Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Exploring the Mechanisms of Self-made Kuiyu Pingchang Recipe for the Treatment of Ulcerative Colitis and Irritable Bowel Syndrome using a Network Pharmacology-based Approach and Molecular Docking

Author(s): Yong Wen, Xiaoxiang Wang, Ke Si, Ling Xu, Shuoyang Huang and Yu Zhan*

Volume 20, Issue 5, 2024

Published on: 08 June, 2023

Page: [534 - 550] Pages: 17

DOI: 10.2174/1573409919666230515103224

Price: $65

Abstract

Background: Ulcerative colitis (UC) and irritable bowel syndrome (IBS) are common intestinal diseases. According to the clinical experience and curative effect, the authors formulated Kuiyu Pingchang Decoction (KYPCD) comprised of Paeoniae radix alba, Aurantii Fructus, Herba euphorbiae humifusae, Lasiosphaera seu Calvatia, Angelicae sinensis radix, Panax ginseng C.A. Mey., Platycodon grandiforus and Allium azureum Ledeb.

Objective: The aim of the present study was to explore the mechanisms of KYPCD in the treatment of UC and IBS following the Traditional Chinese Medicine (TCM) theory of “Treating different diseases with the same treatment”.

Methods: The chemical ingredients and targets of KYPCD were obtained using the Traditional Chinese Medicine Systems Pharmacology database and analysis platform (TCMSP). The targets of UC and IBS were extracted using the DisGeNET, GeneCards, DrugBANK, OMIM and TTD databases. The “TCM-component-target” network and the “TCM-shared target-disease” network were imaged using Cytoscape software. The protein-protein interaction (PPI) network was built using the STRING database. The DAVID platform was used to analyze the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Using Autodock Tools software, the main active components of KYPCD were molecularly docked with their targets and visualized using PyMOL.

Results: A total of 46 active ingredients of KYPCD corresponding to 243 potential targets, 1,565 targets of UC and 1,062 targets of IBS, and 70 targets among active ingredients and two diseases were screened. Core targets in the PPI network included IL6, TNF, AKT1, IL1B, TP53, EGFR and VEGFA. GO and KEGG enrichment analysis demonstrated 563 biological processes, 48 cellular components, 82 molecular functions and 144 signaling pathways. KEGG enrichment results revealed that the regulated pathways were mainly related to the PI3K-AKT, MAPK, HIF-1 and IL-17 pathways. The results of molecular docking analysis indicated that the core active ingredients of KYPCD had optimal binding activity to their corresponding targets.

Conclusion: KYPCD may use IL6, TNF, AKT1, IL1B, TP53, EGFR and VEGFA as the key targets to achieve the treatment of UC and IBS through the PI3K-AKT, MAPK, HIF-1 and IL-17 pathways.

Keywords: Kuiyu pingchang decoction, ulcerative colitis, irritable bowel syndrome, network pharmacology, molecular docking, traditional chinese medicine.

Graphical Abstract
[1]
Segal, J.P.; LeBlanc, J.F.; Hart, A.L. Ulcerative colitis: An update. Clin. Med., 2021, 21(2), 135-139.
[http://dx.doi.org/10.7861/clinmed.2021-0080] [PMID: 33762374]
[2]
Ng, S.C.; Tang, W.; Ching, J.Y.; Wong, M.; Chow, C.M.; Hui, A.J.; Wong, T.C.; Leung, V.K.; Tsang, S.W.; Yu, H.H.; Li, M.F.; Ng, K.K.; Kamm, M.A.; Studd, C.; Bell, S.; Leong, R.; de Silva, H.J.; Kasturiratne, A.; Mufeena, M.N.F.; Ling, K.L.; Ooi, C.J.; Tan, P.S.; Ong, D.; Goh, K.L.; Hilmi, I.; Pisespongsa, P.; Manatsathit, S.; Rerknimitr, R.; Aniwan, S.; Wang, Y.F.; Ouyang, Q.; Zeng, Z.; Zhu, Z.; Chen, M.H.; Hu, P.J.; Wu, K.; Wang, X.; Simadibrata, M.; Abdullah, M.; Wu, J.C.; Sung, J.J.Y.; Chan, F.K.L. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific Crohn’s and colitis epidemiology study. Gastroenterology, 2013, 145(1), 158-165.e2.
[http://dx.doi.org/10.1053/j.gastro.2013.04.007] [PMID: 23583432]
[3]
Hirten, R.P.; Sands, B.E. New therapeutics for ulcerative colitis. Annu. Rev. Med., 2021, 72(1), 199-213.
[http://dx.doi.org/10.1146/annurev-med-052919-120048] [PMID: 33502898]
[4]
Ford, A.C.; Sperber, A.D.; Corsetti, M.; Camilleri, M. Irritable bowel syndrome. Lancet, 2020, 396(10263), 1675-1688.
[http://dx.doi.org/10.1016/S0140-6736(20)31548-8] [PMID: 33049223]
[5]
Liu, J.; Hou, X. A review of the irritable bowel syndrome investigation on epidemiology, pathogenesis and pathophysiology in China. J. Gastroenterol. Hepatol., 2011, 26(Suppl. 3), 88-93.
[http://dx.doi.org/10.1111/j.1440-1746.2011.06641.x] [PMID: 21443718]
[6]
Spiller, R.; Major, G. IBS and IBD-separate entities or on a spectrum? Nat. Rev. Gastroenterol. Hepatol., 2016, 13(10), 613-621.
[http://dx.doi.org/10.1038/nrgastro.2016.141] [PMID: 27667579]
[7]
Dignass, A.; Eliakim, R.; Magro, F.; Maaser, C.; Chowers, Y.; Geboes, K.; Mantzaris, G.; Reinisch, W.; Colombel, J.F.; Vermeire, S.; Travis, S.; Lindsay, J.O.; Van Assche, G. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis Part 1: Definitions and diagnosis. J. Crohn’s Colitis, 2012, 6(10), 965-990.
[http://dx.doi.org/10.1016/j.crohns.2012.09.003] [PMID: 23040452]
[8]
Zhai, X.; Wang, X.; Wang, L.; Xiu, L.; Wang, W.; Pang, X. Treating different diseases with the same method-a traditional chinese medicine concept analyzed for its biological basis. Front. Pharmacol., 2020, 11, 946.
[http://dx.doi.org/10.3389/fphar.2020.00946] [PMID: 32670064]
[9]
Zhang, R.; Yu, S.; Bai, H.; Ning, K. TCM-Mesh: The database and analytical system for network pharmacology analysis for TCM preparations. Sci. Rep., 2017, 7(1), 2821.
[http://dx.doi.org/10.1038/s41598-017-03039-7] [PMID: 28588237]
[10]
Zhou, Z.; Chen, B.; Chen, S.; Lin, M.; Chen, Y.; Jin, S.; Chen, W.; Zhang, Y. Applications of network pharmacology in traditional chinese medicine research. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-7.
[http://dx.doi.org/10.1155/2020/1646905] [PMID: 32148533]
[11]
Zheng, C.; Pei, T.; Huang, C.; Chen, X.; Bai, Y.; Xue, J.; Wu, Z.; Mu, J.; Li, Y.; Wang, Y. A novel systems pharmacology platform to dissect action mechanisms of traditional Chinese medicines for bovine viral diarrhea disease. Eur. J. Pharm. Sci., 2016, 94, 33-45.
[http://dx.doi.org/10.1016/j.ejps.2016.05.018] [PMID: 27208435]
[12]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[13]
Geng, H.; Chen, X.; Wang, C. Systematic elucidation of the pharmacological mechanisms of Rhynchophylline for treating epilepsy via network pharmacology. BMC Complementary Medicine and Therapies, 2021, 21(1), 9.
[http://dx.doi.org/10.1186/s12906-020-03178-x] [PMID: 33407404]
[14]
Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan-Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The GeneCards Suite: From gene data mining to disease genome sequence analyses. In: Curr. Protoc. Bioinformatics, 2016, 54(1), 1-30.
[http://dx.doi.org/10.1002/cpbi.5]
[15]
Amberger, JS; Hamosh, A Searching online mendelian inheritance in man (OMIM): A knowledgebase of human genes and genetic phenotypes. Curr. Protoc. Bioinformatics., 2017, 58, 1.2.1-1.2.12.
[http://dx.doi.org/10.1002/cpbi.27]
[16]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[17]
Piñero, J.; Bravo, À.; Queralt-Rosinach, N.; Gutiérrez-Sacristán, A.; Deu-Pons, J.; Centeno, E.; García-García, J.; Sanz, F.; Furlong, L.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res., 2017, 45(D1), D833-D839.
[http://dx.doi.org/10.1093/nar/gkw943] [PMID: 27924018]
[18]
Yang, H.; Qin, C.; Li, Y.H.; Tao, L.; Zhou, J.; Yu, C.Y.; Xu, F.; Chen, Z.; Zhu, F.; Chen, Y.Z. Therapeutic target database update 2016: Enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res., 2016, 44(D1), D1069-D1074.
[http://dx.doi.org/10.1093/nar/gkv1230] [PMID: 26578601]
[19]
Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; Sirota-Madi, A.; Olender, T.; Golan, Y.; Stelzer, G.; Harel, A.; Lancet, D. GeneCards Version 3: The human gene integrator. Database (Oxford), 2010, 2010, baq020.
[http://dx.doi.org/10.1093/database/baq020] [PMID: 20689021]
[20]
Hamosh, A.; Amberger, J.S.; Bocchini, C.; Scott, A.F.; Rasmussen, S.A. Online mendelian inheritance in man (OMIM®): Victor MCKUSICK 's magnum opus. Am. J. Med. Genet. A., 2021, 185(11), 3259-3265.
[http://dx.doi.org/10.1002/ajmg.a.62407] [PMID: 34169650]
[21]
Piñero, J.; Saüch, J.; Sanz, F.; Furlong, L.I. The DisGeNET cytoscape app: Exploring and visualizing disease genomics data. Comput. Struct. Biotechnol. J., 2021, 19, 2960-2967.
[http://dx.doi.org/10.1016/j.csbj.2021.05.015] [PMID: 34136095]
[22]
Zhou, Y.; Zhang, Y.; Lian, X.; Li, F.; Wang, C.; Zhu, F.; Qiu, Y.; Chen, Y. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res., 2022, 50(D1), D1398-D1407.
[http://dx.doi.org/10.1093/nar/gkab953] [PMID: 34718717]
[23]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[24]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[25]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[26]
Legeay, M.; Doncheva, N.T.; Morris, J.H.; Jensen, L.J. Visualize omics data on networks with Omics Visualizer, a Cytoscape App. F1000 Res., 2020, 9, 157.
[http://dx.doi.org/10.12688/f1000research.22280.1] [PMID: 32399202]
[27]
Dedhia, M.; Kohetuk, K.; Crusio, W.E.; Delprato, A. Introducing high school students to the Gene Ontology classification system. F1000 Res., 2019, 8, 241.
[http://dx.doi.org/10.12688/f1000research.18061.3] [PMID: 31431825]
[28]
Burenbatu, W.Y.; Wang, Y.; Wang, S.; Narisu; Wuritunashun; Gong, C.; Hashengaowa; Eerdunduleng; Sarula; Guihua; Bai, H. iTRAQ‐based quantitative proteomics analysis of immune thrombocytopenia patients before and after Qishunbaolier treatment. Rapid Commun. Mass Spectrom., 2021, 35(3), e8993.
[http://dx.doi.org/10.1002/rcm.8993] [PMID: 33140498]
[29]
Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 2009, 4(1), 44-57.
[http://dx.doi.org/10.1038/nprot.2008.211] [PMID: 19131956]
[30]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[31]
Yuan, S.; Chan, H.C.S.; Filipek, S.; Vogel, H. PyMOL and inkscape bridge the data and the data visualization. Structure, 2016, 24(12), 2041-2042.
[http://dx.doi.org/10.1016/j.str.2016.11.012] [PMID: 27926832]
[32]
Viegas, D.J.; Edwards, T.G.; Bloom, D.C.; Abreu, P.A. Virtual screening identified compounds that bind to cyclin dependent kinase 2 and prevent herpes simplex virus type 1 replication and reactivation in neurons. Antiviral Res., 2019, 172, 104621.
[http://dx.doi.org/10.1016/j.antiviral.2019.104621] [PMID: 31634495]
[33]
Shen, Z.F.; Wu, H.H.; Zhu, L.; Zhou, Q.; Shen, H. Traditional Chinese medicine for ulcerative colitis: Systematic reviews based on PRIO-harms. Zhongguo Zhongyao Zazhi, 2020, 45(3), 674-682.
[http://dx.doi.org/10.19540/j.cnki.cjcmm.20190624.501] [PMID: 32237528]
[34]
Yao, C.J.; Li, Y.L.; Pu, M.J.; Luo, L.H.; Feng, P.M. Traditional Chinese medicine for irritable bowel syndrome. Medicine, 2020, 99(48), e23394.
[http://dx.doi.org/10.1097/MD.0000000000023394] [PMID: 33235116]
[35]
Xu, W.; Zhang, Z.; Lu, Y.; Li, M.; Li, J.; Tao, W. Traditional Chinese medicine Tongxie Yaofang treating irritable bowel syndrome with diarrhea and type 2 diabetes mellitus in rats with liver-depression and spleen-deficiency: A preliminary study. Front. Nutr., 2022, 9, 968930.
[http://dx.doi.org/10.3389/fnut.2022.968930] [PMID: 36438735]
[36]
Yu, H.; Sun, H.; Wang, K.; Liang, X.; Ding, Y.; Chang, X.; Guo, J.; Peng, D.; Gui, S. Study of the therapeutic effects of Painong powder on ulcerative colitis and the role of Platycodonis Radix in the prescription based on pharmacodynamic, pharmacokinetic, and tissue distribution analyses. J. Ethnopharmacol., 2022, 285, 114872.
[http://dx.doi.org/10.1016/j.jep.2021.114872] [PMID: 34838618]
[37]
Zhang, Y.; Liu, R.; Wang, J.; Yan, S.; Guo, Z. To assess the effective and safety of compound glutamine entersoluble capsules in irritable bowel syndrome. Medicine, 2021, 100(10), e25098.
[http://dx.doi.org/10.1097/MD.0000000000025098] [PMID: 33725903]
[38]
Shi, L.; Wang, J.; Yang, Q.; Shi, L.; Liu, L.; Feng, X.; Chai, S.; Gou, J.; Zang, F.; He, S. Effect of Yang-activating and stasis-eliminating decoction from Traditional Chinese Medicine on intestinal mucosal permeability in rats with ulcerative colitis induced by dextran sulfate sodium. J. Tradit. Chin. Med., 2017, 37(4), 452-460.
[39]
Zhou, J.X.; Wink, M. Reversal of multidrug resistance in human colon cancer and human leukemia cells by three plant extracts and their major secondary metabolites. Medicines, 2018, 5(4), 123.
[http://dx.doi.org/10.3390/medicines5040123] [PMID: 30428619]
[40]
Feng, S.H.; Zhao, B.; Zhan, X.; Motanyane, R.; Wang, S.M.; Li, A. Danggui Buxue Decoction in the treatment of metastatic colon cancer: Network pharmacology analysis and experimental validation. Drug Des. Devel. Ther., 2021, 15, 705-720.
[http://dx.doi.org/10.2147/DDDT.S293046] [PMID: 33658761]
[41]
Chen, S.T.; Lee, T.Y.; Tsai, T.H.; Lin, Y.C.; Lin, C.P.; Shieh, H.R.; Hsu, M.L.; Chi, C.W.; Lee, M.C.; Chang, H.H.; Chen, Y.J. The traditional chinese medicine dangguibuxue tang sensitizes colorectal cancer cells to chemoradiotherapy. Molecules, 2016, 21(12), 1677.
[http://dx.doi.org/10.3390/molecules21121677] [PMID: 27929437]
[42]
Wargovich, M.J. Colon cancer chemoprevention with ginseng and other botanicals. J. Korean Med. Sci., 2001, 16Suppl(Suppl.), S81-S86.
[http://dx.doi.org/10.3346/jkms.2001.16.S.S81] [PMID: 11748382]
[43]
Chen, H.; Li, G.; Liu, Y.; Lang, Y.; Yang, W.; Zhang, W.; Liang, X. Jiegeng decoction potentiates the anticancer efficacy of paclitaxel in vivo and in vitro. Front. Pharmacol., 2022, 13, 827520.
[http://dx.doi.org/10.3389/fphar.2022.827520] [PMID: 35281908]
[44]
Liu, Y.T.; Tzang, B.S.; Yow, J.; Chiang, Y.H.; Huang, C.Y.; Hsu, T.C. Traditional Chinese medicine formula T33 inhibits the proliferation of human colorectal cancer cells by inducing autophagy. Environ. Toxicol., 2022, 37(5), 1007-1017.
[http://dx.doi.org/10.1002/tox.23460] [PMID: 34995006]
[45]
Luo, X.; Zheng, Y.; Bao, Y.; Wang, S.; Li, T.; Leng, J.; Meng, X. Potential effects of fructus aurantii ethanol extracts against colitis-associated carcinogenesis through coordination of Notch/NF-κB/IL-1 signaling pathways. Biomed. Pharmacother., 2022, 152, 113278.
[http://dx.doi.org/10.1016/j.biopha.2022.113278] [PMID: 35709655]
[46]
Zhao, B.; Kang, Q.; Peng, Y.; Xie, Y.; Chen, C.; Li, B.; Wu, Q. Effect of Angelica sinensis root extract on cancer prevention in different stages of an AOM/DSS mouse model. Int. J. Mol. Sci., 2017, 18(8), 1750.
[http://dx.doi.org/10.3390/ijms18081750] [PMID: 28800083]
[47]
Park, J.S.; Kim, S.H.; Han, K.M.; Kim, Y.S.; Kwon, E.; Paek, S.H.; Seo, Y.K.; Yun, J.W.; Kang, B.C. Efficacy and safety evaluation of black ginseng (Panax ginseng C.A. Mey.) extract (CJ EnerG): Broad spectrum cytotoxic activity in human cancer cell lines and 28-day repeated oral toxicity study in Sprague-Dawley rats. BMC Complement. Med. Ther., 2022, 22(1), 44.
[http://dx.doi.org/10.1186/s12906-022-03522-3] [PMID: 35172794]
[48]
Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 2014, 6(10), a016295.
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[49]
Tang, Q.Z.; Liu, Y.L. Expression of HBD-2, NF-κB, IL-6 and IL-23 in the colonic mucosa of ulcerative colitis and irritable bowel syndrome. China Modern Doctor., 2013, 51(22), 42-44.
[50]
Morsy, M.A.; Gupta, S.; Nair, A.B.; Venugopala, K.N.; Greish, K.; El-Daly, M. Protective effect of Spirulina platensis extract against dextran-sulfate-sodium-induced ulcerative colitis in rats. Nutrients, 2019, 11(10), 2309.
[http://dx.doi.org/10.3390/nu11102309] [PMID: 31569451]
[51]
Gupta, R.A.; Motiwala, M.N.; Mahajan, U.N.; Sabre, S.G. Protective effect of Sesbania grandiflora on acetic acid induced ulcerative colitis in mice by inhibition of TNF-α and IL-6. J. Ethnopharmacol., 2018, 219, 222-232.
[http://dx.doi.org/10.1016/j.jep.2018.02.043] [PMID: 29530609]
[52]
Wang, C.; Li, W.; Wang, H.; Ma, Y.; Zhao, X.; Zhang, X.; Yang, H.; Qian, J.; Li, J. Saccharomyces boulardii alleviates ulcerative colitis carcinogenesis in mice by reducing TNF-α and IL-6 levels and functions and by rebalancing intestinal microbiota. BMC Microbiol., 2019, 19(1), 246.
[http://dx.doi.org/10.1186/s12866-019-1610-8] [PMID: 31694526]
[53]
Zhang, Y.; Zhang, Y.; Zhao, Y.; Wu, W.; Meng, W.; Zhou, Y.; Qiu, Y.; Li, C. Protection against ulcerative colitis and colorectal cancer by evodiamine via anti inflammatory effects. Mol. Med. Rep., 2022, 25(5), 188.
[http://dx.doi.org/10.3892/mmr.2022.12704] [PMID: 35362542]
[54]
Hu, J.; Huang, H.; Che, Y.; Ding, C.; Zhang, L.; Wang, Y.; Hao, H.; Shen, H.; Cao, L. Qingchang Huashi Formula attenuates DSS-induced colitis in mice by restoring gut microbiota-metabolism homeostasis and goblet cell function. J. Ethnopharmacol., 2021, 266, 113394.
[http://dx.doi.org/10.1016/j.jep.2020.113394] [PMID: 32941971]
[55]
Huang, C.; Dong, J.; Jin, X.; Ma, H.; Zhang, D.; Wang, F.; Cheng, L.; Feng, Y.; Xiong, X.; Jiang, J.; Hu, L.; Lei, M.; Wu, B.; Zhang, G. Intestinal anti-inflammatory effects of fuzi-ganjiang herb pair against DSS-induced ulcerative colitis in mice. J. Ethnopharmacol., 2020, 261, 112951.
[http://dx.doi.org/10.1016/j.jep.2020.112951] [PMID: 32574670]
[56]
Li, R.; Chen, Y.; Shi, M.; Xu, X.; Zhao, Y.; Wu, X.; Zhang, Y. Gegen Qinlian decoction alleviates experimental colitis via suppressing TLR4/NF-κB signaling and enhancing antioxidant effect. Phytomedicine, 2016, 23(10), 1012-1020.
[http://dx.doi.org/10.1016/j.phymed.2016.06.010] [PMID: 27444346]
[57]
Migliorini, P.; Italiani, P.; Pratesi, F.; Puxeddu, I.; Boraschi, D. The IL-1 family cytokines and receptors in autoimmune diseases. Autoimmun. Rev., 2020, 19(9), 102617.
[http://dx.doi.org/10.1016/j.autrev.2020.102617] [PMID: 32663626]
[58]
Claesson-Welsh, L.; Welsh, M. VEGFA and tumour angiogenesis. J. Intern. Med., 2013, 273(2), 114-127.
[http://dx.doi.org/10.1111/joim.12019] [PMID: 23216836]
[59]
Zhu, F.; Zheng, J.; Xu, F.; Xi, Y.; Chen, J.; Xu, X. Resveratrol alleviates dextran sulfate sodium-induced acute ulcerative colitis in mice by mediating PI3K/Akt/VEGFA pathway. Front. Pharmacol., 2021, 12, 693982.
[http://dx.doi.org/10.3389/fphar.2021.693982] [PMID: 34497510]
[60]
Talukdar, S.; Emdad, L.; Das, S.K.; Fisher, P.B. EGFR: An essential receptor tyrosine kinase-regulator of cancer stem cells. Adv. Cancer Res., 2020, 147, 161-188.
[http://dx.doi.org/10.1016/bs.acr.2020.04.003] [PMID: 32593400]
[61]
Liu, X.; Fan, Y.; Du, L.; Mei, Z.; Fu, Y. In silico and in vivo studies on the mechanisms of chinese medicine formula (Gegen Qinlian Decoction) in the treatment of ulcerative colitis. Front. Pharmacol., 2021, 12, 665102.
[http://dx.doi.org/10.3389/fphar.2021.665102] [PMID: 34177580]
[62]
Synoradzki, K.J.; Bartnik, E.; Czarnecka, A.M.; Fiedorowicz, M.; Firlej, W.; Brodziak, A.; Stasinska, A.; Rutkowski, P.; Grieb, P. TP53 in biology and treatment of osteosarcoma. Cancers, 2021, 13(17), 4284.
[http://dx.doi.org/10.3390/cancers13174284] [PMID: 34503094]
[63]
Arai, N.; Kudo, T.; Tokita, K.; Kyodo, R.; Sato, M.; Miyata, E.; Hosoi, K.; Ikuse, T.; Jimbo, K.; Ohtsuka, Y.; Shimizu, T. Expression of oncogenic molecules in pediatric ulcerative colitis. Digestion, 2022, 103(2), 150-158.
[http://dx.doi.org/10.1159/000519559] [PMID: 34718239]
[64]
Liu, J.; Liu, J.; Tong, X.; Peng, W.; Wei, S.; Sun, T.; Wang, Y.; Zhang, B.; Li, W. Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of huai hua san against ulcerative colitis. Drug Des. Devel. Ther., 2021, 15, 3255-3276.
[http://dx.doi.org/10.2147/DDDT.S319786] [PMID: 34349502]
[65]
Wang, M.; Li, J.; Yin, Y.; Liu, L.; Wang, Y.; Qu, Y.; Hong, Y.; Ji, S.; Zhang, T.; Wang, N.; Liu, J.; Cao, X.; Zao, X.; Zhang, S. Network pharmacology and in vivo experiment-based strategy to investigate mechanisms of JingFangFuZiLiZhong formula for ulcerative colitis. Ann. Med., 2022, 54(1), 3218-3232.
[http://dx.doi.org/10.1080/07853890.2022.2095665] [PMID: 36382627]
[66]
Yang, Y.; Hua, Y.; Chen, W.; Zheng, H.; Wu, H.; Qin, S.; Huang, S. Therapeutic targets and pharmacological mechanisms of Coptidis Rhizoma against ulcerative colitis: Findings of system pharmacology and bioinformatics analysis. Front. Pharmacol., 2022, 13, 1037856.
[http://dx.doi.org/10.3389/fphar.2022.1037856] [PMID: 36532769]
[67]
Sarker, R.S.J.; Steiger, K. A critical role for Akt1 signaling in acute pancreatitis progression †. J. Pathol., 2020, 251(1), 1-3.
[http://dx.doi.org/10.1002/path.5391] [PMID: 32003469]
[68]
Zhu, Y.; Shi, Y.; Ke, X.; Xuan, L.; Ma, Z. RNF8 induces autophagy and reduces inflammation by promoting AKT degradation via ubiquitination in ulcerative colitis mice. J. Biochem., 2020, 168(5), 445-453.
[http://dx.doi.org/10.1093/jb/mvaa068] [PMID: 32597970]
[69]
Cui, X.F.; Zhou, W.M.; Yang, Y.; Zhou, J.; Li, X.L.; Lin, L.; Zhang, H.J. Epidermal growth factor upregulates serotonin transporter and its association with visceral hypersensitivity in irritable bowel syndrome. World J. Gastroenterol., 2014, 20(37), 13521-13529.
[http://dx.doi.org/10.3748/wjg.v20.i37.13521] [PMID: 25309082]
[70]
Compare, D.; Rocco, A.; Coccoli, P.; Angrisani, D.; Sgamato, C.; Iovine, B.; Salvatore, U.; Nardone, G. Lactobacillus casei DG and its postbiotic reduce the inflammatory mucosal response: An ex-vivo organ culture model of post-infectious irritable bowel syndrome. BMC Gastroenterol., 2017, 17(1), 53.
[http://dx.doi.org/10.1186/s12876-017-0605-x] [PMID: 28410580]
[71]
Seyedmirzaee, S.; Hayatbakhsh, M.M.; Ahmadi, B.; Baniasadi, N.; Bagheri Rafsanjani, A.M.; Nikpoor, A.R.; Mohammadi, M. Serum immune biomarkers in irritable bowel syndrome. Clin. Res. Hepatol. Gastroenterol., 2016, 40(5), 631-637.
[http://dx.doi.org/10.1016/j.clinre.2015.12.013] [PMID: 26850360]
[72]
Kuo, B.; Bhasin, M.; Jacquart, J.; Scult, M.A.; Slipp, L.; Riklin, E.I.K.; Lepoutre, V.; Comosa, N.; Norton, B.A.; Dassatti, A.; Rosenblum, J.; Thurler, A.H.; Surjanhata, B.C.; Hasheminejad, N.N.; Kagan, L.; Slawsby, E.; Rao, S.R.; Macklin, E.A.; Fricchione, G.L.; Benson, H.; Libermann, T.A.; Korzenik, J.; Denninger, J.W. Genomic and clinical effects associated with a relaxation response mind-body intervention in patients with irritable bowel syndrome and inflammatory bowel disease. PLoS One, 2015, 10(4), e0123861.
[http://dx.doi.org/10.1371/journal.pone.0123861] [PMID: 25927528]
[73]
Sun, M.H.; Sun, L.Q.; Guo, G.L.; Zhang, S. Tumour necrosis factor-α gene -308 G > A and -238 G > A polymorphisms are associated with susceptibility to irritable bowel syndrome and drug efficacy in children. J. Clin. Pharm. Ther., 2019, 44(2), 180-187.
[http://dx.doi.org/10.1111/jcpt.12775] [PMID: 30578560]
[74]
Zeng, L.; Li, K.; Wei, H.; Hu, J.; Jiao, L.; Yu, S.; Xiong, Y. A novel EphA2 inhibitor exerts beneficial effects in PI-IBS in vivo and in vitro models via Nrf2 and NF-κB signaling pathways. Front. Pharmacol., 2018, 9, 272.
[http://dx.doi.org/10.3389/fphar.2018.00272] [PMID: 29662452]
[75]
Wang, F.; Su, M.; Zheng, Y.; Wang, X.; Kang, N.; Chen, T.; Zhu, E.; Bian, Z.; Tang, X. Herbal prescription Chang’an II repairs intestinal mucosal barrier in rats with post-inflammation irritable bowel syndrome. Acta Pharmacol. Sin., 2015, 36(6), 708-715.
[http://dx.doi.org/10.1038/aps.2014.170] [PMID: 25960135]
[76]
Wang, Y.; Cui, W.; Yang, C.; Wei, H.; Liu, Q.; Xiong, L.; Li, H.; Lin, Y. Comparison of Geqingpi and Sihuaqingpi based on ultra‐high‐performance liquid chromatography‐tandem mass spectrometry combined with multivariate statistics, network pharmacology analysis, and molecular docking. J. Sep. Sci., 2022, 45(22), 4079-4098.
[http://dx.doi.org/10.1002/jssc.202200564] [PMID: 36200604]
[77]
Sun, Y.; Liu, W.Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H.F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res., 2015, 35(6), 600-604.
[http://dx.doi.org/10.3109/10799893.2015.1030412] [PMID: 26096166]
[78]
Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis (Review). Exp. Ther. Med., 2020, 19(3), 1997-2007.
[http://dx.doi.org/10.3892/etm.2020.8454] [PMID: 32104259]
[79]
Kim, E.K.; Choi, E.J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta Mol. Basis Dis., 2010, 1802(4), 396-405.
[http://dx.doi.org/10.1016/j.bbadis.2009.12.009] [PMID: 20079433]
[80]
Yong, H.Y.; Koh, M.S.; Moon, A. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin. Investig. Drugs, 2009, 18(12), 1893-1905.
[http://dx.doi.org/10.1517/13543780903321490] [PMID: 19852565]
[81]
Zheng, Y.; Han, Z.; Zhao, H.; Luo, Y. MAPK: A key player in the development and progression of stroke. CNS Neurol. Disord. Drug Targets, 2020, 19(4), 248-256.
[http://dx.doi.org/10.2174/1871527319666200613223018] [PMID: 32533818]
[82]
Bora, G.; Yaba, A. The role of mitogen‐activated protein kinase signaling pathway in endometriosis. J. Obstet. Gynaecol. Res., 2021, 47(5), 1610-1623.
[http://dx.doi.org/10.1111/jog.14710] [PMID: 33590617]
[83]
Yu, L.; Wei, J.; Liu, P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin. Cancer Biol., 2022, 85, 69-94.
[http://dx.doi.org/10.1016/j.semcancer.2021.06.019] [PMID: 34175443]
[84]
Xu, F.; Na, L.; Li, Y.; Chen, L. RETRACTED ARTICLE: Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci., 2020, 10(1), 54.
[http://dx.doi.org/10.1186/s13578-020-00416-0] [PMID: 32266056]
[85]
Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci., 2018, 14(11), 1483-1496.
[http://dx.doi.org/10.7150/ijbs.27173] [PMID: 30263000]
[86]
Basile, M.S.; Cavalli, E.; McCubrey, J.; Hernández-Bello, J.; Muñoz-Valle, J.F.; Fagone, P.; Nicoletti, F. The PI3K/Akt/mTOR pathway: A potential pharmacological target in COVID-19. Drug Discov. Today, 2022, 27(3), 848-856.
[http://dx.doi.org/10.1016/j.drudis.2021.11.002] [PMID: 34763066]
[87]
Wang, M.; Zhang, J.; Gong, N. Role of the PI3K/Akt signaling pathway in liver ischemia reperfusion injury: A narrative review. Ann. Palliat. Med., 2022, 11(2), 806-817.
[http://dx.doi.org/10.21037/apm-21-3286] [PMID: 35016518]
[88]
Wang, J.; Hu, K.; Cai, X.; Yang, B.; He, Q.; Wang, J.; Weng, Q. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm. Sin. B, 2022, 12(1), 18-32.
[http://dx.doi.org/10.1016/j.apsb.2021.07.023] [PMID: 35127370]
[89]
Qin, W.; Cao, L.; Massey, I.Y. Role of PI3K/Akt signaling pathway in cardiac fibrosis. Mol. Cell. Biochem., 2021, 476(11), 4045-4059.
[http://dx.doi.org/10.1007/s11010-021-04219-w] [PMID: 34244974]
[90]
Sun, K.; Luo, J.; Guo, J.; Yao, X.; Jing, X.; Guo, F. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A narrative review. Osteoarthr. Cartil., 2020, 28(4), 400-409.
[http://dx.doi.org/10.1016/j.joca.2020.02.027] [PMID: 32081707]
[91]
Zhang, M.; Zhang, X. The role of PI3K/AKT/FOXO signaling in psoriasis. Arch. Dermatol. Res., 2019, 311(2), 83-91.
[http://dx.doi.org/10.1007/s00403-018-1879-8] [PMID: 30483877]
[92]
Pezzuto, A.; Carico, E. Role of HIF-1 in Cancer progression: Novel insights. A review. Curr. Mol. Med., 2019, 18(6), 343-351.
[http://dx.doi.org/10.2174/1566524018666181109121849] [PMID: 30411685]
[93]
Korbecki, J.; Simińska, D.; Gąssowska-Dobrowolska, M.; Listos, J.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. Chronic and cycling hypoxia: Drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: A review of the molecular mechanisms. Int. J. Mol. Sci., 2021, 22(19), 10701.
[http://dx.doi.org/10.3390/ijms221910701] [PMID: 34639040]
[94]
Semenza, G.L. Hypoxia-inducible factor 1 and cardiovascular disease. Annu. Rev. Physiol., 2014, 76(1), 39-56.
[http://dx.doi.org/10.1146/annurev-physiol-021113-170322] [PMID: 23988176]
[95]
Ghoreschi, K.; Balato, A.; Enerbäck, C.; Sabat, R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet, 2021, 397(10275), 754-766.
[http://dx.doi.org/10.1016/S0140-6736(21)00184-7] [PMID: 33515492]
[96]
Fletcher, J.M.; Moran, B.; Petrasca, A.; Smith, C.M. IL-17 in inflammatory skin diseases psoriasis and hidradenitis suppurativa. Clin. Exp. Immunol., 2020, 201(2), 121-134.
[http://dx.doi.org/10.1111/cei.13449] [PMID: 32379344]
[97]
Bridgewood, C.; Newton, D.; Bragazzi, N.; Wittmann, M.; McGonagle, D. Unexpected connections of the IL-23/IL-17 and IL-4/IL-13 cytokine axes in inflammatory arthritis and enthesitis. Semin. Immunol., 2021, 58, 101520.
[http://dx.doi.org/10.1016/j.smim.2021.101520] [PMID: 34799224]
[98]
Dong, L.; Du, H.; Zhang, M.; Xu, H.; Pu, X.; Chen, Q.; Luo, R.; Hu, Y.; Wang, Y.; Tu, H.; Zhang, J.; Gao, F. Anti‐inflammatory effect of Rhein on ulcerative colitis via inhibiting PI3K/Akt/MTOR signaling pathway and regulating gut microbiota. Phytother. Res., 2022, 36(5), 2081-2094.
[http://dx.doi.org/10.1002/ptr.7429] [PMID: 35229916]
[99]
Ni, L.; Lu, Q.; Tang, M.; Tao, L.; Zhao, H.; Zhang, C.; Yu, Y.; Wu, X.; Liu, H.; Cui, R. Periplaneta americana extract ameliorates dextran sulfate sodium-induced ulcerative colitis via immunoregulatory and PI3K/AKT/NF-κB signaling pathways. Inflammopharmacology, 2022, 30(3), 907-918.
[http://dx.doi.org/10.1007/s10787-022-00955-7] [PMID: 35303235]
[100]
Zaghloul, M.S.; Elshal, M.; Abdelmageed, M.E. Preventive empagliflozin activity on acute acetic acid-induced ulcerative colitis in rats via modulation of SIRT-1/PI3K/AKT pathway and improving colon barrier. Environ. Toxicol. Pharmacol., 2022, 91, 103833.
[http://dx.doi.org/10.1016/j.etap.2022.103833] [PMID: 35218923]
[101]
Lin, X.; Guo, X.; Qu, L.; Tu, J.; Li, S.; Cao, G.; Liu, Y. Preventive effect of Atractylodis Rhizoma extract on DSS-induced acute ulcerative colitis through the regulation of the MAPK/NF-κB signals in vivo and in vitro. J. Ethnopharmacol., 2022, 292, 115211.
[http://dx.doi.org/10.1016/j.jep.2022.115211] [PMID: 35331877]
[102]
Ma, H.; Zhou, M.; Duan, W.; Chen, L.; Wang, L.; Liu, P. Anemoside B4 prevents acute ulcerative colitis through inhibiting of TLR4/NF-κB/MAPK signaling pathway. Int. Immunopharmacol., 2020, 87, 106794.
[http://dx.doi.org/10.1016/j.intimp.2020.106794] [PMID: 32688280]
[103]
Deng, X.; Wang, Y.; Tian, L.; Yang, M.; He, S.; Liu, Y.; Khan, A.; Li, Y.; Cao, J.; Cheng, G. Anneslea fragrans Wall. ameliorates ulcerative colitis via inhibiting NF-κB and MAPK activation and mediating intestinal barrier integrity. J. Ethnopharmacol., 2021, 278, 114304.
[http://dx.doi.org/10.1016/j.jep.2021.114304] [PMID: 34116185]
[104]
Zhuang, H.; Lv, Q.; Zhong, C.; Cui, Y.; He, L.; Zhang, C.; Yu, J. Tiliroside ameliorates ulcerative colitis by restoring the M1/M2 macrophage balance via the HIF-1α/glycolysis pathway. Front. Immunol., 2021, 12, 649463.
[http://dx.doi.org/10.3389/fimmu.2021.649463] [PMID: 33868286]
[105]
Brown, E.; Rowan, C.; Strowitzki, M.J.; Fagundes, R.R.; Faber, K.N.; Güntsch, A.; Halligan, D.N.; Kugler, J.; Jones, F.; Lee, C.T.; Doherty, G.; Taylor, C.T. Mucosal inflammation downregulates PHD1 expression promoting a barrier‐protective HIF‐1α response in ulcerative colitis patients. FASEB J., 2020, 34(3), 3732-3742.
[http://dx.doi.org/10.1096/fj.201902103R] [PMID: 31944416]
[106]
Kakiuchi, N.; Yoshida, K.; Uchino, M.; Kihara, T.; Akaki, K.; Inoue, Y.; Kawada, K.; Nagayama, S.; Yokoyama, A.; Yamamoto, S.; Matsuura, M.; Horimatsu, T.; Hirano, T.; Goto, N.; Takeuchi, Y.; Ochi, Y.; Shiozawa, Y.; Kogure, Y.; Watatani, Y.; Fujii, Y.; Kim, S.K.; Kon, A.; Kataoka, K.; Yoshizato, T.; Nakagawa, M.M.; Yoda, A.; Nanya, Y.; Makishima, H.; Shiraishi, Y.; Chiba, K.; Tanaka, H.; Sanada, M.; Sugihara, E.; Sato, T.; Maruyama, T.; Miyoshi, H.; Taketo, M.M.; Oishi, J.; Inagaki, R.; Ueda, Y.; Okamoto, S.; Okajima, H.; Sakai, Y.; Sakurai, T.; Haga, H.; Hirota, S.; Ikeuchi, H.; Nakase, H.; Marusawa, H.; Chiba, T.; Takeuchi, O.; Miyano, S.; Seno, H.; Ogawa, S. Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature, 2020, 577(7789), 260-265.
[http://dx.doi.org/10.1038/s41586-019-1856-1] [PMID: 31853061]
[107]
Chen, Y.; Chen, Y.; Cao, P.; Su, W.; Zhan, N.; Dong, W. Fusobacterium nucleatum facilitates ulcerative colitis through activating IL‐17F signaling to NF‐κB via the upregulation of CARD3 expression. J. Pathol., 2020, 250(2), 170-182.
[http://dx.doi.org/10.1002/path.5358] [PMID: 31610014]
[108]
Li, B.; Luo, X.F.; Liu, S.W.; Zhao, N.; Li, H.N.; Zhang, W.; Chen, Y.Y.; Bao, A.; Wang, J.G.; Wang, Q.S. Abdominal massage reduces visceral hypersensitivity via regulating GDNF and PI3K/AKT signal pathway in a rat model of irritable bowel syndrome. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-10.
[http://dx.doi.org/10.1155/2020/3912931] [PMID: 32565856]
[109]
Fei, L.; Wang, Y. microRNA‐495 reduces visceral sensitivity in mice with diarrhea‐predominant irritable bowel syndrome through suppression of the PI3K/AKT signaling pathway via PKIB. IUBMB Life, 2020, 72(7), 1468-1480.
[http://dx.doi.org/10.1002/iub.2270] [PMID: 32187820]
[110]
Mahurkar-Joshi, S.; Rankin, C.R.; Videlock, E.J.; Soroosh, A.; Verma, A.; Khandadash, A.; Iliopoulos, D.; Pothoulakis, C.; Mayer, E.A.; Chang, L. The colonic mucosal MicroRNAs, MicroRNA-219a-5p, and MicroRNA-338-3p are downregulated in irritable bowel syndrome and are associated with barrier function and MAPK signaling. Gastroenterology, 2021, 160(7), 2409-2422.e19.
[http://dx.doi.org/10.1053/j.gastro.2021.02.040] [PMID: 33617890]
[111]
Luo, H.; Vong, C.T.; Tan, D.; Zhang, J.; Yu, H.; Yang, L.; Zhang, C.; Luo, C.; Zhong, Z.; Wang, Y. Panax notoginseng saponins modulate the inflammatory response and improve IBD-like symptoms via TLR/NF-κB and MAPK signaling pathways. Am. J. Chin. Med., 2021, 49(4), 925-939.
[http://dx.doi.org/10.1142/S0192415X21500440] [PMID: 33829964]
[112]
Yang, Y.; Qian, C.; Wu, R.; Wang, R.; Ou, J.; Liu, S. Exploring the mechanism of the Fructus Mume and Rhizoma Coptidis herb pair intervention in Ulcerative Colitis from the perspective of inflammation and immunity based on systemic pharmacology. BMC Complement. Med. Ther., 2023, 23(1), 11.
[http://dx.doi.org/10.1186/s12906-022-03823-7] [PMID: 36647064]
[113]
Shou, X.; Wang, Y.; Zhang, X.; Zhang, Y.; Yang, Y.; Duan, C.; Yang, Y.; Jia, Q.; Yuan, G.; Shi, J.; Shi, S.; Cui, H.; Hu, Y. Network pharmacology and molecular docking analysis on molecular mechanism of Qingzi Zhitong decoction in the treatment of ulcerative colitis. Front. Pharmacol., 2022, 13, 727608.
[http://dx.doi.org/10.3389/fphar.2022.727608] [PMID: 35237152]
[114]
Tang, R.; Peng, X.; Zhou, X.; Zheng, Z.; Yin, J.; Liu, H. Mechanism of the treatment of irritable bowel syndrome with sini powder and Tong Xie Yao Fang decoction based on network pharmacology. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/3598856] [PMID: 35399629]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy