigonelline and curcumin alone, but not in combination, counteract oxidative stress and inflammation and increase glycation product detoxification in the liver and kidney of mice with high-fat diet-induced obesity. J. Nutr. Biochem., 2020, 76, 108303.
[http://dx.doi.org/10.1016/j.jnutbio.2019.108303] [PMID: 31812909]
[99]
Ganjali, S.; Sahebkar, A.; Mahdipour, E.; Jamialahmadi, K.; Torabi, S.; Akhlaghi, S.; Ferns, G.; Parizadeh, S.M.R.; Ghayour-Mobarhan, M. Investigation of the effects of curcumin on serum cytokines in obese individuals : A randomized controlled trial. Sci. World J., 2014, 2014, 1-6.
[http://dx.doi.org/10.1155/2014/898361] [PMID: 24678280]
[100]
Alsharif, F.J.; Almuhtadi, Y.A. The effect of curcumin supplementation on anthropometric measures among overweight or obese adults. Nutrients, 2021, 13(2), 680.
[http://dx.doi.org/10.3390/nu13020680] [PMID: 33672680]
[101]
Sangouni, A.A.; Taghdir, M.; Mirahmadi, J.; Sepandi, M.; Parastouei, K. Effects of curcumin and/or coenzyme Q10 supplementation on metabolic control in subjects with metabolic syndrome: A randomized clinical trial. Nutr. J., 2022, 21(1), 62.
[http://dx.doi.org/10.1186/s12937-022-00816-7] [PMID: 36192751]
[102]
Nurcahyanti, A.D.R.; Cokro, F.; Wulanjati, M.P.; Mahmoud, M.F.; Wink, M.; Sobeh, M. Curcuminoids for metabolic syndrome: Meta-Analysis evidences toward personalized prevention and treatment management. Front. Nutr., 2022, 9, 891339.
[http://dx.doi.org/10.3389/fnut.2022.891339] [PMID: 35757255]
[103]
Vafaeipour, Z.; Razavi, B.M.; Hosseinzadeh, H. Effects of turmeric (Curcuma longa) and its constituent (curcumin) on the metabolic syndrome: An updated review. J. Integr. Med., 2022, 20(3), 193-203.
[http://dx.doi.org/10.1016/j.joim.2022.02.008] [PMID: 35292209]
[104]
Hellmann, P.H.; Bagger, J.I.; Carlander, K.R.; Forman, J.; Chabanova, E.; Svenningsen, J.S.; Holst, J.J.; Gillum, M.P.; Vilsbøll, T.; Knop, F.K. The effect of curcumin on hepatic fat content in individuals with obesity. Diabetes Obes. Metab., 2022, 24(11), 2192-2202.
[http://dx.doi.org/10.1111/dom.14804] [PMID: 35775631]
[105]
Karandish, M.; Mozaffari-khosravi, H.; Mohammadi, S.M.; Cheraghian, B.; Azhdari, M. Curcumin and zinc co-supplementation along with a loss-weight diet can improve lipid profiles in subjects with prediabetes: A multi-arm, parallel-group, randomized, double-blind placebo-controlled phase 2 clinical trial. Diabetol. Metab. Syndr., 2022, 14(1), 22.
[http://dx.doi.org/10.1186/s13098-022-00792-2] [PMID: 35090529]
[106]
Nosrati-Oskouie, M.; Aghili-Moghaddam, N.S.; Sathyapalan, T.; Sahebkar, A. Impact of curcumin on fatty acid metabolism. Phytother. Res., 2021, 35(9), 4748-4762.
[http://dx.doi.org/10.1002/ptr.7105] [PMID: 33825246]
[107]
Pourhabibi-Zarandi, F.; Rafraf, M.; Zayeni, H.; Asghari-Jafarabadi, M.; Ebrahimi, A.A. Effects of curcumin supplementation on metabolic parameters, inflammatory factors and obesity values in women with rheumatoid arthritis: A randomized, double-blind, placebo-controlled clinical trial. Phytother. Res., 2022, 36(4), 1797-1806.
[http://dx.doi.org/10.1002/ptr.7422] [PMID: 35178811]
[108]
Safari, Z.; Bagherniya, M.; Askari, G.; Sathyapalan, T.; Sahebkar, A. The effect of curcumin supplemsentation on anthropometric indices in overweight and obese individuals: A systematic review of randomized controlled trials. Adv. Exp. Med. Biol., 2021, 1291, 121-137.
[http://dx.doi.org/10.1007/978-3-030-56153-6_7] [PMID: 34331687]
[109]
Obeid, M.A.; Alsaadi, M.; Aljabali, A.A. Recent updates in curcumin delivery. J. Liposome Res., 2022, 14, 1-12.
[http://dx.doi.org/10.1080/08982104.2022.2086567] [PMID: 35699160]
[110]
Suzuki, T.; Pervin, M.; Goto, S.; Isemura, M.; Nakamura, Y. Beneficial effects of tea and the Green Tea Catechin Epigallocatechin-3-gallate on Obesity. Molecules, 2016, 21(10), 1305.
[http://dx.doi.org/10.3390/molecules21101305] [PMID: 27689985]
[111]
Sampath, C.; Rashid, M.R.; Sang, S.; Ahmedna, M. Green tea epigallocatechin 3-gallate alleviates hyperglycemia and reduces advanced glycation end products via nrf2 pathway in mice with high fat diet-induced obesity. Biomed. Pharmacother., 2017, 87, 73-81.
[http://dx.doi.org/10.1016/j.biopha.2016.12.082] [PMID: 28040599]
[112]
Sun, X.; Dey, P.; Bruno, R.S.; Zhu, J. EGCG and catechin relative to green tea extract differentially modulate the gut microbial metabolome and liver metabolome to prevent obesity in mice fed a high-fat diet. J. Nutr. Biochem., 2022, 109, 109094.
[http://dx.doi.org/10.1016/j.jnutbio.2022.109094] [PMID: 35777589]
[113]
Sheng, L.; Jena, P.K.; Liu, H.X.; Hu, Y.; Nagar, N.; Bronner, D.N.; Settles, M.L.; Baümler, A.J.; Wan, Y.J.Y. Obesity treatment by epigallocatechin-3-gallate−regulated bile acid signaling and its enriched Akkermansia muciniphila. FASEB J., 2018, 32(12), 6371-6384.
[http://dx.doi.org/10.1096/fj.201800370R] [PMID: 29882708]
[114]
Gu, Q.; Wang, X.; Xie, L.; Yao, X.; Qian, L.; Yu, Z.; Shen, X. Green tea catechin EGCG could prevent obesity-related precocious puberty through NKB/NK3R signaling pathway. J. Nutr. Biochem., 2022, 108, 109085.
[http://dx.doi.org/10.1016/j.jnutbio.2022.109085] [PMID: 35691596]
[115]
Byun, J.K.; Yoon, B.Y.; Jhun, J.Y.; Oh, H.J.; Kim, E.; Min, J.K.; Cho, M.L. Epigallocatechin-3-gallate ameliorates both obesity and autoinflammatory arthritis aggravated by obesity by altering the balance among CD4+ T-cell subsets. Immunol. Lett., 2014, 157(1-2), 51-59.
[http://dx.doi.org/10.1016/j.imlet.2013.11.006] [PMID: 24239847]
[116]
Chen, Y.K.; Cheung, C.; Reuhl, K.R.; Liu, A.B.; Lee, M.J.; Lu, Y.P.; Yang, C.S. Effects of green tea polyphenol (-)-epigallocatechin-3-gallate on newly developed high-fat/Western-style diet-induced obesity and metabolic syndrome in mice. J. Agric. Food Chem., 2011, 59(21), 11862-11871.
[http://dx.doi.org/10.1021/jf2029016] [PMID: 21932846]
[117]
Nicoletti, C.F.; Delfino, H.B.P.; Pinhel, M.; Noronha, N.Y.; Pinhanelli, V.C.; Quinhoneiro, D.C.G.; de Oliveira, B.A.P.; Marchini, J.S.; Nonino, C.B. Impact of green tea epigallocatechin-3-gallate on HIF1-α and mTORC2 expression in obese women: Anti-cancer and anti-obesity effects? Nutr. Hosp., 2019, 36(2), 315-320.
[http://dx.doi.org/10.20960/nh.2216]
[118]
Xiong, H.; Wang, J.; Ran, Q.; Lou, G.; Peng, C.; Gan, Q.; Hu, J.; Sun, J.; Yao, R.; Huang, Q. Hesperidin: A therapeutic agent for obesity. Drug Des. Devel. Ther., 2019, 13, 3855-3866.
[http://dx.doi.org/10.2147/DDDT.S227499] [PMID: 32009777]
[119]
Park, U.H.; Hwang, J.T.; Youn, H.; Kim, E.J.; Um, S.J. Kaempferol antagonizes adipogenesis by repressing histone H3K4 methylation at PPARγ target genes. Biochem. Biophys. Res. Commun., 2022, 617(Pt 1), 48-54.
[http://dx.doi.org/10.1016/j.bbrc.2022.05.098] [PMID: 35679710]
[120]
Romero-Juárez, P.A.; Visco, D.B.; Manhães-de-Castro, R.; Urquiza-Martínez, M.V.; Saavedra, L.M.; González-Vargas, M.C.; Mercado-Camargo, R.; Aquino, J.S.; Toscano, A.E.; Torner, L.; Guzmán-Quevedo, O. Dietary flavonoid kaempferol reduces obesity-associated hypothalamic microglia activation and promotes body weight loss in mice with obesity. Nutr. Neurosci., 2021, 14, 1-15.
[http://dx.doi.org/10.1080/1028415X.2021.2012629] [PMID: 34905445]
[121]
Bian, Y.; Lei, J.; Zhong, J.; Wang, B.; Wan, Y.; Li, J.; Liao, C.; He, Y.; Liu, Z.; Ito, K.; Zhang, B. Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat diet mice. J. Nutr. Biochem., 2022, 99, 108840.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108840] [PMID: 34419569]
[122]
Wang, T.; Wu, Q.; Zhao, T. Preventive effects of Kaempferol on High-Fat Diet-Induced obesity complications in C57BL/6 Mice. BioMed Res. Int., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/4532482] [PMID: 32337249]
[123]
Zang, Y.; Zhang, L.; Igarashi, K.; Yu, C. The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Food Funct., 2015, 6(3), 834-841.
[http://dx.doi.org/10.1039/C4FO00844H] [PMID: 25599885]
[124]
Torres-Villarreal, D.; Camacho, A.; Castro, H.; Ortiz-Lopez, R.; de la Garza, A.L. Anti-obesity effects of kaempferol by inhibiting adipogenesis and increasing lipolysis in 3T3-L1 cells. J. Physiol. Biochem., 2019, 75(1), 83-88.
[http://dx.doi.org/10.1007/s13105-018-0659-4] [PMID: 30539499]
[125]
Deepika; Maurya, P.K. Health benefits of Quercetin in age-related diseases. Molecules, 2022, 27(8), 2498.
[http://dx.doi.org/10.3390/molecules27082498] [PMID: 35458696]
[126]
Hosseini, A.; Razavi, B.M.; Banach, M.; Hosseinzadeh, H. Quercetin and metabolic syndrome: A review. Phytother. Res., 2021, 35(10), 5352-5364.
[http://dx.doi.org/10.1002/ptr.7144] [PMID: 34101925]
[127]
Nettore, I.C.; Rocca, C.; Mancino, G.; Albano, L.; Amelio, D.; Grande, F.; Puoci, F.; Pasqua, T.; Desiderio, S.; Mazza, R.; Terracciano, D.; Colao, A.; Bèguinot, F.; Russo, G.L.; Dentice, M.; Macchia, P.E.; Sinicropi, M.S.; Angelone, T.; Ungaro, P. Quercetin and its derivative Q2 modulate chromatin dynamics in adipogenesis and Q2 prevents obesity and metabolic disorders in rats. J. Nutr. Biochem., 2019, 69, 151-162.
[http://dx.doi.org/10.1016/j.jnutbio.2019.03.019] [PMID: 31096072]
[128]
Seo, M.J.; Lee, Y.J.; Hwang, J.H.; Kim, K.J.; Lee, B.Y. The inhibitory effects of quercetin on obesity and obesity-induced inflammation by regulation of MAPK signaling. J. Nutr. Biochem., 2015, 26(11), 1308-1316.
[http://dx.doi.org/10.1016/j.jnutbio.2015.06.005] [PMID: 26277481]
[129]
Dong, J.; Zhang, X.; Zhang, L.; Bian, H.X.; Xu, N.; Bao, B.; Liu, J. Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: A mechanism including AMPKα1/SIRT1. J. Lipid Res., 2014, 55(3), 363-374.
[http://dx.doi.org/10.1194/jlr.M038786] [PMID: 24465016]
[130]
Griffin, L.E.; Essenmacher, L.; Racine, K.C.; Iglesias-Carres, L.; Tessem, J.S.; Smith, S.M.; Neilson, A.P. Diet-induced obesity in genetically diverse collaborative cross mouse founder strains reveals diverse phenotype response and amelioration by quercetin treatment in 129S1/SvImJ, PWK/EiJ, CAST/PhJ, and WSB/EiJ mice. J. Nutr. Biochem., 2021, 87, 108521.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108521] [PMID: 33039581]
[131]
Juárez-Fernández, M.; Porras, D.; Petrov, P.; Román-Sagüillo, S.; García-Mediavilla, M.V.; Soluyanova, P.; Martínez-Flórez, S.; González-Gallego, J.; Nistal, E.; Jover, R.; Sánchez-Campos, S. The synbiotic combination of Akkermansia muciniphila and Quercetin Ameliorates early obesity and NAFLD through Gut Microbiota Reshaping and Bile Acid Metabolism Modulation. Antioxidants, 2021, 10(12), 2001.
[http://dx.doi.org/10.3390/antiox10122001] [PMID: 34943104]
[132]
Tan, Y.; Tam, C.C.; Rolston, M.; Alves, P.; Chen, L.; Meng, S.; Hong, H.; Chang, S.K.C.; Yokoyama, W. Quercetin ameliorates insulin resistance and restores gut microbiome in mice on high-fat diets. Antioxidants, 2021, 10(8), 1251.
[http://dx.doi.org/10.3390/antiox10081251] [PMID: 34439499]
[133]
Liu, E.; Tsuboi, H.; Ikegami, S.; Kamiyama, T.; Asami, Y.; Ye, L.; Oda, M.; Ji, Z.S. Effects of Nelumbo nucifera Leaf Extract on Obesity. Plant Foods Hum. Nutr., 2021, 76(3), 377-384.
[http://dx.doi.org/10.1007/s11130-020-00852-w] [PMID: 34462872]
[134]
D’Esposito, V.; Ambrosio, M.R.; Liguoro, D.; Perruolo, G.; Lecce, M.; Cabaro, S.; Aprile, M.; Marino, A.; Pilone, V.; Forestieri, P.; Miele, C.; Bruzzese, D.; Terracciano, D.; Beguinot, F.; Formisano, P. In severe obesity, subcutaneous adipose tissue cell-derived cytokines are early markers of impaired glucose tolerance and are modulated by quercetin. Int. J. Obes., 2021, 45(8), 1811-1820.
[http://dx.doi.org/10.1038/s41366-021-00850-1] [PMID: 33993191]
[135]
Pei, Y.; Otieno, D.; Gu, I.; Lee, S.O.; Parks, J.S.; Schimmel, K.; Kang, H.W. Effect of quercetin on nonshivering thermogenesis of brown adipose tissue in high-fat diet-induced obese mice. J. Nutr. Biochem., 2021, 88, 108532.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108532] [PMID: 33130188]
[136]
Jiang, H.; Horiuchi, Y.; Hironao, K.; Kitakaze, T.; Yamashita, Y.; Ashida, H. Prevention effect of quercetin and its glycosides on obesity and hyperglycemia through activating AMPKα in high-fat diet-fed ICR mice. J. Clin. Biochem. Nutr., 2020, 67(1), 75-83.
[http://dx.doi.org/10.3164/jcbn.20-47] [PMID: 32801472]
[137]
Yang, L.; Li, X.F.; Gao, L.; Zhang, Y.O.; Cai, G.P. Suppressive effects of quercetin-3-O-(6″-Feruloyl)-β-D-galactopyranoside on adipogenesis in 3T3-L1 preadipocytes through down-regulation of PPARγ and C/EBPα expression. Phytother. Res., 2012, 26(3), 438-444.
[http://dx.doi.org/10.1002/ptr.3604] [PMID: 21833993]
[138]
Selek Aksoy, I.; Otles, S. Effects of green apple (Golden Delicious) and its three major flavonols consumption on obesity, lipids, and oxidative stress in obese rats. Molecules, 2022, 27(4), 1243.
[http://dx.doi.org/10.3390/molecules27041243] [PMID: 35209038]
[139]
Khan, F.A.; Maalik, A.; Murtaza, G. Inhibitory mechanism against oxidative stress of caffeic acid. J. Food Drug Anal., 2016, 24(4), 695-702.
[http://dx.doi.org/10.1016/j.jfda.2016.05.003] [PMID: 28911606]
[140]
Shin, S.H.; Seo, S.G.; Min, S.; Yang, H.; Lee, E.; Son, J.E.; Kwon, J.Y.; Yue, S.; Chung, M.Y.; Kim, K.H.; Cheng, J.X.; Lee, H.J.; Lee, K.W. Caffeic acid phenethyl ester, a major component of propolis, suppresses high fat diet-induced obesity through inhibiting adipogenesis at the mitotic clonal expansion stage. J. Agric. Food Chem., 2014, 62(19), 4306-4312.
[http://dx.doi.org/10.1021/jf405088f] [PMID: 24611533]
[141]
Liao, C.C.; Ou, T.T.; Wu, C.H.; Wang, C.J. Prevention of diet-induced hyperlipidemia and obesity by caffeic acid in C57BL/6 mice through regulation of hepatic lipogenesis gene expression. J. Agric. Food Chem., 2013, 61(46), 11082-11088.
[http://dx.doi.org/10.1021/jf4026647] [PMID: 24156384]
[142]
Kumar, R.; Sharma, A.; Iqbal, M.S.; Srivastava, J.K. Therapeutic promises of chlorogenic acid with special emphasis on its anti-obesity property. Curr. Mol. Pharmacol., 2020, 13(1), 7-16.
[http://dx.doi.org/10.2174/1874467212666190716145210] [PMID: 31333144]
[143]
Shao, W.; Xu, J.; Xu, C.; Weng, Z.; Liu, Q.; Zhang, X.; Liang, J.; Li, W.; Zhang, Y.; Jiang, Z.; Gu, A. Early-life perfluorooctanoic acid exposure induces obesity in male offspring and the intervention role of chlorogenic acid. Environ. Pollut., 2021, 272, 115974.
[http://dx.doi.org/10.1016/j.envpol.2020.115974] [PMID: 33218772]
[144]
He, X.; Zheng, S.; Sheng, Y.; Miao, T.; Xu, J.; Xu, W.; Huang, K.; Zhao, C. Chlorogenic acid ameliorates obesity by preventing energy balance shift in high-fat diet induced obese mice. J. Sci. Food Agric., 2021, 101(2), 631-637.
[http://dx.doi.org/10.1002/jsfa.10675] [PMID: 32683698]
[145]
Wang, Z.; Lam, K.L.; Hu, J.; Ge, S.; Zhou, A.; Zheng, B.; Zeng, S.; Lin, S. Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice. Food Sci. Nutr., 2019, 7(2), 579-588.
[http://dx.doi.org/10.1002/fsn3.868] [PMID: 30847137]
[146]
Ghadieh, H.E.; Smiley, Z.N.; Kopfman, M.W.; Najjar, M.G.; Hake, M.J.; Najjar, S.M. Chlorogenic acid/chromium supplement rescues diet-induced insulin resistance and obesity in mice. Nutr. Metab., 2015, 12(1), 19.
[http://dx.doi.org/10.1186/s12986-015-0014-5] [PMID: 26045713]
[147]
Tang, S.; Fang, C.; Liu, Y.; Tang, L.; Xu, Y. Anti-obesity and Anti-diabetic Effect of Ursolic Acid against Streptozotocin/High Fat Induced Obese in Diabetic Rats. J. Oleo Sci., 2022, 71(2), 289-300.
[http://dx.doi.org/10.5650/jos.ess21258] [PMID: 35034940]
[148]
González-Garibay, A.S.; López-Vázquez, A.; García-Bañuelos, J.; Sánchez-Enríquez, S.; Sandoval-Rodríguez, A.S.; Del Toro Arreola, S.; Bueno-Topete, M.R.; Muñoz-Valle, J.F.; González Hita, M.E.; Domínguez-Rosales, J.A.; Armendáriz-Borunda, J.; Bastidas-Ramírez, B.E. Effect of ursolic acid on insulin resistance and hyperinsulinemia in rats with diet-induced obesity: Role of adipokines expression. J. Med. Food, 2020, 23(3), 297-304.
[http://dx.doi.org/10.1089/jmf.2019.0154] [PMID: 31747348]
[149]
Nguyen, H.N.; Ahn, Y.J.; Medina, E.A.; Asmis, R. Dietary 23–hydroxy ursolic acid protects against atherosclerosis and obesity by preventing dyslipidemia-induced monocyte priming and dysfunction. Atherosclerosis, 2018, 275, 333-341.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.06.882] [PMID: 30015296]
[150]
Rao, V.S.; de Melo, C.L.; Queiroz, M.G.R.; Lemos, T.L.G.; Menezes, D.B.; Melo, T.S.; Santos, F.A. Ursolic acid, a pentacyclic triterpene from Sambucus australis, prevents abdominal adiposity in mice fed a high-fat diet. J. Med. Food, 2011, 14(11), 1375-1382.
[http://dx.doi.org/10.1089/jmf.2010.0267] [PMID: 21612453]
[151]
Kunkel, S.D.; Elmore, C.J.; Bongers, K.S.; Ebert, S.M.; Fox, D.K.; Dyle, M.C.; Bullard, S.A.; Adams, C.M. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease. PLoS One, 2012, 7(6), e39332.
[http://dx.doi.org/10.1371/journal.pone.0039332] [PMID: 22745735]
[152]
Feng, Y.; Huang, S.; Dou, W.; Zhang, S.; Chen, J.; Shen, Y.; Shen, J.; Leng, Y. Emodin, a natural product, selectively inhibits 11β-hydroxysteroid dehydrogenase type 1 and ameliorates metabolic disorder in diet-induced obese mice. Br. J. Pharmacol., 2010, 161(1), 113-126.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00826.x] [PMID: 20718744]
[153]
Singh, A.P.; Singh, R.; Verma, S.S.; Rai, V.; Kaschula, C.H.; Maiti, P.; Gupta, S.C. Health benefits of resveratrol: Evidence from clinical studies. Med. Res. Rev., 2019, 39(5), 1851-1891.
[http://dx.doi.org/10.1002/med.21565] [PMID: 30741437]
[154]
Barber, T.M.; Kabisch, S.; Randeva, H.S.; Pfeiffer, A.F.H.; Weickert, M.O. Implications of resveratrol in obesity and insulin resistance: A state-of-the-art review. Nutrients, 2022, 14(14), 2870.
[http://dx.doi.org/10.3390/nu14142870] [PMID: 35889827]
[155]
Kim, O.Y.; Chung, J.Y.; Song, J. Effect of resveratrol on adipokines and myokines involved in fat browning: Perspectives in healthy weight against obesity. Pharmacol. Res., 2019, 148, 104411.
[http://dx.doi.org/10.1016/j.phrs.2019.104411] [PMID: 31449976]
[156]
Zu, Y.; Zhao, L.; Hao, L.; Mechref, Y.; Zabet-Moghaddam, M.; Keyel, P.A.; Abbasi, M.; Wu, D.; Dawson, J.A.; Zhang, R.; Nie, S.; Moustaid-Moussa, N.; Kolonin, M.G.; Daquinag, A.C.; Brandi, L.; Warraich, I.; San Francisco, S.K.; Sun, X.; Fan, Z.; Wang, S. Browning white adipose tissue using adipose stromal cell-targeted resveratrol-loaded nanoparticles for combating obesity. J. Control. Release, 2021, 333, 339-351.
[http://dx.doi.org/10.1016/j.jconrel.2021.03.022] [PMID: 33766692]
[157]
Hu, D.; Yang, W.; Mao, P.; Cheng, M. Combined Amelioration of Prebiotic Resveratrol and Probiotic Bifidobacteria on Obesity and Nonalcoholic Fatty Liver Disease. Nutr. Cancer, 2021, 73(4), 652-661.
[http://dx.doi.org/10.1080/01635581.2020.1767166] [PMID: 32436410]
[158]
Gómez-Zorita, S.; Fernández-Quintela, A.; Lasa, A.; Hijona, E.; Bujanda, L.; Portillo, M.P. Effects of resveratrol on obesity-related inflammation markers in adipose tissue of genetically obese rats. Nutrition, 2013, 29(11-12), 1374-1380.
[http://dx.doi.org/10.1016/j.nut.2013.04.014] [PMID: 24012391]
[159]
Wang, S.; Moustaid-Moussa, N.; Chen, L.; Mo, H.; Shastri, A.; Su, R.; Bapat, P.; Kwun, I.; Shen, C.L. Novel insights of dietary polyphenols and obesity. J. Nutr. Biochem., 2014, 25(1), 1-18.
[http://dx.doi.org/10.1016/j.jnutbio.2013.09.001] [PMID: 24314860]
[160]
Szkudelska, K.; Szkudelski, T. Resveratrol, obesity and diabetes. Eur. J. Pharmacol., 2010, 635(1-3), 1-8.
[http://dx.doi.org/10.1016/j.ejphar.2010.02.054] [PMID: 20303945]
[161]
Carpéné, C.; Les, F.; Cásedas, G.; Peiro, C.; Fontaine, J.; Chaplin, A.; Mercader, J.; López, V. Resveratrol anti-obesity effects: Rapid inhibition of adipocyte glucose utilization. Antioxidants, 2019, 8(3), 74.
[http://dx.doi.org/10.3390/antiox8030074] [PMID: 30917543]
[162]
Fraiz, G.M.; da Conceição, A.R.; de Souza Vilela, D.L.; Rocha, D.M.U.P.; Bressan, J.; Hermsdorff, H.H.M. Can resveratrol modulate sirtuins in obesity and related diseases? A systematic review of randomized controlled trials. Eur. J. Nutr., 2021, 60(6), 2961-2977.
[http://dx.doi.org/10.1007/s00394-021-02623-y] [PMID: 34251517]
[163]
Shabani, M.; Sadeghi, A.; Hosseini, H.; Teimouri, M.; Babaei Khorzoughi, R.; Pasalar, P.; Meshkani, R. Resveratrol alleviates obesity-induced skeletal muscle inflammation via decreasing M1 macrophage polarization and increasing the regulatory T cell population. Sci. Rep., 2020, 10(1), 3791.
[http://dx.doi.org/10.1038/s41598-020-60185-1] [PMID: 32123188]
[164]
Huang, Y.; Zhu, X.; Chen, K.; Lang, H.; Zhang, Y.; Hou, P.; Ran, L.; Zhou, M.; Zheng, J.; Yi, L.; Mi, M.; Zhang, Q. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway. Aging, 2019, 11(8), 2217-2240.
[http://dx.doi.org/10.18632/aging.101910] [PMID: 30988232]
[165]
Wang, P.; Li, D.; Ke, W.; Liang, D.; Hu, X.; Chen, F. Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice. Int. J. Obes., 2020, 44(1), 213-225.
[http://dx.doi.org/10.1038/s41366-019-0332-1] [PMID: 30718820]
[166]
Wang, P.; Gao, J.; Ke, W.; Wang, J.; Li, D.; Liu, R.; Jia, Y.; Wang, X.; Chen, X.; Chen, F.; Hu, X. Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota. Free Radic. Biol. Med., 2020, 156, 83-98.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.04.013] [PMID: 32305646]
[167]
Castro-Rodríguez, D.C.; Reyes-Castro, L.A.; Vargas-Hernández, L.; Itani, N.; Nathanielsz, P.W.; Taylor, P.D.; Zambrano, E. Maternal obesity (MO) programs morphological changes in aged rat offspring small intestine in a sex dependent manner: Effects of maternal resveratrol supplementation. Exp. Gerontol., 2021, 154, 111511.
[http://dx.doi.org/10.1016/j.exger.2021.111511] [PMID: 34371097]
[168]
Hsu, M.H.; Sheen, J.M.; Lin, I.C.; Yu, H.R.; Tiao, M.M.; Tain, Y.L.; Huang, L.T. Effects of maternal resveratrol on maternal high-fat diet/obesity with or without postnatal high-fat diet. Int. J. Mol. Sci., 2020, 21(10), 3428.
[http://dx.doi.org/10.3390/ijms21103428] [PMID: 32408716]
[169]
Hillsley, A.; Chin, V.; Li, A.; McLachlan, C.S. Resveratrol for weight loss in obesity: An signs in ClinicalTrials.gov. Nutrients, 2022, 14(7), 1424.
[http://dx.doi.org/10.3390/nu14071424] [PMID: 35406038]
[170]
Mousavi, S.M.; Milajerdi, A.; Sheikhi, A.; Kord-Varkaneh, H.; Feinle-Bisset, C.; Larijani, B.; Esmaillzadeh, A. Resveratrol supplementation significantly influences obesity measures: A systematic review and dose–response meta-analysis of randomized controlled trials. Obes. Rev., 2019, 20(3), 487-498.
[http://dx.doi.org/10.1111/obr.12775] [PMID: 30515938]
[171]
Arzola-Paniagua, M.A.; García-Salgado López, E.R.; Calvo-Vargas, C.G.; Guevara-Cruz, M. Efficacy of an orlistat-resveratrol combination for weight loss in subjects with obesity: A randomized controlled trial. Obesity, 2016, 24(7), 1454-1463.
[http://dx.doi.org/10.1002/oby.21523] [PMID: 27221771]
[172]
Sathyanarayana, A.R.; Lu, C.K.; Liaw, C.C.; Chang, C.C.; Han, H.Y.; Green, B.D.; Huang, W.J.; Huang, C.; He, W.D.; Lee, L.C.; Liu, H.K. 1,2,3,4,6-Penta-O-galloyl-d-glucose interrupts the early adipocyte lifecycle and attenuates adiposity and hepatic steatosis in mice with diet-induced obesity. Int. J. Mol. Sci., 2022, 23(7), 4052.
[http://dx.doi.org/10.3390/ijms23074052] [PMID: 35409415]
[173]
Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; Sharifi-Rad, J. Carvacrol and human health: A comprehensive review. Phytother. Res., 2018, 32(9), 1675-1687.
[http://dx.doi.org/10.1002/ptr.6103] [PMID: 29744941]
[174]
Spalletta, S.; Flati, V.; Toniato, E.; Di Gregorio, J.; Marino, A.; Pierdomenico, L.; Marchisio, M.; D’Orazi, G.; Cacciatore, I.; Robuffo, I. Carvacrol reduces adipogenic differentiation by modulating autophagy and ChREBP expression. PLoS One, 2018, 13(11), e0206894.
[http://dx.doi.org/10.1371/journal.pone.0206894] [PMID: 30418986]
[175]
Cho, S.; Choi, Y.; Park, S.; Park, T. Carvacrol prevents diet-induced obesity by modulating gene expressions involved in adipogenesis and inflammation in mice fed with high-fat diet. J. Nutr. Biochem., 2012, 23(2), 192-201.
[http://dx.doi.org/10.1016/j.jnutbio.2010.11.016] [PMID: 21447440]
[176]
Brahma Naidu, P.; Uddandrao, V.V.S.; Ravindar Naik, R.; Suresh, P.; Meriga, B.; Begum, M.S.; Pandiyan, R.; Saravanan, G. Ameliorative potential of gingerol: Promising modulation of inflammatory factors and lipid marker enzymes expressions in HFD induced obesity in rats. Mol. Cell. Endocrinol., 2016, 419, 139-147.
[http://dx.doi.org/10.1016/j.mce.2015.10.007] [PMID: 26493465]
[177]
Saravanan, G.; Ponmurugan, P.; Deepa, M.A.; Senthilkumar, B. Anti-obesity action of gingerol: Effect on lipid profile, insulin, leptin, amylase and lipase in male obese rats induced by a high-fat diet. J. Sci. Food Agric., 2014, 94(14), 2972-2977.
[http://dx.doi.org/10.1002/jsfa.6642] [PMID: 24615565]
[178]
Sanders, O.D.; Rajagopal, J.A.; Rajagopal, L. Menthol to induce non-shivering thermogenesis via TRPM8/PKA signaling for treatment of obesity. J. Obes. Metab. Syndr., 2021, 30(1), 4-11.
[http://dx.doi.org/10.7570/jomes20038] [PMID: 33071240]
[179]
Khare, P.; Mangal, P.; Baboota, R.K.; Jagtap, S.; Kumar, V.; Singh, D.P.; Boparai, R.K.; Sharma, S.S.; Khardori, R.; Bhadada, S.K.; Kondepudi, K.K.; Chopra, K.; Bishnoi, M. Involvement of glucagon in preventive effect of menthol against high fat diet induced obesity in mice. Front. Pharmacol., 2018, 9, 1244.
[http://dx.doi.org/10.3389/fphar.2018.01244] [PMID: 30505271]
[180]
Vizin, R.C.L.; Motzko-Soares, A.C.P.; Armentano, G.M.; Ishikawa, D.T.; Cruz-Neto, A.P.; Carrettiero, D.C.; Almeida, M.C. Short-term menthol treatment promotes persistent thermogenesis without induction of compensatory food consumption in Wistar rats: Implications for obesity control. J. Appl. Physiol., 2018, 124(3), 672-683.
[http://dx.doi.org/10.1152/japplphysiol.00770.2017] [PMID: 29357504]
[181]
Li, W.; Zeng, H.; Xu, M.; Huang, C.; Tao, L.; Li, J.; Zhang, T.; Chen, H.; Xia, J.; Li, C.; Li, X. Oleanolic acid improves obesity-related inflammation and insulin resistance by regulating macrophages activation. Front. Pharmacol., 2021, 12, 697483.
[http://dx.doi.org/10.3389/fphar.2021.697483] [PMID: 34393781]
[182]
Djeziri, F.Z.; Belarbi, M.; Murtaza, B.; Hichami, A.; Benammar, C.; Khan, N.A. Oleanolic acid improves diet-induced obesity by modulating fat preference and inflammation in mice. Biochimie, 2018, 152, 110-120.
[http://dx.doi.org/10.1016/j.biochi.2018.06.025] [PMID: 29966735]
[183]
de Melo, C.L.; Queiroz, M.G.R.; Fonseca, S.G.C.; Bizerra, A.M.C.; Lemos, T.L.G.; Melo, T.S.; Santos, F.A.; Rao, V.S. Oleanolic acid, a natural triterpenoid improves blood glucose tolerance in normal mice and ameliorates visceral obesity in mice fed a high-fat diet. Chem. Biol. Interact., 2010, 185(1), 59-65.
[http://dx.doi.org/10.1016/j.cbi.2010.02.028] [PMID: 20188082]
[184]
Sung, H.Y.; Kang, S.W.; Kim, J.L.; Li, J.; Lee, E.S.; Gong, J.H.; Han, S.J.; Kang, Y.H. Oleanolic acid reduces markers of differentiation in 3T3-L1 adipocytes. Nutr. Res., 2010, 30(12), 831-839.
[http://dx.doi.org/10.1016/j.nutres.2010.10.001] [PMID: 21147366]
[185]
Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; Contreras, M.M.; Segura-Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, thyme, and other plant sources: Health and potential uses. Phytother. Res., 2018, 32(9), 1688-1706.
[http://dx.doi.org/10.1002/ptr.6109] [PMID: 29785774]
[186]
Nagoor Meeran, M.F.; Javed, H.; Al Taee, H.; Azimullah, S.; Ojha, S.K. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for its therapeutic potential and pharmaceutical development. Front. Pharmacol., 2017, 8, 380.
[http://dx.doi.org/10.3389/fphar.2017.00380] [PMID: 28694777]
[187]
Habtemariam, S. Antidiabetic potential of monoterpenes: A case of small molecules punching above their weight. Int. J. Mol. Sci., 2017, 19(1), 4.
[http://dx.doi.org/10.3390/ijms19010004] [PMID: 29267214]
[188]
Haque, M.R.; Ansari, S.H.; Najmi, A.K.; Ahmad, M.A. Monoterpene phenolic compound thymol prevents high fat diet induced obesity in murine model. Toxicol. Mech. Methods, 2014, 24(2), 116-123.
[http://dx.doi.org/10.3109/15376516.2013.861888] [PMID: 24175857]
[189]
Neilson, A.P.; Goodrich, K.M.; Ferruzzi, M.G. Bioavailability and Metabolism of Bioactive Compounds From Foods.Nutrition in the Prevention and Treatment of Disease; Delahanty, F.E., Ed.; Academic Press, 2017, pp. 301-319.
[http://dx.doi.org/10.1016/B978-0-12-802928-2.00015-1]
[190]
Basak, S.; Duttaroy, A.K. Conjugated linoleic acid and its beneficial effects in obesity, cardiovascular disease, and cancer. Nutrients, 2020, 12(7), 1913.
[http://dx.doi.org/10.3390/nu12071913] [PMID: 32605287]
[191]
Ibrahim, K.S.; El-Sayed, E.M. Dietary conjugated linoleic acid and medium-chain triglycerides for obesity management. J. Biosci., 2021, 46(1), 12.
[http://dx.doi.org/10.1007/s12038-020-00133-3] [PMID: 33709964]
[192]
Sun, Y.; Hou, X.; Li, L.; Tang, Y.; Zheng, M.; Zeng, W.; Lei, X. Improving obesity and lipid metabolism using conjugated linoleic acid. Vet. Med. Sci., 2022, 8(6), 2538-2544.
[http://dx.doi.org/10.1002/vms3.921] [PMID: 36104831]
[193]
Liu, L.; He, Y.; Wang, K.; Miao, J.; Zheng, Z. Metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity in mice fed with conjugated linoleic acid (CLA). Food Funct., 2020, 11(11), 9729-9739.
[http://dx.doi.org/10.1039/D0FO02112A] [PMID: 33063083]
[194]
O’Reilly, M.E.; Lenighan, Y.M.; Dillon, E.; Kajani, S.; Curley, S.; Bruen, R.; Byrne, R.; Heslin, A.M.; Moloney, A.P.; Roche, H.M.; McGillicuddy, F.C. Conjugated linoleic acid and alpha linolenic acid improve cholesterol homeostasis in obesity by modulating distinct hepatic protein pathways. Mol. Nutr. Food Res., 2020, 64(7), 1900599.
[http://dx.doi.org/10.1002/mnfr.201900599] [PMID: 31917888]
[195]
Zhuang, P.; Shou, Q.; Wang, W.; He, L.; Wang, J.; Chen, J.; Zhang, Y.; Jiao, J. Essential fatty acids linoleic acid and α-linolenic acid sex-dependently regulate glucose homeostasis in obesity. Mol. Nutr. Food Res., 2018, 62(17), 1800448.
[http://dx.doi.org/10.1002/mnfr.201800448] [PMID: 29935107]
[196]
Oh, S.L.; Lee, S.R.; Kim, J.S. Effects of conjugated linoleic acid/n-3 and resistance training on muscle quality and expression of atrophy-related ubiquitin ligases in middle-aged mice with high-fat dietinduced obesity. J. Exerc. Nutrition Biochem., 2017, 21(3), 11-18.
[http://dx.doi.org/10.20463/jenb.2017.0028] [PMID: 29036761]
[197]
Dumont, J.; Goumidi, L.; Grenier-Boley, B.; Cottel, D.; Marécaux, N.; Montaye, M.; Wagner, A.; Arveiler, D.; Simon, C.; Ferrières, J.; Ruidavets, J.B.; Amouyel, P.; Dallongeville, J.; Meirhaeghe, A. Dietary linoleic acid interacts with FADS1 genetic variability to modulate HDL-cholesterol and obesity-related traits. Clin. Nutr., 2018, 37(5), 1683-1689.
[http://dx.doi.org/10.1016/j.clnu.2017.07.012] [PMID: 28774683]
[198]
Segovia, S.A.; Vickers, M.H.; Zhang, X.D.; Gray, C.; Reynolds, C.M. Maternal supplementation with conjugated linoleic acid in the setting of diet-induced obesity normalises the inflammatory phenotype in mothers and reverses metabolic dysfunction and impaired insulin sensitivity in offspring. J. Nutr. Biochem., 2015, 26(12), 1448-1457.
[http://dx.doi.org/10.1016/j.jnutbio.2015.07.013] [PMID: 26318151]
[199]
Kim, Y.; Kim, D.; Good, D.J.; Park, Y. Effects of postweaning administration of conjugated linoleic acid on development of obesity in nescient basic helix-loop-helix 2 knockout mice. J. Agric. Food Chem., 2015, 63(21), 5212-5223.
[http://dx.doi.org/10.1021/acs.jafc.5b00840] [PMID: 25976059]
[200]
Kim, J.H.; Gilliard, D.; Good, D.J.; Park, Y. Preventive effects of conjugated linoleic acid on obesity by improved physical activity in nescient basic helix-loop-helix 2 knockout mice during growth period. Food Funct., 2012, 3(12), 1280-1285.
[http://dx.doi.org/10.1039/c2fo30103b] [PMID: 22944770]
[201]
den Hartigh, L. Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: A review of pre-clinical and human trials with current perspectives. Nutrients, 2019, 11(2), 370.
[http://dx.doi.org/10.3390/nu11020370] [PMID: 30754681]
[202]
Liang, C.W.; Cheng, H.Y.; Lee, Y.H.; Liou, T.H.; Liao, C.D.; Huang, S.W. Effects of conjugated linoleic acid and exercise on body composition and obesity: A systematic review and meta-analysis. Nutr. Rev., 2022, 81(4), 397-415.
[http://dx.doi.org/10.1093/nutrit/nuac060] [PMID: 36048508]
[203]
He, Y.; Xu, K.; Li, Y.; Chang, H.; Liao, X.; Yu, H.; Tian, T.; Li, C.; Shen, Y.; Wu, Q.; Liu, X.; Shi, L. Metabolomic changes upon conjugated linoleic acid supplementation and predictions of body composition responsiveness. J. Clin. Endocrinol. Metab., 2022, 107(9), 2606-2615.
[http://dx.doi.org/10.1210/clinem/dgac367] [PMID: 35704027]
[204]
Chang, H.; Gan, W.; Liao, X.; Wei, J.; Lu, M.; Chen, H.; Wang, S.; Ma, Y.; Wu, Q.; Yu, Y.; Liu, X. Conjugated linoleic acid supplements preserve muscle in high-body-fat adults: A double-blind, randomized, placebo trial. Nutr. Metab. Cardiovasc. Dis., 2020, 30(10), 1777-1784.
[http://dx.doi.org/10.1016/j.numecd.2020.05.029] [PMID: 32684362]
[205]
Mądry, E.; Malesza, I.J.; Subramaniapillai, M.; Czochralska-Duszyńska, A.; Walkowiak, M.; Miśkiewicz-Chotnicka, A.; Walkowiak, J.; Lisowska, A. Body fat changes and liver safety in obese and overweight women supplemented with conjugated linoleic acid: A 12-week randomised, double-blind, placebo-controlled trial. Nutrients, 2020, 12(6), 1811.
[http://dx.doi.org/10.3390/nu12061811] [PMID: 32560516]
[206]
Esmaeili Shahmirzadi, F.; Ghavamzadeh, S.; Zamani, T. The effect of conjugated linoleic acid supplementation on body composition, serum insulin and leptin in obese adults. Arch. Iran Med., 2019, 22(5), 255-261.
[PMID: 31256599]
[207]
Namazi, N.; Irandoost, P.; Larijani, B.; Azadbakht, L. The effects of supplementation with conjugated linoleic acid on anthropometric indices and body composition in overweight and obese subjects: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr., 2019, 59(17), 2720-2733.
[http://dx.doi.org/10.1080/10408398.2018.1466107] [PMID: 29672124]
[208]
Guo, X.; Zhang, T.; Shi, L.; Gong, M.; Jin, J.; Zhang, Y.; Liu, R.; Chang, M.; Jin, Q.; Wang, X. The relationship between lipid phytochemicals, obesity and its related chronic diseases. Food Funct., 2018, 9(12), 6048-6062.
[http://dx.doi.org/10.1039/C8FO01026A] [PMID: 30427004]
[209]
Lee, D.; Lee, J.H.; Kim, B.H.; Lee, S.; Kim, D.W.; Kang, K.S. Phytochemical combination (p-Synephrine, p-Octopamine Hydrochloride, and Hispidulin) for improving obesity in obese mice induced by high-fat diet. Nutrients, 2022, 14(10), 2164.
[http://dx.doi.org/10.3390/nu14102164] [PMID: 35631305]
[210]
Hirotani, Y.; Fukamachi, J.; Ueyama, R.; Urashima, Y.; Ikeda, K. Effects of capsaicin coadministered with eicosapentaenoic acid on obesity-related dysregulation in high-fat-fed mice. Biol. Pharm. Bull., 2017, 40(9), 1581-1585.
[http://dx.doi.org/10.1248/bpb.b17-00247] [PMID: 28867743]
[211]
Zhao, L.; Cen, F.; Tian, F.; Li, M.J.; Zhang, Q.; Shen, H.Y.; Shen, X.C.; Zhou, M.M.; Du, J. Combination treatment with quercetin and resveratrol attenuates high fat diet-induced obesity and associated inflammation in rats via the AMPKα1/SIRT1 signaling pathway. Exp. Ther. Med., 2017, 14(6), 5942-5948.
[http://dx.doi.org/10.3892/etm.2017.5331] [PMID: 29285143]
[212]
Zhuang, T.; Liu, X.; Wang, W.; Song, J.; Zhao, L.; Ding, L.; Yang, L.; Zhou, M. Dose-Related urinary metabolic alterations of a combination of quercetin and resveratrol-treated high-fat diet fed rats. Front. Pharmacol., 2021, 12, 655563.
[http://dx.doi.org/10.3389/fphar.2021.655563] [PMID: 33935771]
[213]
Zhu, M.; Zhou, F.; Ouyang, J.; Wang, Q.; Li, Y.; Wu, J.; Huang, J.; Liu, Z. Combined use of epigallocatechin-3-gallate (EGCG) and caffeine in low doses exhibits marked anti-obesity synergy through regulation of gut microbiota and bile acid metabolism. Food Funct., 2021, 12(9), 4105-4116.
[http://dx.doi.org/10.1039/D0FO01768J] [PMID: 33977918]
[214]
Yang, Z.; Zhu, M.; Zhang, Y.; Wen, B.; An, H.; Ou, X.; Xiong, Y.; Lin, H.; Liu, Z.; Huang, J. Coadministration of epigallocatechin-3-gallate (EGCG) and caffeine in low dose ameliorates obesity and nonalcoholic fatty liver disease in obese rats. Phytother. Res., 2019, 33(4), 1019-1026.
[http://dx.doi.org/10.1002/ptr.6295] [PMID: 30746789]
[215]
Liu, H.; Guan, H.; Tan, X.; Jiang, Y.; Li, F.; Sun-Waterhouse, D.; Li, D. Enhanced alleviation of insulin resistance via the IRS-1/Akt/FOXO1 pathway by combining quercetin and EGCG and involving miR-27a-3p and miR-96–5p. Free Radic. Biol. Med., 2022, 181, 105-117.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.02.002] [PMID: 35124182]
[216]
Ohara, T.; Muroyama, K.; Yamamoto, Y.; Murosaki, S. Oral intake of a combination of glucosyl hesperidin and caffeine elicits an anti-obesity effect in healthy, moderately obese subjects: A randomized double-blind placebo-controlled trial. Nutr. J., 2015, 15(1), 6.
[http://dx.doi.org/10.1186/s12937-016-0123-7] [PMID: 26786000]
[217]
Ohara, T.; Muroyama, K.; Yamamoto, Y.; Murosaki, S. A combination of glucosyl hesperidin and caffeine exhibits an anti-obesity effect by inhibition of hepatic lipogenesis in mice. Phytother. Res., 2015, 29(2), 310-316.
[http://dx.doi.org/10.1002/ptr.5258] [PMID: 25409936]
[218]
Rebello, C.J.; Greenway, F.L.; Zhang, D.; Johnson, W.D.; Patterson, E.; Raum, W. Sympathomimetic increases resting energy expenditure following bariatric surgery: A randomized controlled clinical trial. Obesity, 2022, 30(4), 874-883.
[http://dx.doi.org/10.1002/oby.23384] [PMID: 35244344]
[219]
Bracale, R.; Petroni, M.L.; Davinelli, S.; Bracale, U.; Scapagnini, G.; Carruba, M.O.; Nisoli, E. Muscle uncoupling protein 3 expression is unchanged by chronic ephedrine/caffeine treatment: Results of a double blind, randomised clinical trial in morbidly obese females. PLoS One, 2014, 9(6), e98244.
[http://dx.doi.org/10.1371/journal.pone.0098244] [PMID: 24905629]
[220]
Ogawa, K.; Hirose, S.; Nagaoka, S.; Yanase, E. Interaction between tea polyphenols and bile acid inhibits micellar cholesterol solubility. J. Agric. Food Chem., 2016, 64(1), 204-209.
[http://dx.doi.org/10.1021/acs.jafc.5b05088] [PMID: 26651358]
[221]
Sakakibara, T.; Sawada, Y.; Wang, J.; Nagaoka, S.; Yanase, E. Molecular mechanism by which tea catechins decrease the micellar solubility of cholesterol. J. Agric. Food Chem., 2019, 67(25), 7128-7135.
[http://dx.doi.org/10.1021/acs.jafc.9b02265] [PMID: 31150244]
[222]
Ashigai, H.; Taniguchi, Y.; Suzuki, M.; Ikeshima, E.; Kanaya, T.; Zembutsu, K.; Tomita, S.; Miyake, M.; Fukuhara, I. Fecal lipid excretion after consumption of a black tea polyphenol containing beverage-randomized, placebo-controlled, double-blind, crossover study. Biol. Pharm. Bull., 2016, 39(5), 699-704.
[http://dx.doi.org/10.1248/bpb.b15-00662] [PMID: 26887502]
[223]
Hamauzu, Y.; Suwannachot, J. Non-extractable polyphenols and in vitro bile acid-binding capacity of dried persimmon (Diospyros kaki) fruit. Food Chem., 2019, 293, 127-133.
[http://dx.doi.org/10.1016/j.foodchem.2019.04.092] [PMID: 31151592]
[224]
Huang, J.; Feng, S.; Liu, A.; Dai, Z.; Wang, H.; Reuhl, K.; Lu, W.; Yang, C.S. Green tea polyphenol EGCG alleviates metabolic abnormality and fatty liver by decreasing bile acid and lipid absorption in mice. Mol. Nutr. Food Res., 2018, 62(4), 1700696.
[http://dx.doi.org/10.1002/mnfr.201700696] [PMID: 29278293]
[225]
Ikeda, I.; Yamahira, T.; Kato, M.; Ishikawa, A. Black-tea polyphenols decrease micellar solubility of cholesterol in vitro and intestinal absorption of cholesterol in rats. J. Agric. Food Chem., 2010, 58(15), 8591-8595.
[http://dx.doi.org/10.1021/jf1015285] [PMID: 20681647]
[226]
Ikeda, I.; Kobayashi, M.; Hamada, T.; Tsuda, K.; Goto, H.; Imaizumi, K.; Nozawa, A.; Sugimoto, A.; Kakuda, T. Heat-epimerized tea catechins rich in gallocatechin gallate and catechin gallate are more effective to inhibit cholesterol absorption than tea catechins rich in epigallocatechin gallate and epicatechin gallate. J. Agric. Food Chem., 2003, 51(25), 7303-7307.
[http://dx.doi.org/10.1021/jf034728l] [PMID: 14640575]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy