Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Apoptotic Switch in Cancer Stem Cells: A Potential Approach for Cancer Treatment

Author(s): Vinoth Prasanna Gunasekaran, Thirunavukkarasu Sivaraman* and Mathan Ganeshan

Volume 24, Issue 10, 2023

Published on: 12 June, 2023

Page: [843 - 852] Pages: 10

DOI: 10.2174/1389203724666230512111755

Price: $65

Abstract

Cancer diseases account for about 15% of deaths globally right now, and the percentage may increase in the future. There are more than 100 types of cancer, and each of them is distinct in its origin, microenvironment, growth, metastasis, and signalling pathways. Cancer stem cells are the specialised cells that make cancer more aggressive and difficult to treat. Moreover, cancer aetiology may exist at the genomic, proteomic, or habitat level in any combination. Hence, a unanimous treatment protocol for the different cancers is an uphill task at the present juncture. In this context, this review aims to provide a comprehensive reappraisal concisely of anti-apoptotic proteins, which are shown to be overexpressed in most cancers, if not all, and to forthrightly rationalise the apoptotic proteins as potential biomarkers and druggable targets of the cancers by effectively killing cancer stem cells.

Keywords: Apoptosis, anti-apoptotic proteins, cancer stem cells, biomarkers, cancers, cell death, druggable targets, proteomics.

Graphical Abstract
[1]
McArthur, K.; Kile, B.T. Apoptotic caspases: Multiple or mistaken identities? Trends Cell Biol., 2018, 28(6), 475-493.
[http://dx.doi.org/10.1016/j.tcb.2018.02.003] [PMID: 29551258]
[2]
Tixeira, R.; Poon, I.K.H. Disassembly of dying cells in diverse organisms. Cell. Mol. Life Sci., 2019, 76(2), 245-257.
[http://dx.doi.org/10.1007/s00018-018-2932-7] [PMID: 30317529]
[3]
Maji, S.; Panda, S.; Samal, S.K.; Shriwas, O.; Rath, R.; Pellecchia, M.; Emdad, L.; Das, S.K.; Fisher, P.B.; Dash, R. Bcl-2 antiapoptotic family proteins and chemoresistance in cancer. Adv. Cancer Res., 2018, 137(137), 37-75.
[http://dx.doi.org/10.1016/bs.acr.2017.11.001] [PMID: 29405977]
[4]
Gianì, F.; Vella, V.; Tumino, D.; Malandrino, P.; Frasca, F. The possible role of cancer stem cells in the resistance to kinase inhibitors of advanced thyroid cancer. Cancers, 2020, 12(8), 2249.
[http://dx.doi.org/10.3390/cancers12082249] [PMID: 32796774]
[5]
Cho, Y.; Kim, Y.K. Cancer stem cells as a potential target to overcome multidrug resistance. Front. Oncol., 2020, 10, 764.
[http://dx.doi.org/10.3389/fonc.2020.00764] [PMID: 32582535]
[6]
Singh, P.; Lim, B. Targeting Apoptosis in Cancer. Curr. Oncol. Rep., 2022, 24(3), 273-284.
[http://dx.doi.org/10.1007/s11912-022-01199-y] [PMID: 35113355]
[7]
Boice, A.; Bouchier-Hayes, L. Targeting apoptotic caspases in cancer. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867(6), 118688.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118688] [PMID: 32087180]
[8]
Nougarède, A.; Rimokh, R.; Gillet, G. BH4-mimetics and -antagonists: An emerging class of Bcl-2 protein modulators for cancer therapy. Oncotarget, 2018, 9(82), 35291-35292.
[http://dx.doi.org/10.18632/oncotarget.26250] [PMID: 30450157]
[9]
Ye, K.; Meng, W.X.; Sun, H.; Wu, B.; Chen, M.; Pang, Y.P.; Gao, J.; Wang, H.; Wang, J.; Kaufmann, S.H.; Dai, H. Characterization of an alternative BAK-binding site for BH3 peptides. Nat. Commun., 2020, 11(1), 3301.
[http://dx.doi.org/10.1038/s41467-020-17074-y] [PMID: 32620849]
[10]
Chen, Y.; Yan, Q.; Xu, Y.; Ye, F.; Sun, X.; Zhu, H.; Wang, H. BNIP3-mediated autophagy induced inflammatory response and inhibited VEGF expression in cultured retinal pigment epithelium cells under hypoxia. Curr. Mol. Med., 2019, 19(6), 395-404.
[http://dx.doi.org/10.2174/1566524019666190509105502] [PMID: 31072291]
[11]
Flores-Romero, H.; García-Sáez, A.J. The incomplete puzzle of the BCL2 proteins. Cells, 2019, 8(10), 1176.
[http://dx.doi.org/10.3390/cells8101176] [PMID: 31569576]
[12]
Roufayel, R.; Younes, K.; Al-Sabi, A.; Murshid, N. BH3-Only Proteins Noxa and Puma are key regulators of induced apoptosis. Life, 2022, 12(2), 256.
[http://dx.doi.org/10.3390/life12020256] [PMID: 35207544]
[13]
Dadsena, S.; King, L.E.; García-Sáez, A.J. Apoptosis regulation at the mitochondria membrane level. Biochim. Biophys. Acta Biomembr., 2021, 1863(12), 183716.
[http://dx.doi.org/10.1016/j.bbamem.2021.183716] [PMID: 34343535]
[14]
Huang, K.; O’Neill, K.L.; Li, J.; Zhou, W.; Han, N.; Pang, X.; Wu, W.; Struble, L.; Borgstahl, G.; Liu, Z.; Zhang, L.; Luo, X. BH3-only proteins target BCL-xL/MCL-1, not BAX/BAK, to initiate apoptosis. Cell Res., 2019, 29(11), 942-952.
[http://dx.doi.org/10.1038/s41422-019-0231-y] [PMID: 31551537]
[15]
Butti, R.; Das, S.; Gunasekaran, V.P.; Yadav, A.S.; Kumar, D.; Kundu, G.C. Receptor tyrosine kinases (RTKs) in breast cancer: Signaling, therapeutic implications and challenges. Mol. Cancer, 2018, 17(1), 34.
[http://dx.doi.org/10.1186/s12943-018-0797-x] [PMID: 29455658]
[16]
Butti, R.; Gunasekaran, V.P.; Kumar, T.V.S.; Banerjee, P.; Kundu, G.C. Breast cancer stem cells: Biology and therapeutic implications. Int. J. Biochem. Cell Biol., 2019, 107, 38-52.
[http://dx.doi.org/10.1016/j.biocel.2018.12.001] [PMID: 30529656]
[17]
Gopal, S.; Sivaraman, T. A brief outlook on cancers and preventive methods. J. Pharmaceut. Sci. Res., 2019, 11(5), 1763-1765.
[18]
Ebrahimi, A.; Abbasi, P.; Cucchiarini, M. Exploring the role of stem cells in cancer development and progression. Annals Cancer Res. Therapy, 2020, 28(1), 3-8.
[http://dx.doi.org/10.4993/acrt.28.3]
[19]
Xu, L.; Zhang, J.; Sun, J.; Hou, K.; Yang, C.; Guo, Y.; Liu, X.; Kalvakolanu, D.V.; Zhang, L.; Guo, B. Epigenetic regulation of cancer stem cells: Shedding light on the refractory/relapsed cancers. Biochem. Pharmacol., 2022, 202, 115110.
[http://dx.doi.org/10.1016/j.bcp.2022.115110] [PMID: 35640714]
[20]
Najafi, M.; Farhood, B.; Mortezaee, K. Cancer stem cells (CSCs) in cancer progression and therapy. J. Cell. Physiol., 2019, 234(6), 8381-8395.
[http://dx.doi.org/10.1002/jcp.27740] [PMID: 30417375]
[21]
Ju, F.; Atyah, M.M.; Horstmann, N.; Gul, S.; Vago, R.; Bruns, C.J.; Zhao, Y.; Dong, Q.Z.; Ren, N. Characteristics of the cancer stem cell niche and therapeutic strategies. Stem Cell Res. Ther., 2022, 13(1), 233.
[http://dx.doi.org/10.1186/s13287-022-02904-1] [PMID: 35659296]
[22]
Aglan, H.A.; Mahmoud, N.S.; Elhinnawi, M.A.; Abd-Rabou, A.A.; Ahmed, H.H. Phenotypic characteristics of CD133+ EpCAM+ cancer stem-like cells derived from the human hepatoma HepG2 cell line. J. Arab Soc. Med. Res., 2022, 17(1), 77.
[23]
Mohamed, R.H.; Abu-Shahba, N.; Mahmoud, M.; Abdelfattah, A.M.H.; Zakaria, W.; ElHefnawi, M. Co-regulatory network of oncosuppressor mirnas and transcription factors for pathology of human hepatic cancer stem cells (HCsC). Sci. Rep., 2019, 9(1), 5564.
[http://dx.doi.org/10.1038/s41598-019-41978-5] [PMID: 30944375]
[24]
Walcher, L.; Kistenmacher, A.K.; Suo, H.; Kitte, R.; Dluczek, S.; Strauß, A.; Blaudszun, A.R.; Yevsa, T.; Fricke, S.; Kossatz-Boehlert, U. Cancer stem cells—origins and biomarkers: Perspectives for targeted personalized therapies. Front. Immunol., 2020, 11, 1280.
[http://dx.doi.org/10.3389/fimmu.2020.01280] [PMID: 32849491]
[25]
Chen, D.; Wang, C.Y. Targeting cancer stem cells in squamous cell carcinoma. Precis. Clin. Med., 2019, 2(3), 152-165.
[http://dx.doi.org/10.1093/pcmedi/pbz016] [PMID: 31598386]
[26]
Yang, L.; Shi, P.; Zhao, G.; Xu, J.; Peng, W.; Zhang, J.; Zhang, G.; Wang, X.; Dong, Z.; Chen, F.; Cui, H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther., 2020, 5(1), 8.
[http://dx.doi.org/10.1038/s41392-020-0110-5] [PMID: 32296030]
[27]
Bisht, S.; Nigam, M.; Kunjwal, S.S.; Sergey, P.; Mishra, A.P.; Sharifi-Rad, J. Cancer stem cells: From an insight into the basics to recent advances and therapeutic targeting. Stem Cells Int., 2022, 2022, 9653244.
[http://dx.doi.org/10.1155/2022/9653244] [PMID: 35800881]
[28]
Das, P.K.; Islam, F.; Smith, R.A.; Lam, A.K. Therapeutic strategies against cancer stem cells in esophageal carcinomas. Front. Oncol., 2021, 10, 598957.
[http://dx.doi.org/10.3389/fonc.2020.598957] [PMID: 33665161]
[29]
Akbar, S.A.; Keymoradzdeh, A.; Shams, S.; Soleymanpour, A.; Elham, N.S.; Vahidi, S.; Rashidy-Pour, A.; Ashraf, A.; Mirzajani, E.; Khanaki, K.; Rahbar, T.M.; Samimian, S.; Najafzadeh, A. Mechanisms of cancer stem cell therapy. Clin. Chim. Acta, 2020, 510, 581-592.
[http://dx.doi.org/10.1016/j.cca.2020.08.016] [PMID: 32791136]
[30]
Li, X.Y.; Shen, Y.; Zhang, L.; Guo, X.; Wu, J. Understanding initiation and progression of hepatocellular carcinoma through single cell sequencing. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(3), 188720.
[http://dx.doi.org/10.1016/j.bbcan.2022.188720] [PMID: 35304295]
[31]
Lee, S.H.; Reed-Newman, T.; Anant, S.; Ramasamy, T.S. Regulatory role of quiescence in the biological function of cancer stem cells. Stem Cell Rev. Rep., 2020, 16(6), 1185-1207.
[http://dx.doi.org/10.1007/s12015-020-10031-8] [PMID: 32894403]
[32]
Dembic, Z. Antitumor drugs and their targets. Molecules, 2020, 25(23), 5776.
[http://dx.doi.org/10.3390/molecules25235776] [PMID: 33297561]
[33]
Aramini, B.; Masciale, V.; Grisendi, G.; Bertolini, F.; Maur, M.; Guaitoli, G.; Chrystel, I.; Morandi, U.; Stella, F.; Dominici, M.; Haider, K.H. Dissecting tumor growth: The role of cancer stem cells in drug resistance and recurrence. Cancers, 2022, 14(4), 976.
[http://dx.doi.org/10.3390/cancers14040976] [PMID: 35205721]
[34]
Raghav, P.K.; Mann, Z. Cancer stem cells targets and combined therapies to prevent cancer recurrence. Life Sci., 2021, 277, 119465.
[http://dx.doi.org/10.1016/j.lfs.2021.119465] [PMID: 33831426]
[35]
Ma, Y.; Shen, N.; Wicha, M.S.; Luo, M. The roles of the Let-7 family of microRNAs in the regulation of cancer stemness. Cells, 2021, 10(9), 2415.
[http://dx.doi.org/10.3390/cells10092415] [PMID: 34572067]
[36]
Sisinni, L.; Pietrafesa, M.; Lepore, S.; Maddalena, F.; Condelli, V.; Esposito, F.; Landriscina, M. Endoplasmic reticulum stress and unfolded protein response in breast cancer: The balance between apoptosis and autophagy and its role in drug resistance. Int. J. Mol. Sci., 2019, 20(4), 857.
[http://dx.doi.org/10.3390/ijms20040857] [PMID: 30781465]
[37]
Mrakovcic, M.; Kleinheinz, J.; Fröhlich, L.F. p53 at the crossroads between different types of HDAC inhibitor-mediated cancer cell death. Int. J. Mol. Sci., 2019, 20(10), 2415.
[http://dx.doi.org/10.3390/ijms20102415] [PMID: 31096697]
[38]
Donmez Cakil, Y.; Akbulut, Z.; Maras, H.; Gokceoglu Kayali, D.; Gulhan Aktas, R. Collagen type I induces a balance in the expression of anti-and pro-apoptotic genes in hepatocellular carcinoma cells. Middle East J. Cancer, 2022, 13(1), 89-98.
[39]
Sitarek, P.; Merecz-Sadowska, A.; Śliwiński, T.; Zajdel, R.; Kowalczyk, T. An in vitro evaluation of the molecular mechanisms of action of medical plants from the Lamiaceae family as effective sources of active compounds against human cancer cell lines. Cancers, 2020, 12(10), 2957.
[http://dx.doi.org/10.3390/cancers12102957] [PMID: 33066157]
[40]
Martin-Orozco, E.; Sanchez-Fernandez, A.; Ortiz-Parra, I.; Ayala-San, N.M. WNT signaling in tumors: The way to evade drugs and immunity. Front. Immunol., 2019, 10, 2854.
[http://dx.doi.org/10.3389/fimmu.2019.02854] [PMID: 31921125]
[41]
Mukherjee, N.; Panda, C.K. Wnt/β-Catenin signaling pathway as chemotherapeutic target in breast cancer: An update on pros and cons. Clin. Breast Cancer, 2020, 20(5), 361-370.
[http://dx.doi.org/10.1016/j.clbc.2020.04.004] [PMID: 32416986]
[42]
Kontomanolis, E.N.; Kalagasidou, S.; Pouliliou, S.; Anthoulaki, X.; Georgiou, N.; Papamanolis, V.; Fasoulakis, Z.N. The notch pathway in breast cancer progression. ScientificWorldJournal, 2018, 2018, 2415489.
[http://dx.doi.org/10.1155/2018/2415489] [PMID: 30111989]
[43]
Xiao, P.; Zhang, X.; Li, Y.; Ma, Z.; Si, S.; Gao, X. miR-9 inhibition of neuronal apoptosis and expression levels of apoptosis genes Bcl-2 and Bax in depression model rats through Notch pathway. Exp. Ther. Med., 2020, 19(1), 551-556.
[PMID: 31853322]
[44]
Ling, Z.; Chen, M.; Li, T.; Qian, Y.; Li, C. MiR-141-3p downregulation promotes tube formation, migration, invasion and inhibits apoptosis in hypoxia-induced human umbilical vein endothelial cells by targeting Notch2. Reprod. Biol., 2021, 21(2), 100483.
[http://dx.doi.org/10.1016/j.repbio.2021.100483] [PMID: 33631423]
[45]
Booker, B.E.; Steg, A.D.; Kovac, S.; Landen, C.N.; Amm, H.M. The use of hedgehog antagonists in cancer therapy: A comparison of clinical outcomes and gene expression analyses. Cancer Biol. Ther., 2020, 21(10), 873-883.
[http://dx.doi.org/10.1080/15384047.2020.1806640] [PMID: 32914706]
[46]
Dhar, D.; Raina, K.; Agarwal, R. Mechanisms and drug targets for pancreatic cancer chemoprevention. Curr. Med. Chem., 2018, 25(22), 2545-2565.
[http://dx.doi.org/10.2174/0929867324666170320120647] [PMID: 28322154]
[47]
Ding, J.; Li, H.Y.; Zhang, L.; Zhou, Y.; Wu, J. Hedgehog signaling, a critical pathway governing the development and progression of hepatocellular carcinoma. Cells, 2021, 10(1), 123.
[http://dx.doi.org/10.3390/cells10010123] [PMID: 33440657]
[48]
Nobili, S.; Lapucci, A.; Landini, I.; Coronnello, M.; Roviello, G.; Mini, E. Role of ATP-binding cassette transporters in cancer initiation and progression. Semin. Cancer Biol., 2020, 60, 72-95.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.006] [PMID: 31412294]
[49]
Cumaoglu, A; Bekci, H; Ozturk, E; Yerer, MB; Baldemir, A Bishayee, A Goji berry fruit extracts suppress proliferation of triple-negative breast cancer cells by inhibiting EGFR- Mediated ERK/MAPK and PI3K/Akt signaling pathways. Nat. Prod. Commun., 2018, 13(6), 1934578X1801300613.
[50]
Kapoor-Narula, U.; Lenka, N. Cancer stem cells and tumor heterogeneity: Deciphering the role in tumor progression and metastasis. Cytokine, 2022, 157, 155968.
[http://dx.doi.org/10.1016/j.cyto.2022.155968] [PMID: 35872504]
[51]
Abroun, S.; Soleimani, M. Evaluation of stemness genes expression of OCT4, SOX2, Nanog, C-Myc and surface marker of CD133 on myeloma cells. J. Res. Appl. Basic Med. Sci., 2020, 6(2), 96-103.
[52]
Park, S.Y.; Lee, C.J.; Choi, J.H.; Kim, J.H.; Kim, J.W.; Kim, J.Y.; Nam, J.S. The JAK2/STAT3/CCND2 axis promotes colorectal cancer stem cell persistence and radioresistance. J. Exp. Clin. Cancer Res., 2019, 38(1), 399.
[http://dx.doi.org/10.1186/s13046-019-1405-7] [PMID: 31511084]
[53]
Wang, Q.; Wan, J.; Zhang, W.; Hao, S. MCL-1 or BCL-xL-dependent resistance to the BCL-2 antagonist (ABT-199) can be overcome by specific inhibitor as single agents and in combination with ABT-199 in acute myeloid leukemia cells. Leuk. Lymphoma, 2019, 60(9), 2170-2180.
[http://dx.doi.org/10.1080/10428194.2018.1563694] [PMID: 30626241]
[54]
Zhang, J.; Chen, X.; Bian, L.; Wang, Y.; Liu, H. CD44+/CD24+-expressing cervical cancer cells and radioresistant cervical cancer cells exhibit cancer stem cell characteristics. Gynecol. Obstet. Invest., 2019, 84(2), 174-182.
[http://dx.doi.org/10.1159/000493129] [PMID: 30317240]
[55]
Ye, J.; Sun, D.; Yu, Y.; Yu, J. Osthole resensitizes CD133+ hepatocellular carcinoma cells to cisplatin treatment via PTEN/AKT pathway. Aging, 2020, 12(14), 14406-14417.
[http://dx.doi.org/10.18632/aging.103484] [PMID: 32673286]
[56]
Klanova, M.; Klener, P. BCL-2 proteins in pathogenesis and therapy of B-cell non-Hodgkin lymphomas. Cancers, 2020, 12(4), 938.
[http://dx.doi.org/10.3390/cancers12040938] [PMID: 32290241]
[57]
Pileri, A.; Agostinelli, C.; Bertuzzi, C.; Grandi, V.; Maio, V.; Lastrucci, I.; Santucci, M.; Pimpinelli, N. BCL-2 expression in primary cutaneous follicle center B-cell lymphoma and its prognostic role. Front. Oncol., 2020, 10, 662.
[http://dx.doi.org/10.3389/fonc.2020.00662] [PMID: 32411611]
[58]
Liu, L.; Cheng, X.; Yang, H.; Lian, S.; Jiang, Y.; Liang, J.; Chen, X.; Mo, S.; Shi, Y.; Zhao, S.; Li, J.; Jiang, R.; Yang, D.H.; Wu, Y. BCL-2 expression promotes immunosuppression in chronic lymphocytic leukemia by enhancing regulatory T cell differentiation and cytotoxic T cell exhaustion. Mol. Cancer, 2022, 21(1), 59.
[http://dx.doi.org/10.1186/s12943-022-01516-w] [PMID: 35193595]
[59]
Luo, Q.; Pan, W.; Zhou, S.; Wang, G.; Yi, H.; Zhang, L.; Yan, X.; Yuan, L.; Liu, Z.; Wang, J.; Chen, H.; Qiu, M.; Yang, D.; Sun, J. A novel BCL-2 inhibitor APG-2575 exerts synthetic lethality with BTK or MDM2-p53 inhibitor in diffuse large B-cell lymphoma. Oncol. Res., 2020, 28(4), 331-344.
[http://dx.doi.org/10.3727/096504020X15825405463920] [PMID: 32093809]
[60]
Thieme, E.; Liu, T.; Bruss, N.; Roleder, C.; Lam, V.; Wang, X.; Nechiporuk, T.; Shouse, G.; Danilova, O.V.; Bottomly, D.; McWeeney, S.K.; Tyner, J.W.; Kurtz, S.E.; Danilov, A.V. Dual BTK/SYK inhibition with CG-806 (luxeptinib) disrupts B-cell receptor and Bcl-2 signaling networks in mantle cell lymphoma. Cell Death Dis., 2022, 13(3), 246.
[http://dx.doi.org/10.1038/s41419-022-04684-1] [PMID: 35296646]
[61]
Hartman, M.L.; Czyz, M. BCL-w: Apoptotic and non-apoptotic role in health and disease. Cell Death Dis., 2020, 11(4), 260.
[http://dx.doi.org/10.1038/s41419-020-2417-0] [PMID: 32317622]
[62]
Touzeau, C.; Maciag, P.; Amiot, M.; Moreau, P. Targeting Bcl-2 for the treatment of multiple myeloma. Leukemia, 2018, 32(9), 1899-1907.
[http://dx.doi.org/10.1038/s41375-018-0223-9] [PMID: 30076373]
[63]
de Jong, Y.; Monderer, D.; Brandinelli, E.; Monchanin, M.; van den Akker, B.E.; van Oosterwijk, J.G.; Blay, J.Y.; Dutour, A.; Bovée, J.V.M.G. Bcl-xl as the most promising Bcl-2 family member in targeted treatment of chondrosarcoma. Oncogenesis, 2018, 7(9), 74.
[http://dx.doi.org/10.1038/s41389-018-0084-0] [PMID: 30242253]
[64]
Lopez, A.; Reyna, D.E.; Gitego, N.; Kopp, F.; Zhou, H.; Miranda-Roman, M.A.; Nordstrøm, L.U.; Narayanagari, S.R.; Chi, P.; Vilar, E.; Tsirigos, A.; Gavathiotis, E. Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer. Nat. Commun., 2022, 13(1), 1199.
[http://dx.doi.org/10.1038/s41467-022-28741-7] [PMID: 35256598]
[65]
Wei, A.H.; Roberts, A.W.; Spencer, A.; Rosenberg, A.S.; Siegel, D.; Walter, R.B.; Caenepeel, S.; Hughes, P.; McIver, Z.; Mezzi, K.; Morrow, P.K.; Stein, A. Targeting MCL-1 in hematologic malignancies: Rationale and progress. Blood Rev., 2020, 44, 100672.
[http://dx.doi.org/10.1016/j.blre.2020.100672] [PMID: 32204955]
[66]
Li, X.; Zhou, J.; Wen, X.; Zhang, T.; Wu, D.; Deng, Z.; Zhang, Z.; Lian, X.; He, P.; Yao, X.; Lin, J.; Qian, J. Increased MCL-1 expression predicts poor prognosis and disease recurrence in acute myeloid leukemia. OncoTargets Ther., 2019, 12, 3295-3304.
[http://dx.doi.org/10.2147/OTT.S194549] [PMID: 31118680]
[67]
Wang, H.; Guo, M.; Wei, H.; Chen, Y. Targeting MCL-1 in cancer: Current status and perspectives. J. Hematol. Oncol., 2021, 14(1), 67.
[http://dx.doi.org/10.1186/s13045-021-01079-1] [PMID: 33883020]
[68]
Ramesh, P.; Medema, J.P. BCL-2 family deregulation in colorectal cancer: Potential for BH3 mimetics in therapy. Apoptosis, 2020, 25(5-6), 305-320.
[http://dx.doi.org/10.1007/s10495-020-01601-9] [PMID: 32335811]
[69]
Zhang, L.; Lu, Z.; Zhao, X. Targeting Bcl-2 for cancer therapy. Biochimica et Biophysica Acta (BBA) -. Rev. Can., 2021, 1876(1), 188569.
[70]
Krajewska, M.; Kitada, S.; Winter, J.N.; Variakojis, D.; Lichtenstein, A.; Zhai, D.; Cuddy, M.; Huang, X.; Luciano, F.; Baker, C.H.; Kim, H.; Shin, E.; Kennedy, S.; Olson, A.H.; Badzio, A.; Jassem, J.; Meinhold-Heerlein, I.; Duffy, M.J.; Schimmer, A.D.; Tsao, M.; Brown, E.; Sawyers, A.; Andreeff, M.; Mercola, D.; Krajewski, S.; Reed, J.C. Bcl-B expression in human epithelial and nonepithelial malignancies. Clin. Cancer Res., 2008, 14(10), 3011-3021.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1955] [PMID: 18483366]
[71]
Feuerhake, F.; Kutok, J.L.; Monti, S.; Chen, W.; LaCasce, A.S.; Cattoretti, G.; Kurtin, P.; Pinkus, G.S.; de Leval, L.; Harris, N.L.; Savage, K.J.; Neuberg, D.; Habermann, T.M.; Dalla-Favera, R.; Golub, T.R.; Aster, J.C.; Shipp, M.A.N.F. B activity, function, and target-gene signatures in primary mediastinal large B-cell lymphoma and diffuse large B-cell lymphoma subtypes. Blood, 2005, 106(4), 1392-1399.
[http://dx.doi.org/10.1182/blood-2004-12-4901] [PMID: 15870177]
[72]
Yip, K.W.; Reed, J.C. Bcl-2 family proteins and cancer. Oncogene, 2008, 27(50), 6398-6406.
[http://dx.doi.org/10.1038/onc.2008.307] [PMID: 18955968]
[73]
Sivakumar, D.; Sivaraman, T. A review on structures and functions of Bcl-2 family proteins from homo sapiens. Protein Pept. Lett., 2016, 23(10), 932-941.
[http://dx.doi.org/10.2174/0929866523666160719094636] [PMID: 27449944]
[74]
Sattler, M.; Liang, H.; Nettesheim, D.; Meadows, R.P.; Harlan, J.E.; Eberstadt, M.; Yoon, H.S.; Shuker, S.B.; Chang, B.S.; Minn, A.J.; Thompson, C.B.; Fesik, S.W. Structure of Bcl-xL-Bak peptide complex: Recognition between regulators of apoptosis. Science, 1997, 275(5302), 983-986.
[http://dx.doi.org/10.1126/science.275.5302.983] [PMID: 9020082]
[75]
Gavathiotis, E.; Suzuki, M.; Davis, M.L.; Pitter, K.; Bird, G.H.; Katz, S.G.; Tu, H.C.; Kim, H.; Cheng, E.H.Y.; Tjandra, N.; Walensky, L.D. BAX activation is initiated at a novel interaction site. Nature, 2008, 455(7216), 1076-1081.
[http://dx.doi.org/10.1038/nature07396] [PMID: 18948948]
[76]
Lee, E.F.; Sadowsky, J.D.; Smith, B.J.; Czabotar, P.E.; Peterson-Kaufman, K.J.; Colman, P.M.; Gellman, S.H.; Fairlie, W.D. High-resolution structural characterization of a helical α/β-peptide foldamer bound to the anti-apoptotic protein Bcl-xL. Angew. Chem. Int. Ed., 2009, 48(24), 4318-4322.
[http://dx.doi.org/10.1002/anie.200805761] [PMID: 19229915]
[77]
Kim, H.; Rafiuddin-Shah, M.; Tu, H.C.; Jeffers, J.R.; Zambetti, G.P.; Hsieh, J.J.D.; Cheng, E.H.Y. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat. Cell Biol., 2006, 8(12), 1348-1358.
[http://dx.doi.org/10.1038/ncb1499] [PMID: 17115033]
[78]
Placzek, W.J.; Wei, J.; Kitada, S.; Zhai, D.; Reed, J.C.; Pellecchia, M. A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy. Cell Death Dis., 2010, 1(5), e40.
[http://dx.doi.org/10.1038/cddis.2010.18] [PMID: 21364647]
[79]
Labi, V.; Erlacher, M.; Kiessling, S.; Manzl, C.; Frenzel, A.; O’Reilly, L.; Strasser, A.; Villunger, A. Loss of the BH3-only protein Bmf impairs B cell homeostasis and accelerates γ irradiation–induced thymic lymphoma development. J. Exp. Med., 2008, 205(3), 641-655.
[http://dx.doi.org/10.1084/jem.20071658] [PMID: 18299399]
[80]
Fletcher, S.; Hamilton, A.D. Protein surface recognition and proteomimetics: Mimics of protein surface structure and function. Curr. Opin. Chem. Biol., 2005, 9(6), 632-638.
[http://dx.doi.org/10.1016/j.cbpa.2005.10.006] [PMID: 16242379]
[81]
Fry, D.C. Protein–protein interactions as targets for small molecule drug discovery. Biopolymers, 2006, 84(6), 535-552.
[http://dx.doi.org/10.1002/bip.20608] [PMID: 17009316]
[82]
Billard, C. BH3 mimetics: Status of the field and new developments. Mol. Cancer Ther., 2013, 12(9), 1691-1700.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0058] [PMID: 23974697]
[83]
Sivakumar, D.; Richa, T.; Siva Rajesh, S.; Gorai, B.; Sivaraman, T. In silico methods for designing antagonists to anti-apoptotic members of Bcl-2 family proteins. Mini Rev. Med. Chem., 2012, 12(11), 1144-1153.
[http://dx.doi.org/10.2174/138955712802762202] [PMID: 22697515]
[84]
Sivakumar, D.; Gorai, B.; Sivaraman, T. Screening efficient BH3-mimetics to hBcl-B by means of peptidodynmimetic method. Mol. Biosyst., 2013, 9(4), 700-712.
[http://dx.doi.org/10.1039/c2mb25195g] [PMID: 23385522]
[85]
Mukherjee, N.; Strosnider, A.; Vagher, B.; Lambert, K.A.; Slaven, S.; Robinson, W.A.; Amato, C.M.; Couts, K.L.; Bemis, J.G.T.; Turner, J.A.; Norris, D.A.; Shellman, Y.G. BH3 mimetics induce apoptosis independent of DRP-1 in melanoma. Cell Death Dis., 2018, 9(9), 907.
[http://dx.doi.org/10.1038/s41419-018-0932-z] [PMID: 30185782]
[86]
Kitada, S.; Leone, M.; Sareth, S.; Zhai, D.; Reed, J.C.; Pellecchia, M. Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J. Med. Chem., 2003, 46(20), 4259-4264.
[http://dx.doi.org/10.1021/jm030190z] [PMID: 13678404]
[87]
Wei, J.; Stebbins, J.L.; Kitada, S.; Dash, R.; Zhai, D.; Placzek, W.J.; Wu, B.; Rega, M.F.; Zhang, Z.; Barile, E.; Yang, L.; Dahl, R.; Fisher, P.B.; Reed, J.C.; Pellecchia, M. An optically pure apogossypolone derivative as potent pan-active inhibitor of anti-apoptotic bcl-2 family proteins. Front. Oncol., 2011, 1, 28.
[http://dx.doi.org/10.3389/fonc.2011.00028] [PMID: 22655238]
[88]
Lugovskoy, A.A.; Degterev, A.I.; Fahmy, A.F.; Zhou, P.; Gross, J.D.; Yuan, J.; Wagner, G. A novel approach for characterizing protein ligand complexes: Molecular basis for specificity of small-molecule Bcl-2 inhibitors. J. Am. Chem. Soc., 2002, 124(7), 1234-1240.
[http://dx.doi.org/10.1021/ja011239y] [PMID: 11841292]
[89]
Real, P.J.; Cao, Y.; Wang, R.; Nikolovska-Coleska, Z.; Sanz-Ortiz, J.; Wang, S.; Fernandez-Luna, J.L. Breast cancer cells can evade apoptosis-mediated selective killing by a novel small molecule inhibitor of Bcl-2. Cancer Res., 2004, 64(21), 7947-7953.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0945] [PMID: 15520201]
[90]
Oltersdorf, T.; Elmore, S.W.; Shoemaker, A.R.; Armstrong, R.C.; Augeri, D.J.; Belli, B.A.; Bruncko, M.; Deckwerth, T.L.; Dinges, J.; Hajduk, P.J.; Joseph, M.K.; Kitada, S.; Korsmeyer, S.J.; Kunzer, A.R.; Letai, A.; Li, C.; Mitten, M.J.; Nettesheim, D.G.; Ng, S.; Nimmer, P.M.; O’Connor, J.M.; Oleksijew, A.; Petros, A.M.; Reed, J.C.; Shen, W.; Tahir, S.K.; Thompson, C.B.; Tomaselli, K.J.; Wang, B.; Wendt, M.D.; Zhang, H.; Fesik, S.W.; Rosenberg, S.H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 2005, 435(7042), 677-681.
[http://dx.doi.org/10.1038/nature03579] [PMID: 15902208]
[91]
Tse, C.; Shoemaker, A.R.; Adickes, J.; Anderson, M.G.; Chen, J.; Jin, S.; Johnson, E.F.; Marsh, K.C.; Mitten, M.J.; Nimmer, P.; Roberts, L.; Tahir, S.K.; Xiao, Y.; Yang, X.; Zhang, H.; Fesik, S.; Rosenberg, S.H.; Elmore, S.W. ABT-263: A potent and orally bioavailable bcl-2 family inhibitor. Cancer Res., 2008, 68(9), 3421-3428.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5836] [PMID: 18451170]
[92]
Gilormini, M.; Malesys, C.; Armandy, E.; Manas, P.; Guy, J.B.; Magné, N.; Rodriguez-Lafrasse, C.; Ardail, D. Preferential targeting of cancer stem cells in the radiosensitizing effect of ABT-737 on HNSCC. Oncotarget, 2016, 7(13), 16731-16744.
[http://dx.doi.org/10.18632/oncotarget.7744] [PMID: 26934442]
[93]
Song, S.; Chen, Q.; Li, Y.; Lei, G.; Scott, A.; Huo, L.; Li, C.Y.; Estrella, J.S.; Correa, A.; Pizzi, M.P.; Ma, L.; Jin, J.; Liu, B.; Wang, Y.; Xiao, L.; Hofstetter, W.L.; Lee, J.H.; Weston, B.; Bhutani, M.; Shanbhag, N.; Johnson, R.L.; Gan, B.; Wei, S.; Ajani, J.A. Targeting cancer stem cells with a pan-BCL-2 inhibitor in preclinical and clinical settings in patients with gastroesophageal carcinoma. Gut, 2021, 70(12), 2238-2248.
[http://dx.doi.org/10.1136/gutjnl-2020-321175] [PMID: 33487592]
[94]
Bernardo, P.H.; Wan, K.F.; Sivaraman, T.; Xu, J.; Moore, F.K.; Hung, A.W.; Mok, H.Y.K.; Yu, V.C.; Chai, C.L.L. Structure-activity relationship studies of phenanthridine-based Bcl-XL inhibitors. J. Med. Chem., 2008, 51(21), 6699-6710.
[http://dx.doi.org/10.1021/jm8005433] [PMID: 18925736]
[95]
Bernardo, P.H.; Sivaraman, T.; Wan, K.F.; Xu, J.; Krishnamoorthy, J.; Song, C.M.; Tian, L.; Chin, J.S.F.; Lim, D.S.W.; Mok, H.Y.K.; Yu, V.C.; Tong, J.C.; Chai, C.L.L. Structural insights into the design of small molecule inhibitors that selectively antagonize Mcl-1. J. Med. Chem., 2010, 53(5), 2314-2318.
[http://dx.doi.org/10.1021/jm901469p] [PMID: 20158203]
[96]
Lessene, G.; Czabotar, P.E.; Colman, P.M. BCL-2 family antagonists for cancer therapy. Nat. Rev. Drug Discov., 2008, 7(12), 989-1000.
[http://dx.doi.org/10.1038/nrd2658] [PMID: 19043450]
[97]
Vogler, M. Targeting BCL2-proteins for the treatment of solid tumours. Adv. Med., 2014, 2014, 943648.
[http://dx.doi.org/10.1155/2014/943648] [PMID: 26556430]
[98]
Zhang, L.; Ming, L.; Yu, J. BH3 mimetics to improve cancer therapy; mechanisms and examples. Drug Resist. Updat., 2007, 10(6), 207-217.
[http://dx.doi.org/10.1016/j.drup.2007.08.002] [PMID: 17921043]
[99]
Delbridge, A.R.D.; Strasser, A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ., 2015, 22(7), 1071-1080.
[http://dx.doi.org/10.1038/cdd.2015.50] [PMID: 25952548]
[100]
Pinto, M.; del Mar Orzaez, M.; Delgado-Soler, L.; Perez, J.J.; Rubio-Martinez, J. Rational design of new class of BH3-mimetics as inhibitors of the Bcl-xL protein. J. Chem. Inf. Model., 2011, 51(6), 1249-1258.
[http://dx.doi.org/10.1021/ci100501d] [PMID: 21528891]
[101]
Hosseini, A.; Espona-Fiedler, M.; Soto-Cerrato, V.; Quesada, R.; Pérez-Tomás, R.; Guallar, V. Molecular interactions of prodiginines with the BH3 domain of anti-apoptotic Bcl-2 family members. PLoS One, 2013, 8(2), e57562.
[http://dx.doi.org/10.1371/journal.pone.0057562] [PMID: 23460874]
[102]
Oliveira, L.F.S.; Predes, D.; Borges, H.L.; Abreu, J.G. Therapeutic potential of naturally occurring small molecules to target the wnt/β-catenin signaling pathway in colorectal cancer. Cancers, 2022, 14(2), 403.
[http://dx.doi.org/10.3390/cancers14020403] [PMID: 35053565]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy