Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

LMP1在eb病毒相关胃癌中的作用

卷 24, 期 2, 2024

发表于: 13 June, 2023

页: [127 - 141] 页: 15

弟呕挨: 10.2174/1568009623666230512153741

价格: $65

conference banner
摘要

EBV促进许多癌症,如淋巴瘤、鼻咽癌和胃癌;潜伏膜蛋白1 (Latent Membrane Protein 1, LMP1)被认为是eb病毒(Epstein - Barr virus, EBV)编码的主要致癌蛋白。LMP1在淋巴瘤和鼻咽癌中起致癌作用,也可能促进胃癌的发生。宿主细胞中LMP1的表达水平是肿瘤发生和病毒特异性维持的关键决定因素。LMP1通过促进细胞永生化和细胞转化,促进细胞增殖,影响免疫,调节细胞凋亡,在上皮癌中起着重要的致瘤作用。然而,目前对LMP1在Epstein-Barr病毒相关性胃癌(EBVaGC)中的作用知之甚少;主要原因是LMP1在EBVaGC中的表达水平相对低于其他ebv编码蛋白,如潜伏膜蛋白2A (LMP2A)、Epstein-Barr核抗原1 (EBNA1)和bamhia右框1 (BARF1),迄今为止,与LMP1在EBVaGC中的相关研究很少。最近的研究表明,LMP1通过影响磷脂酰肌醇3-激酶-Akt (PI3K-Akt)、核因子κB (NF-κB)等信号通路促进EBVaGC,调控叉头盒O类(FOXO)、C-X-C-motif趋化因子受体(CXCR)、COX-2(环氧化酶-2)等下游靶点;此外,LMP1在EBVaGC中诱导的基因甲基化已成为区分该胃癌(GC)与其他类型胃癌的特征之一,LMP1还通过多种方式促进EBVaGC肿瘤微环境(tumor microenvironment, TME)的形成。本综述综合以往相关文献,旨在突出LMP1在EBVaGC中的作用机制的最新发现,总结LMP1在EBVaGC中的功能,为后续LMP1在EBVaGC中的新研究奠定理论基础,并为开发新型LMP1靶向药物做出贡献。

关键词: 潜伏膜蛋白1 (LMP1), Eb病毒相关胃癌(EBVaGC),细胞凋亡,信号通路,甲基化,肿瘤微环境。

Next »
图形摘要
[1]
Burke, A.P.; Yen, T.S.; Shekitka, K.M.; Sobin, L.H. Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Modern pathology: An official journal of the United States and Canadian Academy of Pathology. Inc, 1990, 3(3), 377-380.
[2]
Suh, Y.S.; Na, D.; Lee, J.S.; Chae, J.; Kim, E.; Jang, G.; Lee, J.; Min, J.; Ock, C.Y.; Kong, S.H.; George, J.; Zhang, C.; Lee, H.J.; Kim, J.I.; Kim, S.J.; Kim, W.H.; Lee, C.; Yang, H.K. Comprehensive molecular characterization of adenocarcinoma of the gastroesophageal junction between esophageal and gastric adenocarcinomas. Ann. Surg., 2022, 275(4), 706-717.
[http://dx.doi.org/10.1097/SLA.0000000000004303] [PMID: 33086305]
[3]
Borozan, I.; Zapatka, M.; Frappier, L.; Ferretti, V. Analysis of epstein-barr virus genomes and expression profiles in gastric adenocarcinoma. J. Virol., 2018, 92(2), e01239-17.
[http://dx.doi.org/10.1128/JVI.01239-17] [PMID: 29093097]
[4]
Nishikawa, J.; Iizasa, H.; Yoshiyama, H.; Shimokuri, K.; Kobayashi, Y.; Sasaki, S.; Nakamura, M.; Yanai, H.; Sakai, K.; Suehiro, Y.; Yamasaki, T.; Sakaida, I. Clinical importance of Epstein–Barr virus-associated gastric cancer. Cancers, 2018, 10(6), 167.
[http://dx.doi.org/10.3390/cancers10060167] [PMID: 29843478]
[5]
Naseem, M.; Barzi, A.; Brezden-Masley, C.; Puccini, A.; Berger, M.D.; Tokunaga, R.; Battaglin, F.; Soni, S.; McSkane, M.; Zhang, W.; Lenz, H.J. Outlooks on Epstein-Barr virus associated gastric cancer. Cancer Treat. Rev., 2018, 66, 15-22.
[http://dx.doi.org/10.1016/j.ctrv.2018.03.006] [PMID: 29631196]
[6]
Shinozaki-Ushiku, A.; Kunita, A.; Fukayama, M. Update on Epstein-Barr virus and gastric cancer (Review). Int. J. Oncol., 2015, 46(4), 1421-1434.
[http://dx.doi.org/10.3892/ijo.2015.2856] [PMID: 25633561]
[7]
Saito, M.; Kono, K. Landscape of EBV-positive gastric cancer. Gastric Cancer, 2021, 24(5), 983-989.
[http://dx.doi.org/10.1007/s10120-021-01215-3] [PMID: 34292431]
[8]
Shannon-Lowe, C.; Rickinson, A. The global landscape of EBV-associated tumors. Front. Oncol., 2019, 9, 713.
[http://dx.doi.org/10.3389/fonc.2019.00713] [PMID: 31448229]
[9]
Zhang, Y.; Zhang, W.; Liu, W.; Liu, H.; Zhang, Y.; Luo, B. Epstein–Barr virus miRNA-BART16 modulates cell proliferation by targeting LMP1. Virus Res., 2018, 256, 38-44.
[http://dx.doi.org/10.1016/j.virusres.2018.08.001] [PMID: 30077726]
[10]
Sheu, L.F.; Chen, A.; Wei, Y.H.; Ho, K.C.; Cheng, J.Y.; Meng, C.L.; Lee, W.H. Epstein-Barr virus LMP1 modulates the malignant potential of gastric carcinoma cells involving apoptosis. Am. J. Pathol., 1998, 152(1), 63-74.
[PMID: 9422524]
[11]
Liu, W.; Song, Y.; Wang, J.; Xiao, H.; Zhang, Y.; Luo, B. Dysregulation of FOXO transcription factors in Epstein-Barr virus-associated gastric carcinoma. Virus Res., 2020, 276, 197808.
[http://dx.doi.org/10.1016/j.virusres.2019.197808] [PMID: 31712122]
[12]
Qi, Y.F.; Liu, M.; Zhang, Y.; Liu, W.; Xiao, H.; Luo, B. EBV down-regulates COX-2 expression via TRAF2 and ERK signal pathway in EBV-associated gastric cancer. Virus Res., 2019, 272, 197735.
[http://dx.doi.org/10.1016/j.virusres.2019.197735] [PMID: 31473273]
[13]
Wang, W.; Zhang, Y.; Liu, W.; Xiao, H.; Zhang, Q.; Wang, J.; Luo, B. LMP1–miR-146a–CXCR4 axis regulates cell proliferation, apoptosis and metastasis. Virus Res., 2019, 270, 197654.
[http://dx.doi.org/10.1016/j.virusres.2019.197654] [PMID: 31299195]
[14]
Sato, Y.; Ochiai, S.; Murata, T.; Kanda, T.; Goshima, F.; Kimura, H. Elimination of LMP1-expressing cells from a monolayer of gastric cancer AGS cells. Oncotarget, 2017, 8(24), 39345-39355.
[http://dx.doi.org/10.18632/oncotarget.16996] [PMID: 28454117]
[15]
Gao, Y.; Fu, Y.; Wang, J.; Zheng, X.; Zhou, J.; Ma, J. EBV as a high infection risk factor promotes RASSF10 methylation and induces cell proliferation in EBV-associated gastric cancer. Biochem. Biophys. Res. Commun., 2021, 547, 1-8.
[http://dx.doi.org/10.1016/j.bbrc.2021.02.014] [PMID: 33588233]
[16]
Hurwitz, S.N.; Nkosi, D.; Conlon, M.M.; York, S.B.; Liu, X.; Tremblay, D.C.; Meckes, D.G. CD63 regulates Epstein-Barr virus LMP1 Exosomal packaging, enhancement of vesicle production, and noncanonical NF-κB signaling. J. Virol., 2017, 91(5), e02251-e16.
[http://dx.doi.org/10.1128/JVI.02251-16] [PMID: 27974566]
[17]
Zhang, Y.; Liu, W.; Zhang, W.; Wang, W.; Song, Y.; Xiao, H.; Luo, B. Constitutive activation of the canonical NF-κB signaling pathway in EBV-associated gastric carcinoma. Virology, 2019, 532, 1-10.
[http://dx.doi.org/10.1016/j.virol.2019.03.019] [PMID: 30974373]
[18]
Eliopoulos, A.G.; Young, L.S. LMP1 structure and signal transduction. Semin. Cancer Biol., 2001, 11(6), 435-444.
[http://dx.doi.org/10.1006/scbi.2001.0410] [PMID: 11669605]
[19]
Wang, L.; Ning, S. New look of EBV LMP1 signaling landscape. Cancers, 2021, 13(21), 5451.
[http://dx.doi.org/10.3390/cancers13215451] [PMID: 34771613]
[20]
Wang, L.; Howell, M.E.A.; Sparks-Wallace, A.; Hawkins, C.; Nicksic, C.A.; Kohne, C.; Hall, K.H.; Moorman, J.P.; Yao, Z.Q.; Ning, S. p62-mediated selective autophagy endows virus-transformed cells with insusceptibility to DNA damage under oxidative stress. PLoS Pathog., 2019, 15(4), e1007541.
[http://dx.doi.org/10.1371/journal.ppat.1007541] [PMID: 31017975]
[21]
Wang, L.; Ren, J.; Li, G.; Moorman, J.P.; Yao, Z.Q.; Ning, S. LMP1 signaling pathway activates IRF4 in latent EBV infection and a positive circuit between PI3K and Src is required. Oncogene, 2017, 36(16), 2265-2274.
[http://dx.doi.org/10.1038/onc.2016.380] [PMID: 27819673]
[22]
Kanda, T.; Yajima, M.; Ikuta, K. Epstein‐Barr virus strain variation and cancer. Cancer Sci., 2019, 110(4), 1132-1139.
[http://dx.doi.org/10.1111/cas.13954] [PMID: 30697862]
[23]
Yang, J.; Liu, Z.; Zeng, B.; Hu, G.; Gan, R. Epstein–Barr virus-associated gastric cancer: A distinct subtype. Cancer Lett., 2020, 495, 191-199.
[http://dx.doi.org/10.1016/j.canlet.2020.09.019] [PMID: 32979463]
[24]
Wang, L.W.; Jiang, S.; Gewurz, B.E. Epstein-Barr virus LMP1-mediated oncogenicity. J. Virol., 2017, 91(21), e01718-16.
[http://dx.doi.org/10.1128/JVI.01718-16] [PMID: 28835489]
[25]
Lo, A.K.F.; Dawson, C.W.; Lung, H.L.; Wong, K.L.; Young, L.S. The role of EBV-encoded LMP1 in the NPC tumor microenvironment: From function to therapy. Front. Oncol., 2021, 11, 640207.
[http://dx.doi.org/10.3389/fonc.2021.640207] [PMID: 33718235]
[26]
Minamitani, T.; Ma, Y.; Zhou, H.; Kida, H.; Tsai, C.Y.; Obana, M.; Okuzaki, D.; Fujio, Y.; Kumanogoh, A.; Zhao, B.; Kikutani, H.; Kieff, E.; Gewurz, B.E.; Yasui, T. Mouse model of Epstein–Barr virus LMP1- and LMP2A-driven germinal center B-cell lymphoproliferative disease. Proc. Natl. Acad. Sci. USA, 2017, 114(18), 4751-4756.
[http://dx.doi.org/10.1073/pnas.1701836114] [PMID: 28351978]
[27]
Fukayama, M.; Abe, H.; Kunita, A.; Shinozaki-Ushiku, A.; Matsusaka, K.; Ushiku, T.; Kaneda, A. Thirty years of Epstein-Barr virus-associated gastric carcinoma. Virchows Arch., 2020, 476(3), 353-365.
[http://dx.doi.org/10.1007/s00428-019-02724-4] [PMID: 31836926]
[28]
Jiang, N.; Dai, Q.; Su, X.; Fu, J.; Feng, X.; Peng, J. Role of PI3K/AKT pathway in cancer: The framework of malignant behavior. Mol. Biol. Rep., 2020, 47(6), 4587-4629.
[http://dx.doi.org/10.1007/s11033-020-05435-1] [PMID: 32333246]
[29]
Shair, K.; Reddy, A.; Cooper, V. New insights from elucidating the role of LMP1 in nasopharyngeal carcinoma. Cancers, 2018, 10(4), 86.
[http://dx.doi.org/10.3390/cancers10040086] [PMID: 29561768]
[30]
Yoshizaki, T.; Kondo, S.; Endo, K.; Nakanishi, Y.; Aga, M.; Kobayashi, E.; Hirai, N.; Sugimoto, H.; Hatano, M.; Ueno, T.; Ishikawa, K.; Wakisaka, N. Modulation of the tumor microenvironment by Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma. Cancer Sci., 2018, 109(2), 272-278.
[http://dx.doi.org/10.1111/cas.13473] [PMID: 29247573]
[31]
Zeng, M.; Chen, Y.; Jia, X.; Liu, Y. The anti-apoptotic role of EBV-LMP1 in lymphoma cells. Cancer Manag. Res., 2020, 12, 8801-8811.
[http://dx.doi.org/10.2147/CMAR.S260583] [PMID: 33061576]
[32]
Chen, Y.F.; Chang, C.H.; Huang, Z.N.; Su, Y.C.; Chang, S.J.; Jan, J.S. The JAK inhibitor antcin H exhibits direct anticancer activity while enhancing chemotherapy against LMP1-expressed lymphoma. Leuk. Lymphoma, 2019, 60(5), 1193-1203.
[http://dx.doi.org/10.1080/10428194.2018.1512709] [PMID: 30277103]
[33]
Kume, A.; Shinozaki-Ushiku, A.; Kunita, A.; Kondo, A.; Ushiku, T. Enhanced PD-L1 expression in LMP1-positive cells of epstein-barr virus–associated malignant lymphomas and lymphoproliferative disorders. Am. J. Surg. Pathol., 2022, 46(10), 1386-1396.
[http://dx.doi.org/10.1097/PAS.0000000000001919] [PMID: 35605962]
[34]
Lin, H.C.; Chang, Y.; Chen, R.Y.; Hung, L.Y.; Chen, P.C.H.; Chen, Y.P.; Medeiros, L.J.; Chiang, P.M.; Chang, K.C. Epstein‐Barr virus latent membrane protein‐1 upregulates autophagy and promotes viability in Hodgkin lymphoma: Implications for targeted therapy. Cancer Sci., 2021, 112(4), 1589-1602.
[http://dx.doi.org/10.1111/cas.14833] [PMID: 33525055]
[35]
Kang, G.H.; Lee, S.; Kim, W.H.; Lee, H.W.; Kim, J.C.; Rhyu, M.G.; Ro, J.Y. Epstein-barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. Am. J. Pathol., 2002, 160(3), 787-794.
[http://dx.doi.org/10.1016/S0002-9440(10)64901-2] [PMID: 11891177]
[36]
Chatterjee, K.; Das, P.; Chattopadhyay, N.R.; Mal, S.; Choudhuri, T. The interplay between Epstein-Bar virus (EBV) with the p53 and its homologs during EBV associated malignancies. Heliyon, 2019, 5(11), e02624.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02624] [PMID: 31840114]
[37]
Shannon-Lowe, C.; Rowe, M. Epstein-Barr virus infection of polarized epithelial cells via the basolateral surface by memory B cell-mediated transfer infection. PLoS Pathog., 2011, 7(5), e1001338.
[http://dx.doi.org/10.1371/journal.ppat.1001338] [PMID: 21573183]
[38]
El-Sharkawy, A.; Al Zaidan, L.; Malki, A. Epstein–Barr virus-associated malignancies: Roles of viral oncoproteins in carcinogenesis. Front. Oncol., 2018, 8, 265.
[http://dx.doi.org/10.3389/fonc.2018.00265] [PMID: 30116721]
[39]
Li, J.; Liu, X.; Liu, M.; Che, K.; Luo, B. Methylation and expression of Epstein–Barr virus latent membrane protein 1, 2A and 2B in EBV-associated gastric carcinomas and cell lines. Dig. Liver Dis., 2016, 48(6), 673-680.
[http://dx.doi.org/10.1016/j.dld.2016.02.017] [PMID: 27026080]
[40]
Nishikawa, J.; Iizasa, H.; Yoshiyama, H.; Nakamura, M.; Saito, M.; Sasaki, S.; Shimokuri, K.; Yanagihara, M.; Sakai, K.; Suehiro, Y.; Yamasaki, T.; Sakaida, I. The role of epigenetic regulation in Epstein-Barr virus-associated gastric cancer. Int. J. Mol. Sci., 2017, 18(8), 1606.
[http://dx.doi.org/10.3390/ijms18081606] [PMID: 28757548]
[41]
Ma, J.; Li, J.; Hao, Y.; Nie, Y.; Li, Z.; Qian, M.; Liang, Q.; Yu, J.; Zeng, M.; Wu, K. Differentiated tumor immune microenvironment of Epstein-Barr virus-associated and negative gastric cancer: Implication in prognosis and immunotherapy. Oncotarget, 2017, 8(40), 67094-67103.
[http://dx.doi.org/10.18632/oncotarget.17945] [PMID: 28978018]
[42]
van Beek, J.; Hausen, A.; Snel, S.N.; Berkhof, J.; Kranenbarg, E.K.; van de Velde, C.J.H.; van den Brule, A.J.C.; Middeldorp, J.M.; Meijer, C.J.L.M.; Bloemena, E. Morphological evidence of an activated cytotoxic T-cell infiltrate in EBV-positive gastric carcinoma preventing lymph node metastases. Am. J. Surg. Pathol., 2006, 30(1), 59-65.
[http://dx.doi.org/10.1097/01.pas.0000176428.06629.1e] [PMID: 16330943]
[43]
Choi, I.K.; Wang, Z.; Ke, Q.; Hong, M.; Qian, Y.; Zhao, X.; Liu, Y.; Kim, H.J.; Ritz, J.; Cantor, H.; Rajewsky, K.; Wucherpfennig, K.W.; Zhang, B. Signaling by the Epstein–Barr virus LMP1 protein induces potent cytotoxic CD4 + and CD8 + T cell responses. Proc. Natl. Acad. Sci. USA, 2018, 115(4), E686-E695.
[http://dx.doi.org/10.1073/pnas.1713607115] [PMID: 29311309]
[44]
Li, J.; Zhang, Y.; Sun, L.; Liu, S.; Zhao, M.; Luo, B. LMP1 induces p53 protein expression via the H19/miR-675-5p axis. Microbiol. Spectr., 2022, 10(3), e00006-22.
[http://dx.doi.org/10.1128/spectrum.00006-22] [PMID: 35674441]
[45]
Bonglack, E.N.; Messinger, J.E.; Cable, J.M.; Ch’ng, J.; Parnell, K.M.; Reinoso-Vizcaíno, N.M.; Barry, A.P.; Russell, V.S.; Dave, S.S.; Christofk, H.R.; Luftig, M.A. Monocarboxylate transporter antagonism reveals metabolic vulnerabilities of viral-driven lymphomas. Proc. Natl. Acad. Sci., 2021, 118(25), e2022495118.
[http://dx.doi.org/10.1073/pnas.2022495118] [PMID: 34161263]
[46]
Price, A.M.; Messinger, J.E.; Luftig, M.A. c-Myc represses transcription of Epstein-Barr virus latent membrane protein 1 early after primary B cell infection. J. Virol., 2018, 92(2), e01178-17.
[http://dx.doi.org/10.1128/JVI.01178-17] [PMID: 29118124]
[47]
Yi, M.; Cai, J.; Li, J.; Chen, S.; Zeng, Z.; Peng, Q.; Ban, Y.; Zhou, Y.; Li, X.; Xiong, W.; Li, G.; Xiang, B. Rediscovery of NF‐κB signaling in nasopharyngeal carcinoma: How genetic defects of NF‐κB pathway interplay with EBV in driving oncogenesis? J. Cell. Physiol., 2018, 233(8), 5537-5549.
[http://dx.doi.org/10.1002/jcp.26410] [PMID: 29266238]
[48]
Montes-Mojarro, I.A.; Fend, F.; Quintanilla-Martinez, L. EBV and the pathogenesis of NK/T cell Lymphoma. Cancers, 2021, 13(6), 1414.
[http://dx.doi.org/10.3390/cancers13061414] [PMID: 33808787]
[49]
Vincent-Fabert, C.; Saintamand, A.; David, A.; Alizadeh, M.; Boyer, F.; Arnaud, N.; Zimber-Strobl, U.; Feuillard, J.; Faumont, N. Reproducing indolent B-cell lymphoma transformation with T-cell immunosuppression in LMP1/CD40-expressing mice. Cell. Mol. Immunol., 2019, 16(4), 412-414.
[http://dx.doi.org/10.1038/s41423-018-0197-6] [PMID: 30635651]
[50]
Hu, M.; Zhu, S.; Xiong, S.; Xue, X.; Zhou, X. MicroRNAs and the PTEN/PI3K/Akt pathway in gastric cancer (Review). Oncol. Rep., 2019, 41(3), 1439-1454.
[http://dx.doi.org/10.3892/or.2019.6962] [PMID: 30628706]
[51]
Ashrafizadeh, M.; Najafi, M.; Ang, H.L.; Moghadam, E.R.; Mahabady, M.K.; Zabolian, A.; Jafaripour, L.; Bejandi, A.K.; Hushmandi, K.; Saleki, H.; Zarrabi, A.; Kumar, A.P. PTEN, a barrier for proliferation and metastasis of gastric cancer cells: From molecular pathways to targeting and regulation. Biomedicines, 2020, 8(8), 264.
[http://dx.doi.org/10.3390/biomedicines8080264] [PMID: 32756305]
[52]
Tsao, S.W.; Tsang, C.M.; To, K.F.; Lo, K.W. The role of Epstein–Barr virus in epithelial malignancies. J. Pathol., 2015, 235(2), 323-333.
[http://dx.doi.org/10.1002/path.4448] [PMID: 25251730]
[53]
Sokolova, O.; Naumann, M. NF‐κB signaling in gastric cancer. Toxins, 2017, 9(4), 119.
[http://dx.doi.org/10.3390/toxins9040119] [PMID: 28350359]
[54]
Zhang, Y.; Chen, J.; Dong, M.; Zhang, Z.; Zhang, Y.; Wu, J.; Du, H.; Li, H.; Huang, Y.; Shao, C. Clinical significance of spasmolytic polypeptide-expressing metaplasia and intestinal metaplasia in Epstein-Barr virus–associated and Epstein-Barr virus–negative gastric cancer. Hum. Pathol., 2017, 63, 128-138.
[http://dx.doi.org/10.1016/j.humpath.2017.02.016] [PMID: 28300576]
[55]
Morales-Sanchez, A.; Fuentes-Panana, E.M. Epstein-Barr virus-associated gastric cancer and potential mechanisms of oncogenesis. Curr. Cancer Drug Targets, 2017, 17(6), 534-554.
[PMID: 27677953]
[56]
Fukayama, M.; Kunita, A.; Kaneda, A. Gastritis-infection-cancer sequence of epstein-barr virus-associated gastric cancer. Adv. Exp. Med. Biol., 2018, 1045, 437-457.
[http://dx.doi.org/10.1007/978-981-10-7230-7_20] [PMID: 29896679]
[57]
Nkosi, D.; Sun, L.; Duke, L.C.; Patel, N.; Surapaneni, S.K.; Singh, M.; Meckes, D.G., Jr Epstein-Barr virus LMP1 promotes syntenin-1- and Hrs-Induced Extracellular vesicle formation for its own secretion to increase cell proliferation and migration. MBio, 2020, 11(3), e00589-20.
[http://dx.doi.org/10.1128/mBio.00589-20] [PMID: 32546618]
[58]
Zhang, Z.; Yu, X.; Zhou, Z.; Li, B.; Peng, J.; Wu, X.; Luo, X.; Yang, L. LMP1‐positive extracellular vesicles promote radioresistance in nasopharyngeal carcinoma cells through P38 MAPK signaling. Cancer Med., 2019, 8(13), 6082-6094.
[http://dx.doi.org/10.1002/cam4.2506] [PMID: 31436393]
[59]
Pandey, S.; Jha, H.C.; Shukla, S.K.; Shirley, M.K.; Robertson, E.S. Epigenetic regulation of tumor suppressors by Helicobacter pylori enhances EBV-induced proliferation of gastric epithelial cells. MBio, 2018, 9(2), e00649-18.
[http://dx.doi.org/10.1128/mBio.00649-18] [PMID: 29691341]
[60]
Ye, D.; Zhu, J.; Zhao, Q.; Ma, W.; Xiao, Y.; Xu, G.; Zhang, Z. LMP1 Up-regulates calreticulin to induce Epithelial-mesenchymal transition via TGF-β/Smad3/NRP1 pathway in Nasopharyngeal Carcinoma cells. J. Cancer, 2020, 11(5), 1257-1269.
[http://dx.doi.org/10.7150/jca.37415] [PMID: 31956372]
[61]
Choi, I.K.; Wang, Z.; Ke, Q.; Hong, M.; Paul, D.W., Jr; Fernandes, S.M.; Hu, Z.; Stevens, J.; Guleria, I.; Kim, H.J.; Cantor, H.; Wucherpfennig, K.W.; Brown, J.R.; Ritz, J.; Zhang, B. Mechanism of EBV inducing anti-tumour immunity and its therapeutic use. Nature, 2021, 590(7844), 157-162.
[http://dx.doi.org/10.1038/s41586-020-03075-w] [PMID: 33361812]
[62]
Tsao, S.W.; Tsang, C.M.; Lo, K.W. Epstein–Barr virus infection and nasopharyngeal carcinoma. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2017, 372(1732), 20160270.
[http://dx.doi.org/10.1098/rstb.2016.0270] [PMID: 28893937]
[63]
Zhu, N.; Wang, Q.; Wu, Z.; Wang, Y.; Zeng, M.S.; Yuan, Y. Epstein-Barr virus LMP1-Activated mTORC1 and mTORC2 coordinately promote nasopharyngeal cancer stem cell properties. J. Virol., 2022, 96(5), e01941-21.
[http://dx.doi.org/10.1128/jvi.01941-21] [PMID: 35019715]
[64]
Tsang, C.M.; Lui, V.W.Y.; Bruce, J.P.; Pugh, T.J.; Lo, K.W. Translational genomics of nasopharyngeal cancer. Semin. Cancer Biol., 2020, 61, 84-100.
[http://dx.doi.org/10.1016/j.semcancer.2019.09.006] [PMID: 31521748]
[65]
Zhou, H.; Tan, S.; Li, H.; Lin, X. Expression and significance of EBV, ARID1A and PIK3CA in gastric carcinoma. Mol. Med. Rep., 2019, 19(3), 2125-2136.
[http://dx.doi.org/10.3892/mmr.2019.9886] [PMID: 30747208]
[66]
Link, W. Introduction to FOXO Biology. Methods Mol. Biol., 2019, 1890, 1-9.
[http://dx.doi.org/10.1007/978-1-4939-8900-3_1] [PMID: 30414140]
[67]
Hatton, O.; Smith, M.M.; Alexander, M.; Mandell, M.; Sherman, C.; Stesney, M.W.; Hui, S.T.; Dohrn, G.; Medrano, J.; Ringwalt, K.; Harris-Arnold, A.; Maloney, E.M.; Krams, S.M.; Martinez, O.M. Epstein-Barr Virus latent membrane protein 1 regulates host B cell MicroRNA-155 and its target FOXO3a via PI3K p110α activation. Front. Microbiol., 2019, 10, 2692.
[http://dx.doi.org/10.3389/fmicb.2019.02692] [PMID: 32038504]
[68]
Hornsveld, M.; Dansen, T.B.; Derksen, P.W.; Burgering, B.M.T. Re-evaluating the role of FOXOs in cancer. Semin. Cancer Biol., 2018, 50, 90-100.
[http://dx.doi.org/10.1016/j.semcancer.2017.11.017] [PMID: 29175105]
[69]
Ramezani, A.; Nikravesh, H.; Faghihloo, E. The roles of FOX proteins in virus‐associated cancers. J. Cell. Physiol., 2019, 234(4), 3347-3361.
[http://dx.doi.org/10.1002/jcp.27295] [PMID: 30362516]
[70]
Peng, C.; Ouyang, Y.; Lu, N.; Li, N. The NF-κB signaling pathway, the microbiota, and gastrointestinal tumorigenesis: Recent advances. Front. Immunol., 2020, 11, 1387.
[http://dx.doi.org/10.3389/fimmu.2020.01387] [PMID: 32695120]
[71]
Chaithongyot, S.; Jantaree, P.; Sokolova, O.; Naumann, M. NF-κB in gastric cancer development and therapy. Biomedicines, 2021, 9(8), 870.
[http://dx.doi.org/10.3390/biomedicines9080870] [PMID: 34440074]
[72]
Zebardast, A.; Tehrani, S.S.; Latifi, T.; Sadeghi, F. Critical review of Epstein–Barr virus microRNAs relation with EBV‐associated gastric cancer. J. Cell. Physiol., 2021, 236(9), 6136-6153.
[http://dx.doi.org/10.1002/jcp.30297] [PMID: 33507558]
[73]
Letícia de Castro Barbosa, M.; Alves da Conceicao, R.; Guerra Manssour Fraga, A.; Dias Camarinha, B.; Cristina de Carvalho Silva, G.; Gilcler Ferreira Lima, A.; Azevedo Cardoso, E.; de Oliveira Freitas Lione, V. NF-κB signaling pathway inhibitors as anticancer drug candidates. Anticancer. Agents Med. Chem., 2017, 17(4), 483-490.
[http://dx.doi.org/10.2174/1871520616666160729112854] [PMID: 27481554]
[74]
Li, X.; Hu, Y. Attribution of NF-κB activity to CHUK/IKKα-involved carcinogenesis. Cancers, 2021, 13(6), 1411.
[http://dx.doi.org/10.3390/cancers13061411] [PMID: 33808757]
[75]
Taniguchi, K.; Karin, M. NF-κB, inflammation, immunity and cancer: Coming of age. Nat. Rev. Immunol., 2018, 18(5), 309-324.
[http://dx.doi.org/10.1038/nri.2017.142] [PMID: 29379212]
[76]
Xiang, Z.; Zhou, Z-J.; Xia, G-K.; Zhang, X-H.; Wei, Z-W.; Zhu, J-T.; Yu, J.; Chen, W.; He, Y.; Schwarz, R.E.; Brekken, R.A.; Awasthi, N.; Zhang, C-H. A positive crosstalk between CXCR4 and CXCR2 promotes gastric cancer metastasis. Oncogene, 2017, 36(36), 5122-5133.
[http://dx.doi.org/10.1038/onc.2017.108] [PMID: 28481874]
[77]
Wang, W.; Zhang, Y.; Liu, W.; Zhang, X.; Xiao, H.; Zhao, M.; Luo, B. CXCR4 induces cell autophagy and maintains EBV latent infection in EBVaGC. Theranostics, 2020, 10(25), 11549-11561.
[http://dx.doi.org/10.7150/thno.44251] [PMID: 33052232]
[78]
Degirmenci, U.; Wang, M.; Hu, J. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells, 2020, 9(1), 198.
[http://dx.doi.org/10.3390/cells9010198] [PMID: 31941155]
[79]
Gonzalez-Hormazabal, P.; Musleh, M.; Bustamante, M.; Stambuk, J.; Pisano, R.; Valladares, H.; Lanzarini, E.; Chiong, H.; Rojas, J.; Suazo, J.; Castro, V.G.; Jara, L.; Berger, Z. Polymorphisms in RAS/RAF/MEK/ERK pathway are associated with gastric cancer. Genes, 2018, 10(1), 20.
[http://dx.doi.org/10.3390/genes10010020] [PMID: 30597917]
[80]
Ren, J.; Liu, J.; Sui, X. Correlation of COX-2 and MMP-13 expressions with gastric cancer and their effects on prognosis. J BUON., 2019, 24(1), 187-193.
[81]
Xiang, L.; Wang, W.; Zhou, Z.; Lv, M.; Tao, L.; Ni, T.; Deng, J.; Masatara, S.; Liu, Y.; Zhou, Y. COX-2 promotes metastasis and predicts prognosis in gastric cancer via regulating mTOR. Biomarkers Med., 2020, 14(6), 421-432.
[http://dx.doi.org/10.2217/bmm-2019-0357] [PMID: 32175764]
[82]
Ahmed, S.M.U.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(2), 585-597.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.005] [PMID: 27825853]
[83]
Hu, X.; li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther., 2021, 6(1), 402.
[http://dx.doi.org/10.1038/s41392-021-00791-1] [PMID: 34824210]
[84]
Chang, Z.; Wang, Y.; Zhou, X.; Long, J.E. STAT3 roles in viral infection: Antiviral or proviral? Future Virol., 2018, 13(8), 557-574.
[http://dx.doi.org/10.2217/fvl-2018-0033] [PMID: 32201498]
[85]
Lu, R.; Zhang, Y.; Sun, J. STAT3 activation in infection and infection-associated cancer. Mol. Cell. Endocrinol., 2017, 451, 80-87.
[http://dx.doi.org/10.1016/j.mce.2017.02.023] [PMID: 28223148]
[86]
Choi, S.J.; Shin, Y.S.; Kang, B.W.; Kim, J.G.; Won, K.J.; Lieberman, P.M.; Cho, H.; Kang, H. DNA hypermethylation induced by Epstein-Barr virus in the development of Epstein-Barr virus-associated gastric carcinoma. Arch. Pharm. Res., 2017, 40(8), 894-905.
[http://dx.doi.org/10.1007/s12272-017-0939-5] [PMID: 28779374]
[87]
Stanland, L.J.; Luftig, M.A. The role of EBV-Induced hypermethylation in gastric cancer tumorigenesis. viruses, 2020, 12(11), 1222.
[http://dx.doi.org/10.3390/v12111222] [PMID: 33126718]
[88]
Luo, X.; Hong, L.; Cheng, C.; Li, N.; Zhao, X.; Shi, F.; Liu, J.; Fan, J.; Zhou, J.; Bode, A.M.; Cao, Y. DNMT1 mediates metabolic reprogramming induced by Epstein–Barr virus latent membrane protein 1 and reversed by grifolin in nasopharyngeal carcinoma. Cell Death Dis., 2018, 9(6), 619.
[http://dx.doi.org/10.1038/s41419-018-0662-2] [PMID: 29795311]
[89]
Cao, Y. EBV based cancer prevention and therapy in nasopharyngeal carcinoma. NPJ Precis. Oncol., 2017, 1(1), 10.
[http://dx.doi.org/10.1038/s41698-017-0018-x] [PMID: 29872698]
[90]
Zhang, L.; Wang, R.; Xie, Z. The roles of DNA methylation on the promotor of the Epstein–Barr virus (EBV) gene and the genome in patients with EBV-associated diseases. Appl. Microbiol. Biotechnol., 2022, 106(12), 4413-4426.
[http://dx.doi.org/10.1007/s00253-022-12029-3] [PMID: 35763069]
[91]
Hou, Y.; Li, S.; Du, W.; Li, H.; Wen, R. The tumor suppressor role of the Ras association domain family 10. Anticancer. Agents Med. Chem., 2020, 20(18), 2207-2215.
[http://dx.doi.org/10.2174/1871520620666200714141906] [PMID: 32664845]
[92]
Lakshmi Ch, N.P.; Sivagnanam, A.; Raja, S.; Mahalingam, S. Molecular basis for RASSF10/NPM/RNF2 feedback cascade–mediated regulation of gastric cancer cell proliferation. J. Biol. Chem., 2021, 297(2), 100935.
[http://dx.doi.org/10.1016/j.jbc.2021.100935] [PMID: 34224728]
[93]
Pietropaolo, V.; Prezioso, C.; Moens, U. Role of virus-induced host cell epigenetic changes in cancer. Int. J. Mol. Sci., 2021, 22(15), 8346.
[http://dx.doi.org/10.3390/ijms22158346] [PMID: 34361112]
[94]
Hu, Y.; Ma, P.; Feng, Y.; Li, P.; Wang, H.; Guo, Y.; Mao, Q.; Xue, W. Predictive value of the serum RASSF10 promoter methylation status in gastric cancer. J. Int. Med. Res., 2019, 47(7), 2890-2900.
[http://dx.doi.org/10.1177/0300060519848924] [PMID: 31119967]
[95]
Nakamura, M.; Nishikawa, J.; Saito, M.; Sakai, K.; Sasaki, S.; Hashimoto, S.; Okamoto, T.; Suehiro, Y.; Yamasaki, T.; Sakaida, I. Decitabine inhibits tumor cell proliferation and up-regulates e-cadherin expression in Epstein-Barr virus-associated gastric cancer. J. Med. Virol., 2017, 89(3), 508-517.
[http://dx.doi.org/10.1002/jmv.24634] [PMID: 27430892]
[96]
Ramos, H.; Raimundo, L.; Saraiva, L. p73: From the p53 shadow to a major pharmacological target in anticancer therapy. Pharmacol. Res., 2020, 162, 105245.
[http://dx.doi.org/10.1016/j.phrs.2020.105245] [PMID: 33069756]
[97]
Blanchet, A.; Bourgmayer, A.; Kurtz, J.E.; Mellitzer, G.; Gaiddon, C. Isoforms of the p53 family and gastric cancer: A Ménage à Trois for an Unfinished Affair. Cancers, 2021, 13(4), 916.
[http://dx.doi.org/10.3390/cancers13040916] [PMID: 33671606]
[98]
Accardi, R.; Fathallah, I.; Gruffat, H.; Mariggiò, G.; Le Calvez-Kelm, F.; Voegele, C.; Bartosch, B.; Hernandez-Vargas, H.; McKay, J.; Sylla, B.S.; Manet, E.; Tommasino, M. Epstein - Barr virus transforming protein LMP-1 alters B cells gene expression by promoting accumulation of the oncoprotein ΔNp73α. PLoS Pathog., 2013, 9(3), e1003186.
[http://dx.doi.org/10.1371/journal.ppat.1003186] [PMID: 23516355]
[99]
Wang, J.; Liu, W.; Zhang, X.; Zhang, Y.; Xiao, H.; Luo, B. LMP2A induces DNA methylation and expression repression of AQP3 in EBV-associated gastric carcinoma. Virology, 2019, 534, 87-95.
[http://dx.doi.org/10.1016/j.virol.2019.06.006] [PMID: 31220652]
[100]
Guo, L.; Huang, C.; Ji, Q.J. Aberrant promoter hypermethylation of p16, survivin, and retinoblastoma in gastric cancer. Bratisl. Med. J., 2017, 118(3), 164-168.
[http://dx.doi.org/10.4149/BLL_2017_033] [PMID: 28319413]
[101]
Zeng, D.; Li, M.; Zhou, R.; Zhang, J.; Sun, H.; Shi, M.; Bin, J.; Liao, Y.; Rao, J.; Liao, W. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol. Res., 2019, 7(5), 737-750.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0436] [PMID: 30842092]
[102]
Hurwitz, S.N.; Cheerathodi, M.R.; Nkosi, D.; York, S.B.; Meckes, D.G., Jr Tetraspanin CD63 bridges autophagic and endosomal processes to regulate exosomal secretion and intracellular signaling of epstein-barr virus LMP1. J. Virol., 2018, 92(5), e01969-e17.
[http://dx.doi.org/10.1128/JVI.01969-17] [PMID: 29212935]
[103]
Minarovits, J.; Niller, H.H. Current trends and alternative scenarios in EBV research. Methods Mol. Biol., 2017, 1532, 1-32.
[http://dx.doi.org/10.1007/978-1-4939-6655-4_1] [PMID: 27873264]
[104]
Cheerathodi, M.; Nkosi, D.; Cone, A.S.; York, S.B.; Meckes, D.G. Epstein-Barr Virus LMP1 modulates the CD63 interactome. Viruses, 2021, 13(4), 675.
[http://dx.doi.org/10.3390/v13040675] [PMID: 33920772]
[105]
Rider, M.A.; Cheerathodi, M.R.; Hurwitz, S.N.; Nkosi, D.; Howell, L.A.; Tremblay, D.C.; Liu, X.; Zhu, F.; Meckes, D.G. The interactome of EBV LMP1 evaluated by proximity-based BioID approach. Virology, 2018, 516, 55-70.
[http://dx.doi.org/10.1016/j.virol.2017.12.033] [PMID: 29329079]
[106]
Nkosi, D.; Howell, L.A.; Cheerathodi, M.R.; Hurwitz, S.N.; Tremblay, D.C.; Liu, X.; Meckes, D.G., Jr Transmembrane domains mediate Intra- and Extracellular trafficking of epstein-barr virus latent membrane protein 1. J. Virol., 2018, 92(17), e00280-e18.
[http://dx.doi.org/10.1128/JVI.00280-18] [PMID: 29950415]
[107]
Vishwakarma, M.; Piddini, E. Outcompeting cancer. Nat. Rev. Cancer, 2020, 20(3), 187-198.
[http://dx.doi.org/10.1038/s41568-019-0231-8] [PMID: 31932757]
[108]
Kanda, H.; Igaki, T. Mechanism of tumor‐suppressive cell competition in flies. Cancer Sci., 2020, 111(10), 3409-3415.
[http://dx.doi.org/10.1111/cas.14575] [PMID: 32677169]
[109]
Hinata, M.; Kunita, A.; Abe, H.; Morishita, Y.; Sakuma, K.; Yamashita, H.; Seto, Y.; Ushiku, T.; Fukayama, M. Exosomes of epstein-barr virus-associated gastric carcinoma suppress dendritic cell maturation. Microorganisms, 2020, 8(11), 1776.
[http://dx.doi.org/10.3390/microorganisms8111776] [PMID: 33198173]
[110]
Zhao, W.; Liu, M.; Zhang, M.; Wang, Y.; Zhang, Y.; Wang, S.; Zhang, N. Effects of inflammation on the immune microenvironment in gastric cancer. Front. Oncol., 2021, 11, 690298.
[http://dx.doi.org/10.3389/fonc.2021.690298] [PMID: 34367971]
[111]
Hibino, S.; Kawazoe, T.; Kasahara, H.; Itoh, S.; Ishimoto, T.; Sakata-Yanagimoto, M.; Taniguchi, K. Inflammation-Induced tumorigenesis and metastasis. Int. J. Mol. Sci., 2021, 22(11), 5421.
[http://dx.doi.org/10.3390/ijms22115421] [PMID: 34063828]
[112]
Sonkar, C.; Varshney, N.; Koganti, S.; Jha, H.C. Kinases and therapeutics in pathogen mediated gastric cancer. Mol. Biol. Rep., 2022, 49(3), 2519-2530.
[http://dx.doi.org/10.1007/s11033-021-07063-9] [PMID: 35031925]
[113]
Dávila-Collado, R.; Jarquín-Durán, O.; Dong, L.T.; Espinoza, J.L. Epstein–barr virus and Helicobacter pylori co-infection in non-malignant gastroduodenal disorders. Pathogens, 2020, 9(2), 104.
[http://dx.doi.org/10.3390/pathogens9020104] [PMID: 32041355]
[114]
Rihane, F.E.; Erguibi, D.; Elyamine, O.; Abumsimir, B.; Ennaji, M.M.; Chehab, F. Helicobacter pylori co-infection with Epstein-Barr virus and the risk of developing gastric adenocarcinoma at an early age: Observational study infectious agents and cancer. Ann. Med. Surg., 2021, 68, 102651.
[http://dx.doi.org/10.1016/j.amsu.2021.102651] [PMID: 34386233]
[115]
Singh, S.; Jha, H.C. Status of epstein-barr virus coinfection with Helicobacter pylori in gastric cancer. J. Oncol., 2017, 2017, 1-17.
[http://dx.doi.org/10.1155/2017/3456264] [PMID: 28421114]
[116]
Polakovicova, I.; Jerez, S.; Wichmann, I.A.; Sandoval-Bórquez, A.; Carrasco-Véliz, N.; Corvalán, A.H. Role of microRNAs and Exosomes in Helicobacter pylori and epstein-barr virus associated gastric cancers. Front. Microbiol., 2018, 9, 636.
[http://dx.doi.org/10.3389/fmicb.2018.00636] [PMID: 29675003]
[117]
Harhaj, E.W.; Shembade, N. Lymphotropic viruses: Chronic inflammation and induction of cancers. Biology, 2020, 9(11), 390.
[http://dx.doi.org/10.3390/biology9110390] [PMID: 33182552]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy