Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Perspective

Targeting TRIM29 As a Negative Regulator of CAR-NK Cell Effector Function to Improve Antitumor Efficacy of these Cells: A Perspective

Author(s): Zahra Saleh, Maryam Noroozi, Mahsa Eshkevar Vakili, Dieter Kabelitz, Hamid Nasrollahi and Kurosh Kalantar*

Volume 24, Issue 4, 2024

Published on: 31 May, 2023

Page: [399 - 403] Pages: 5

DOI: 10.2174/1566524023666230510101525

Abstract

Natural killer (NK) cells are among the most important cells in innate immune defense. In contrast to T cells, the effector function of NK cells does not require prior stimulation and is not MHC restricted. Therefore, chimeric antigen receptor (CAR)-NK cells are superior to CAR-T cells. The complexity of the tumor microenvironment (TME) makes it necessary to explore various pathways involved in NK cell negative regulation. CAR-NK cell effector function can be improved by inhibiting the negative regulatory mechanisms. In this respect, the E3 ubiquitin ligase tripartite motif containing 29 (TRIM29) is known to be involved in reducing NK cell cytotoxicity and cytokine production. Also, targeting TRIM29 may enhance the antitumor efficacy of CAR-NK cells. The present study discusses the negative effects of TRIM29 on NK cell activity and proposes genomic deletion or suppression of the expression of TRIM29 as a novel approach to optimize CAR-NK cell-based immunotherapy.

Keywords: Tumor microenvironment, TRIM29, CAR-T cell, CAR-NK cell, chemotherapy, immunotherapy.

[1]
Cai Z, Liu Q. Understanding the global cancer statistics 2018: Implications for cancer control. Sci China Life Sci 2021; 64(6): 1017-20.
[http://dx.doi.org/10.1007/s11427-019-9816-1] [PMID: 31463738]
[2]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Mollanoori H, Shahraki H, Rahmati Y, Teimourian S. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment. Hum Immunol 2018; 79(12): 876-82.
[http://dx.doi.org/10.1016/j.humimm.2018.09.007] [PMID: 30261221]
[4]
Ray SK, Meshram Y, Mukherjee S. Cancer immunology and CAR-T Cells: A turning point therapeutic approach in colorectal carcinoma with clinical insight. Curr Mol Med 2021; 21(3): 221-36.
[http://dx.doi.org/10.2174/1566524020666200824103749] [PMID: 32838717]
[5]
Biederstädt A, Rezvani K. Engineering the next generation of CAR-NK immunotherapies. Int J Hematol 2021; 114(5): 554-71.
[http://dx.doi.org/10.1007/s12185-021-03209-4] [PMID: 34453686]
[6]
van Erp E, van Kampen M, van Kasteren P, de Wit J. Viral infection of human natural killer cells. Viruses 2019; 11(3): 243.
[http://dx.doi.org/10.3390/v11030243] [PMID: 30870969]
[7]
Daher M, Rezvani K. Outlook for new CAR-based therapies with a focus on CAR NK cells: what lies beyond CAR-engineered T cells in the race against cancer. Cancer Discov 2021; 11(1): 45-58.
[http://dx.doi.org/10.1158/2159-8290.CD-20-0556] [PMID: 33277313]
[8]
Rafei H, Daher M, Rezvani K. Chimeric antigen receptor (CAR) natural killer (NK)‐cell therapy: leveraging the power of innate immunity. Br J Haematol 2021; 193(2): 216-30.
[http://dx.doi.org/10.1111/bjh.17186] [PMID: 33216984]
[9]
Hu Z, Xu X, Wei H. The adverse impact of tumor micro-environment on NK-cell. Front Immunol 2021; 12: 633361.
[http://dx.doi.org/10.3389/fimmu.2021.633361] [PMID: 34177887]
[10]
Melaiu O, Lucarini V, Cifaldi L, Fruci D. Influence of the tumor microenvironment on NK cell function in solid tumors. Front Immunol 2020; 10: 3038.
[http://dx.doi.org/10.3389/fimmu.2019.03038] [PMID: 32038612]
[11]
Krug A, Martinez-Turtos A, Verhoeyen E. Importance of T, NK, CAR T and CAR NK cell metabolic fitness for effective anti-cancer therapy: A continuous learning process allowing the optimization of T, NK and CAR-based anti-cancer therapies. Cancers 2021; 14(1): 183.
[http://dx.doi.org/10.3390/cancers14010183] [PMID: 35008348]
[12]
Jin Z, Zhu Z. The role of TRIM proteins in PRR signaling pathways and immune-related diseases. Int Immunopharmacol 2021; 98: 107813.
[http://dx.doi.org/10.1016/j.intimp.2021.107813] [PMID: 34126340]
[13]
Zhang XZ, Li FH, Wang XJ. Regulation of tripartite motif-containing proteins on immune response and viral evasion. Front Microbiol 2021; 12: 794882.
[http://dx.doi.org/10.3389/fmicb.2021.794882] [PMID: 34925304]
[14]
Mukherjee S, Ray SK. Altered expression of TRIM proteins - inimical outcome and inimitable oncogenic function in breast cancer with diverse carcinogenic hallmarks. Curr Mol Med 2023; 23(1): 44-53.
[http://dx.doi.org/10.2174/1566524022666220111122450] [PMID: 35021972]
[15]
Xing J, Zhang A, Minze LJ, Li XC, Zhang Z. TRIM29 negatively regulates the type I IFN production in response to RNA virus. J Immunol 2018; 201(1): 183-92.
[http://dx.doi.org/10.4049/jimmunol.1701569] [PMID: 29769269]
[16]
Yang W, Gu Z, Zhang H, Hu H. To TRIM the immunity: From innate to adaptive immunity. Front Immunol 2020; 11: 02157.
[http://dx.doi.org/10.3389/fimmu.2020.02157] [PMID: 33117334]
[17]
Zhou X, Sun SC. Targeting ubiquitin signaling for cancer immunotherapy. Signal Transduct Target Ther 2021; 6(1): 16.
[http://dx.doi.org/10.1038/s41392-020-00421-2] [PMID: 33436547]
[18]
Han J, Zhao Z, Zhang N, et al. Transcriptional dysregulation of TRIM29 promotes colorectal cancer carcinogenesis via pyruvate kinase-mediated glucose metabolism. Aging 2021; 13(4): 5034-54.
[http://dx.doi.org/10.18632/aging.202414] [PMID: 33495406]
[19]
Dou Y, Xing J, Kong G, et al. Identification of the E3 ligase TRIM29 as a critical checkpoint regulator of NK cell functions. J Immunol 2019; 203(4): 873-80.
[http://dx.doi.org/10.4049/jimmunol.1900171] [PMID: 31270148]
[20]
Takaesu G, Kobayashi T, Yoshimura A. TGF -activated kinase 1 (TAK1)-binding proteins (TAB) 2 and 3 negatively regulate autophagy. J Biochem 2012; 151(2): 157-66.
[http://dx.doi.org/10.1093/jb/mvr123] [PMID: 21976705]
[21]
Rajasekaran K, Chu H, Kumar P, et al. Transforming growth factor-β-activated kinase 1 regulates natural killer cell-mediated cytotoxicity and cytokine production. J Biol Chem 2011; 286(36): 31213-24.
[http://dx.doi.org/10.1074/jbc.M111.261917] [PMID: 21771792]
[22]
Sakurai H. Targeting of TAK1 in inflammatory disorders and cancer. Trends Pharmacol Sci 2012; 33(10): 522-30.
[http://dx.doi.org/10.1016/j.tips.2012.06.007] [PMID: 22795313]
[23]
Wang J, Wu X, Jiang M, Tai G. Mechanism by which TRAF6 participates in the immune regulation of autoimmune diseases and cancer. Biomed Res Int 2020; 2020: 4607197.
[http://dx.doi.org/10.1155/2020/4607197]
[24]
Xing J, Zhang A, Zhang H, et al. TRIM29 promotes DNA virus infections by inhibiting innate immune response. Nat Commun 2017; 8(1): 945.
[http://dx.doi.org/10.1038/s41467-017-00101-w] [PMID: 29038422]
[25]
Xu W, Xu B, Yao Y, et al. RNA interference against TRIM29 inhibits migration and invasion of colorectal cancer cells. Oncol Rep 2016; 36(3): 1411-8.
[http://dx.doi.org/10.3892/or.2016.4941] [PMID: 27430345]

© 2024 Bentham Science Publishers | Privacy Policy