Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Anticancer Drug Discovery By Structure-Based Repositioning Approach

Author(s): Dharti H. Modh and Vithal M. Kulkarni*

Volume 24, Issue 1, 2024

Published on: 15 June, 2023

Page: [60 - 91] Pages: 32

DOI: 10.2174/1389557523666230509123036

Price: $65

Open Access Journals Promotions 2
Abstract

Despite the tremendous progress that has occurred in recent years in cell biology and oncology, in chemical, physical and computer sciences, the disease cancer has continued as the major cause of death globally. Research organizations, academic institutions and pharmaceutical companies invest huge amounts of money in the discovery and development of new anticancer drugs. Though much effort is continuing and whatever available approaches are being attempted, the success of bringing one effective drug into the market has been uncertain. To overcome problems associated with drug discovery, several approaches are being attempted. One such approach has been the use of known, approved and marketed drugs to screen these for new indications, which have gained considerable interest. This approach is known in different terms as “drug repositioning or drug repurposing.” Drug repositioning refers to the structure modification of the active molecule by synthesis, in vitro/ in vivo screening and in silico computational applications where macromolecular structure-based drug design (SBDD) is employed. In this perspective, we aimed to focus on the application of repositioning or repurposing of essential drug moieties present in drugs that are already used for the treatment of some diseases such as diabetes, human immunodeficiency virus (HIV) infection and inflammation as anticancer agents. This review thus covers the available literature where molecular modeling of drugs/enzyme inhibitors through SBDD is reported for antidiabetics, anti-HIV and inflammatory diseases, which are structurally modified and screened for anticancer activity using respective cell lines.

Keywords: Repositioning, Anti-diabetic, Anti-HIV, Anti-inflammatory scaffolds/drugs, Sulfonamides, Molecules.

« Previous
Graphical Abstract
[1]
Langedijk, J.; Mantel-Teeuwisse, A.K.; Slijkerman, D.S.; Schutjens, M.H.D.B. Drug repositioning and repurposing: Terminology and definitions in literature. Drug Discov. Today, 2015, 20(8), 1027-1034.
[http://dx.doi.org/10.1016/j.drudis.2015.05.001] [PMID: 25975957]
[2]
Oprea, T.I.; Mestres, J. Drug repurposing: Far beyond new targets for old drugs. AAPS J., 2012, 14(4), 759-763.
[http://dx.doi.org/10.1208/s12248-012-9390-1] [PMID: 22826034]
[3]
Gil, C.; Martinez, A. Is drug repurposing really the future of drug discovery or is new innovation truly the way forward? Expert Opin. Drug Discov., 2021, 16(8), 829-831.
[http://dx.doi.org/10.1080/17460441.2021.1912733] [PMID: 33834929]
[4]
Song, Y.; Chen, W.; Kang, D.; Zhang, Q.; Zhan, P.; Liu, X. “Old friends in new guise”: Exploiting privileged structures for scaffold re-evolution/refining. Comb. Chem. High Throughput Screen., 2014, 17(6), 536-553.
[http://dx.doi.org/10.2174/1386207317666140122101631] [PMID: 24446784]
[5]
Parisi, D.; Adasme, M.F.; Sveshnikova, A.; Bolz, S.N.; Moreau, Y.; Schroeder, M. Drug repositioning or target repositioning: A structural perspective of drug-target-indication relationship for available repurposed drugs. Comput. Struct. Biotechnol. J., 2020, 18, 1043-1055.
[http://dx.doi.org/10.1016/j.csbj.2020.04.004] [PMID: 32419905]
[6]
March-Vila, E.; Pinzi, L.; Sturm, N.; Tinivella, A.; Engkvist, O.; Chen, H.; Rastelli, G. On the integration of in silico drug design methods for drug repurposing. Front. Pharmacol., 2017, 8, 298.
[http://dx.doi.org/10.3389/fphar.2017.00298] [PMID: 28588497]
[7]
Modi, S.J.; Kulkarni, V.M. Discovery of VEGFR-2 inhibitors exerting significant anticancer activity against CD44+ and CD133+ cancer stem cells (CSCs): Reversal of TGF-β induced epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma. Eur. J. Med. Chem., 2020, 207, 112851.
[http://dx.doi.org/10.1016/j.ejmech.2020.112851] [PMID: 33002846]
[8]
Tanoli, Z.; Vähä-Koskela, M.; Aittokallio, T. Artificial intelligence, machine learning, and drug repurposing in cancer. Expert Opin. Drug Discov., 2021, 16(9), 977-989.
[http://dx.doi.org/10.1080/17460441.2021.1883585] [PMID: 33543671]
[9]
Wang, C.C.; Zhao, Y.; Chen, X. Drug-pathway association prediction: From experimental results to computational models. Brief. Bioinform., 2021, 22(3), bbaa061.
[http://dx.doi.org/10.1093/bib/bbaa061] [PMID: 32393976]
[10]
Nan, X.; Jiang, Y.F.; Li, H.J.; Wang, J.H.; Wu, Y.C. Design, synthesis and evaluation of sulfonylurea-containing 4-phenoxyquinolines as highly selective c-Met kinase inhibitors. Bioorg. Med. Chem., 2019, 27(13), 2801-2812.
[http://dx.doi.org/10.1016/j.bmc.2019.05.007] [PMID: 31079967]
[11]
Wu, C.; Wang, M.; Tang, Q.; Luo, R.; Chen, L.; Zheng, P.; Zhu, W. Design, Synthesis, Activity and Docking Study of Sorafenib Analogs Bearing Sulfonylurea Unit. Molecules, 2015, 20(10), 19361-19371.
[http://dx.doi.org/10.3390/molecules201019361] [PMID: 26512636]
[12]
El-Helby, A.G.A.; Sakr, H.; Eissa, I.H.; Abulkhair, H.; Al-Karmalawy, A.A.; El-Adl, K. Design, synthesis, molecular docking, and anticancer activity of benzoxazole derivatives as VEGFR‐2 inhibitors. Arch. Pharm. (Weinheim), 2019, 352(10), 1900113.
[http://dx.doi.org/10.1002/ardp.201900113] [PMID: 31448458]
[13]
Mahdy, H.A.; Ibrahim, M.K.; Metwaly, A.M.; Belal, A.; Mehany, A.B.M.; El-Gamal, K.M.A.; El-Sharkawy, A.; Elhendawy, M.A.; Radwan, M.M.; Elsohly, M.A.; Eissa, I.H. Design, synthesis, molecular modeling, in vivo studies and anticancer evaluation of quinazolin-4(3H)-one derivatives as potential VEGFR-2 inhibitors and apoptosis inducers. Bioorg. Chem., 2020, 94, 103422.
[http://dx.doi.org/10.1016/j.bioorg.2019.103422] [PMID: 31812261]
[14]
Garaj, V.; Puccetti, L.; Fasolis, G.; Winum, J.Y.; Montero, J.L.; Scozzafava, A.; Vullo, D.; Innocenti, A.; Supuran, C.T. Carbonic anhydrase inhibitors: Novel sulfonamides incorporating 1,3,5-triazine moieties as inhibitors of the cytosolic and tumour-associated carbonic anhydrase isozymes I, II and IX. Bioorg. Med. Chem. Lett., 2005, 15(12), 3102-3108.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.056] [PMID: 15905091]
[15]
Bozdag, M.; Carta, F.; Ceruso, M.; Ferraroni, M.; McDonald, P.C.; Dedhar, S.; Supuran, C.T. Discovery of 4-Hydroxy-3-(3-(phenylureido)benzenesulfonamides as SLC-0111 analogues for the treatment of hypoxic tumors overexpressing carbonic anhydrase IX. J. Med. Chem., 2018, 61(14), 6328-6338.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00770] [PMID: 29962205]
[16]
Yurttaş L.; Akalin Çiftçi, G.; Temel, H.E. Evaluation of new sulfathiazole derivatives as antiproliferative agents. Turk Biyokim. Derg., 2021, 46(5), 533-539.
[http://dx.doi.org/10.1515/tjb-2020-0238]
[17]
Ghorab, M.M.; Alsaid, M.S.; Soliman, A.M.; Ragab, F.A. VEGFR-2 inhibitors and apoptosis inducers: Synthesis and molecular design of new benzo [g] quinazolin bearing benzenesulfonamide moiety. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 893-907.
[http://dx.doi.org/10.1080/14756366.2017.1334650] [PMID: 28661197]
[18]
Rostom, S.A.F. Synthesis and in vitro antitumor evaluation of some indeno[1,2-c]pyrazol(in)es substituted with sulfonamide, sulfonylurea(-thiourea) pharmacophores, and some derived thiazole ring systems. Bioorg. Med. Chem., 2006, 14(19), 6475-6485.
[http://dx.doi.org/10.1016/j.bmc.2006.06.020] [PMID: 16806944]
[19]
Abdelaziz, A.M. Synthesis and evaluation of 5-Chloro-2-Methoxy-N-(4-Sulphamoylphenyl) benzamide derivatives as anti-cancer Agents. Med. Chem., 2015, 05(06), 253-260.
[20]
Ahmed, M.F.; Santali, E.Y. Discovery of pyridine- sulfonamide hybrids as a new scaffold for the development of potential VEGFR-2 inhibitors and apoptosis inducers. Bioorg. Chem., 2021, 111, 104842.
[http://dx.doi.org/10.1016/j.bioorg.2021.104842] [PMID: 33798847]
[21]
Al-Said, M.S.; Ghorab, M.M.; Al-qasoumi, S.I.; El-Hossary, E.M.; Noaman, E. Synthesis and in vitro anticancer screening of some novel 4-[2-amino-3-cyano-4-substituted-5,6,7,8-tetrahydroquinolin-1-(4H)-yl]benzenesulfonamides. Eur. J. Med. Chem., 2010, 45(7), 3011-3018.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.030] [PMID: 20413187]
[22]
Pingaew, R.; Prachayasittikul, V.; Worachartcheewan, A.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Novel 1,4-naphthoquinone-based sulfonamides: Synthesis, QSAR, anticancer and antimalarial studies. Eur. J. Med. Chem., 2015, 103, 446-459.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.001] [PMID: 26397393]
[23]
Ou, L.; Han, S.; Ding, W.; Jia, P.; Yang, B.; Medina-Franco, J.L.; Giulianotti, M.A.; Chen, J.Z.; Yu, Y. Parallel synthesis of novel antitumor agents: 1,2,3-triazoles bearing biologically active sulfonamide moiety and their 3D-QSAR. Mol. Divers., 2011, 15(4), 927-946.
[http://dx.doi.org/10.1007/s11030-011-9324-3] [PMID: 21744258]
[24]
Yan, X.Q.; Wang, Z.C.; Li, Z.; Wang, P.F.; Qiu, H.Y.; Chen, L.W.; Lu, X.Y.; Lv, P.C.; Zhu, H.L. Sulfonamide derivatives containing dihydropyrazole moieties selectively and potently inhibit MMP-2/MMP-9: Design, synthesis, inhibitory activity and 3D-QSAR analysis. Bioorg. Med. Chem. Lett., 2015, 25(20), 4664-4671.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.026] [PMID: 26346367]
[25]
Miller, J.L. Troglitazone withdrawn from market. Am. J. Health Syst. Pharm., 2000, 57(9), 834.
[http://dx.doi.org/10.1093/ajhp/57.9.834b] [PMID: 10840515]
[26]
Colin, C.; Salamone, S.; Grillier-Vuissoz, I.; Boisbrun, M.; Kuntz, S.; Lecomte, J.; Chapleur, Y.; Flament, S. New troglitazone derivatives devoid of PPARγ agonist activity display an increased antiproliferative effect in both hormone-dependent and hormone-independent breast cancer cell lines. Breast Cancer Res. Treat., 2010, 124(1), 101-110.
[http://dx.doi.org/10.1007/s10549-009-0700-y] [PMID: 20054646]
[27]
Dupommier, D.; Muller, C.; Comoy, C.; Mazerbourg, S.; Bordessa, A.; Piquard, E.; Pawlak, M.; Piquard, F.; Martin, H.; De Fays, E.; Grandemange, S.; Flament, S.; Boisbrun, M. New desulfured troglitazone derivatives: Improved synthesis and biological evaluation. Eur. J. Med. Chem., 2020, 187, 111939.
[http://dx.doi.org/10.1016/j.ejmech.2019.111939] [PMID: 31838327]
[28]
Bordessa, A.; Colin-Cassin, C.; Grillier-Vuissoz, I.; Kuntz, S.; Mazerbourg, S.; Husson, G.; Vo, M.; Flament, S.; Martin, H.; Chapleur, Y.; Boisbrun, M. Optimization of troglitazone derivatives as potent anti-proliferative agents: Towards more active and less toxic compounds. Eur. J. Med. Chem., 2014, 83, 129-140.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.015] [PMID: 24953030]
[29]
Salamone, S.; Colin, C.; Grillier-Vuissoz, I.; Kuntz, S.; Mazerbourg, S.; Flament, S.; Martin, H.; Richert, L.; Chapleur, Y.; Boisbrun, M. Synthesis of new troglitazone derivatives: Anti-proliferative activity in breast cancer cell lines and preliminary toxicological study. Eur. J. Med. Chem., 2012, 51, 206-215.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.044] [PMID: 22409968]
[30]
Chen, H.; Fan, Y.H.; Natarajan, A.; Guo, Y.; Iyasere, J.; Harbinski, F.; Luus, L.; Christ, W.; Aktas, H.; Halperin, J.A. Synthesis and biological evaluation of thiazolidine-2,4-dione and 2,4-thione derivatives as inhibitors of translation initiation. Bioorg. Med. Chem. Lett., 2004, 14(21), 5401-5405.
[http://dx.doi.org/10.1016/j.bmcl.2004.08.017] [PMID: 15454234]
[31]
Asati, V.; Bharti, S.K. Design, synthesis and molecular modeling studies of novel thiazolidine-2,4-dione derivatives as potential anti-cancer agents. J. Mol. Struct., 2018, 1154, 406-417.
[http://dx.doi.org/10.1016/j.molstruc.2017.10.077]
[32]
Dakin, L.A.; Block, M.H.; Chen, H.; Code, E.; Dowling, J.E.; Feng, X.; Ferguson, A.D.; Green, I.; Hird, A.W.; Howard, T.; Keeton, E.K.; Lamb, M.L.; Lyne, P.D.; Pollard, H.; Read, J.; Wu, A.J.; Zhang, T.; Zheng, X. Discovery of novel benzylidene-1,3-thiazolidine-2,4-diones as potent and selective inhibitors of the PIM-1, PIM-2, and PIM-3 protein kinases. Bioorg. Med. Chem. Lett., 2012, 22(14), 4599-4604.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.098] [PMID: 22727640]
[33]
Romagnoli, R.; Baraldi, P.G.; Salvador, M.K.; Camacho, M.E.; Balzarini, J.; Bermejo, J.; Estévez, F. Anticancer activity of novel hybrid molecules containing 5-benzylidene thiazolidine-2,4-dione. Eur. J. Med. Chem., 2013, 63, 544-557.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.030] [PMID: 23537942]
[34]
Bhanushali, U.; Rajendran, S.; Sarma, K.; Kulkarni, P.; Chatti, K.; Chatterjee, S.; Ramaa, C.S. 5-Benzylidene-2,4-thiazolidenedione derivatives: Design, synthesis and evaluation as inhibitors of angiogenesis targeting VEGR-2. Bioorg. Chem., 2016, 67, 139-147.
[http://dx.doi.org/10.1016/j.bioorg.2016.06.006] [PMID: 27388635]
[35]
Azizmohammadi, M.; Khoobi, M.; Ramazani, A.; Emami, S.; Zarrin, A.; Firuzi, O.; Miri, R.; Shafiee, A. 2H-chromene derivatives bearing thiazolidine-2,4-dione, rhodanine or hydantoin moieties as potential anticancer agents. Eur. J. Med. Chem., 2013, 59, 15-22.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.044] [PMID: 23202485]
[36]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Day, C.W.; Smee, D.F.; Grellier, P.; Lesyk, R. Synthesis and biological activity evaluation of 5-pyrazoline substituted 4-thiazolidinones. Eur. J. Med. Chem., 2013, 66, 228-237.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.044] [PMID: 23811085]
[37]
Suthar, S.K.; Jaiswal, V.; Lohan, S.; Bansal, S.; Chaudhary, A.; Tiwari, A.; Alex, A.T.; Joesph, A. Novel quinolone substituted thiazolidin-4-ones as anti-inflammatory, anticancer agents: Design, synthesis and biological screening. Eur. J. Med. Chem., 2013, 63, 589-602.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.011] [PMID: 23548704]
[38]
Li, Q.; Al-Ayoubi, A.; Guo, T.; Zheng, H.; Sarkar, A.; Nguyen, T.; Eblen, S.T.; Grant, S.; Kellogg, G.E.; Zhang, S. Structure–activity relationship (SAR) studies of 3-(2-amino-ethyl)-5-(4-ethoxy-benzylidene)-thiazolidine-2,4-dione: Development of potential substrate-specific ERK1/2 inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(21), 6042-6046.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.057] [PMID: 19796943]
[39]
Mohan, R.; Sharma, A.K.; Gupta, S.; Ramaa, C.S. Design, synthesis, and biological evaluation of novel 2,4-thiazolidinedione derivatives as histone deacetylase inhibitors targeting liver cancer cell line. Med. Chem. Res., 2012, 21(7), 1156-1165.
[http://dx.doi.org/10.1007/s00044-011-9623-3]
[40]
Nagarapu, L.; Yadagiri, B.; Bantu, R.; Kumar, C.G.; Pombala, S.; Nanubolu, J. Studies on the synthetic and structural aspects of benzosuberones bearing 2, 4-thiazolidenone moiety as potential anti-cancer agents. Eur. J. Med. Chem., 2014, 71, 91-97.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.078] [PMID: 24287557]
[41]
Tilekar, K.; Upadhyay, N.; Jänsch, N.; Schweipert, M.; Mrowka, P.; Meyer-Almes, F.J.; Ramaa, C.S. Discovery of 5-naphthylidene-2,4-thiazolidinedione derivatives as selective HDAC8 inhibitors and evaluation of their cytotoxic effects in leukemic cell lines. Bioorg. Chem., 2020, 95, 103522.
[http://dx.doi.org/10.1016/j.bioorg.2019.103522] [PMID: 31901516]
[42]
Upadhyay, N.; Tilekar, K.; Jänsch, N.; Schweipert, M.; Hess, J.D.; Henze Macias, L.; Mrowka, P.; Aguilera, R.J.; Choe, J.; Meyer-Almes, F.J.; Ramaa, C.S. Discovery of novel N-substituted thiazolidinediones (TZDs) as HDAC8 inhibitors: In silico studies, synthesis, and biological evaluation. Bioorg. Chem., 2020, 100, 103934.
[http://dx.doi.org/10.1016/j.bioorg.2020.103934] [PMID: 32446120]
[43]
Li, W.; Lu, Y.; Wang, Z.; Dalton, J.T.; Miller, D.D. Synthesis and antiproliferative activity of thiazolidine analogs for melanoma. Bioorg. Med. Chem. Lett., 2007, 17(15), 4113-4117.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.059] [PMID: 17561392]
[44]
Mahmoodi, N.O.; Mohammadi Zeydi, M.; Biazar, E.; Kazeminejad, Z. Synthesis of novel thiazolidine-4-one derivatives and their anticancer activity. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(3), 344-350.
[http://dx.doi.org/10.1080/10426507.2016.1239197]
[45]
El-Adl, K.; El-Helby, A.G.A.; Sakr, H.; Ayyad, R.R.; Mahdy, H.A.; Nasser, M.; Abulkhair, H.S.; El-Hddad, S.S.A. Design, synthesis, molecular docking, anticancer evaluations, and in silico pharmacokinetic studies of novel 5‐[(4‐chloro/2,4‐dichloro)benzylidene]thiazolidine‐2,4‐dione derivatives as VEGFR‐2 inhibitors. Arch. Pharm. (Weinheim), 2021, 354(2), 2000279.
[http://dx.doi.org/10.1002/ardp.202000279] [PMID: 33073374]
[46]
El-Adl, K.; Sakr, H.; Nasser, M.; Alswah, M.; Shoman, F.M.A. 5‐(4‐Methoxybenzylidene)thiazolidine‐2,4‐dione‐derived VEGFR‐2 inhibitors: Design, synthesis, molecular docking, and anticancer evaluations. Arch. Pharm. (Weinheim), 2020, 353(9), 2000079.
[http://dx.doi.org/10.1002/ardp.202000079] [PMID: 32515896]
[47]
El-Adl, K.; El-Helby, A.A.; Sakr, H.; Eissa, I.H.; El-Hddad, S.S.A.; Shoman, M.I.A. F.; Design, F. Design, synthesis, molecular docking and anticancer evaluations of 5-benzylidenethiazolidine-2,4-dione derivatives targeting VEGFR-2 enzyme. Bioorg. Chem., 2020, 102, 104059.
[http://dx.doi.org/10.1016/j.bioorg.2020.104059] [PMID: 32653608]
[48]
Francis, T.; Dixit, S.R.; Kumar, B.R.P. Discovery of rhodanine and thiazolidinediones as novel scaffolds for EGFR inhibition: Design, synthesis, analysis and CoMSIA studies. Polycycl. Aromat. Compd., 2022, 42(5), 2483-2499.
[http://dx.doi.org/10.1080/10406638.2020.1836004]
[49]
Andrzejewski, S.; Siegel, P.M.; St-Pierre, J. metabolic profiles associated with metformin efficacy in cancer. Front. Endocrinol. (Lausanne), 2018, 9, 372.
[http://dx.doi.org/10.3389/fendo.2018.00372] [PMID: 30186229]
[50]
Zhou, S.; Xu, L.; Cao, M.; Wang, Z.; Xiao, D.; Xu, S.; Deng, J.; Hu, X.; He, C.; Tao, T.; Wang, W.; Guan, A.; Yang, X. Anticancer properties of novel pyrazole‐containing biguanide derivatives with activating the adenosine monophosphate‐activated protein kinase signaling pathway. Arch. Pharm. (Weinheim), 2019, 352(9), 1900075.
[http://dx.doi.org/10.1002/ardp.201900075] [PMID: 31339189]
[51]
Narise, K.; Okuda, K.; Enomoto, Y.; Hirayama, T.; Nagasawa, H. Optimization of biguanide derivatives as selective antitumor agents blocking adaptive stress responses in the tumor microenvironment. Drug Des. Devel. Ther., 2014, 8, 701-717.
[PMID: 24944508]
[52]
Ng, L.; Foo, D.C.C.; Wong, C.K.H.; Man, A.T.K.; Lo, O.S.H.; Law, W.L. Repurposing DPP-4 inhibitors for colorectal cancer: a retrospective and single center study. Cancers (Basel), 2021, 13(14), 3588.
[http://dx.doi.org/10.3390/cancers13143588] [PMID: 34298800]
[53]
Amritha, C.A.; Kumaravelu, P.; Chellathai, D.D. Evaluation of anti cancer effects of DPP-4 inhibitors in colon cancer- An In vitro Study. J. Clin. Diagn. Res., 2015, 9(12), FC14-FC16.
[PMID: 26816911]
[54]
Emami, L.; Faghih, Z.; Sakhteman, A.; Rezaei, Z.; Faghih, Z.; Salehi, F.; Khabnadideh, S. Design, synthesis, molecular simulation, and biological activities of novel quinazolinone-pyrimidine hybrid derivatives as dipeptidyl peptidase-4 inhibitors and anticancer agents. New J. Chem., 2020, 44(45), 19515-19531.
[http://dx.doi.org/10.1039/D0NJ03774E]
[55]
Facchinetti, V.; Moreth, M.; Gomes, C.R.B.; do Ó Pessoa, C.; Rodrigues, F.A.R.; Cavalcanti, B.C.; Oliveira, A.C.A.; Carneiro, T.R.; Gama, I.L.; de Souza, M.V.N. Evaluation of (2S,3R)-2-(amino)-[4-(N-benzylarenesulfonamido)-3-hydroxy-1-phenylbutane derivatives: A promising class of anticancer agents. Med. Chem. Res., 2015, 24(2), 533-542.
[http://dx.doi.org/10.1007/s00044-014-1143-5]
[56]
Zeng, L.F.; Wang, Y.; Kazemi, R.; Xu, S.; Xu, Z.L.; Sanchez, T.W.; Yang, L.M.; Debnath, B.; Odde, S.; Xie, H.; Zheng, Y.T.; Ding, J.; Neamati, N.; Long, Y.Q. Repositioning HIV-1 integrase inhibitors for cancer therapeutics: 1,6-naphthyridine-7-carboxamide as a promising scaffold with drug-like properties. J. Med. Chem., 2012, 55(22), 9492-9509.
[http://dx.doi.org/10.1021/jm300667v] [PMID: 23098137]
[57]
Wang, Y.; Xu, Z.L.; Ai, J.; Peng, X.; Lin, J.P.; Ji, Y.C.; Geng, M.Y.; Long, Y.Q. Investigation on the 1,6-naphthyridine motif: Discovery and SAR study of 1H-imidazo[4,5-h][1,6]naphthyridin-2(3H)-one-based c-Met kinase inhibitors. Org. Biomol. Chem., 2013, 11(9), 1545-1562.
[http://dx.doi.org/10.1039/C2OB26710A] [PMID: 23188156]
[58]
Thompson, A.M.; Delaney, A.M.; Hamby, J.M.; Schroeder, M.C.; Spoon, T.A.; Crean, S.M.; Showalter, H.D.H.; Denny, W.A. Synthesis and structure-activity relationships of soluble 7-substituted 3-(3,5-dimethoxyphenyl)-1,6-naphthyridin-2-amines and related ureas as dual inhibitors of the fibroblast growth factor receptor-1 and vascular endothelial growth factor receptor-2 tyrosine kinases. J. Med. Chem., 2005, 48(14), 4628-4653.
[http://dx.doi.org/10.1021/jm0500931] [PMID: 16000000]
[59]
Thompson, A.M.; Connolly, C.J.C.; Hamby, J.M.; Boushelle, S.; Hartl, B.G.; Amar, A.M.; Kraker, A.J.; Driscoll, D.L.; Steinkampf, R.W.; Patmore, S.J.; Vincent, P.W.; Roberts, B.J.; Elliott, W.L.; Klohs, W.; Leopold, W.R.; Showalter, H.D.H.; Denny, W.A. 3-(3,5-Dimethoxyphenyl)-1,6-naphthyridine-2,7-diamines and related 2-urea derivatives are potent and selective inhibitors of the FGF receptor-1 tyrosine kinase. J. Med. Chem., 2000, 43(22), 4200-4211.
[http://dx.doi.org/10.1021/jm000161d] [PMID: 11063616]
[60]
Modi, S. J.; Modh, D. H.; Kulkarni, V. M. sights into the structural features of anticancer 1,6-naphthyridines and pyridopyrimidines as VEGFR-2 inhibitors: 3D-QSAR stud . J. Appl. Pharm. Sci.,, 2020, 10(10), 01-22.
[61]
Modh, D.H.; Modi, S.J.; Deokar, H.; Yadav, S.; Kulkarni, V.M. Fibroblast growth factor receptor (FGFR) inhibitors as anticancer agents: 3D-QSAR, molecular docking and dynamics simulation studies of 1, 6-naphthyridines and pyridopyrimidines. J. Biomol. Struct. Dyn., 2022, 15, 1-16.
[http://dx.doi.org/10.1080/07391102.2022.2053206] [PMID: 35318898]
[62]
La Regina, G.; Bai, R.; Rensen, W.M.; Di Cesare, E.; Coluccia, A.; Piscitelli, F.; Famiglini, V.; Reggio, A.; Nalli, M.; Pelliccia, S.; Da Pozzo, E.; Costa, B.; Granata, I.; Porta, A.; Maresca, B.; Soriani, A.; Iannitto, M.L.; Santoni, A.; Li, J.; Miranda Cona, M.; Chen, F.; Ni, Y.; Brancale, A.; Dondio, G.; Vultaggio, S.; Varasi, M.; Mercurio, C.; Martini, C.; Hamel, E.; Lavia, P.; Novellino, E.; Silvestri, R. Toward highly potent cancer agents by modulating the C-2 group of the arylthioindole class of tubulin polymerization inhibitors. J. Med. Chem., 2013, 56(1), 123-149.
[http://dx.doi.org/10.1021/jm3013097] [PMID: 23214452]
[63]
Hmood, K.S.; Kubba, A.A.R.M.; Al-bayati, R.I.; Saleh, A.M. Am Synthesis, docking study and in vitro anticancer evaluation of some new flurbiprofen derivatives against MCF-7 and WRL-68 Cell Lines. Indones. J. Pharm., 2021, 32(1), 17-34.
[http://dx.doi.org/10.22146/ijp.730]
[64]
Aydin, S.; Kaushik-Basu, N.; Arora, P.; Basu, A.; Nichols, D.B.; Talele, T.T.; Akkurt, M.; Çelik, I.; Büyükgungör, O. GunizKucukguzel, Ş. Microwave Assisted synthesis of some novel flurbiprofen hydrazidehydrazones as Anti-HCV NS5B and Anticancer Agents. Marmara Pharm. J., 2013, 17(1), 26-34.
[http://dx.doi.org/10.12991/201317389]
[65]
El-Azab, A.S.; Abdel-Aziz, A.A.M.; Abou-Zeid, L.A.; El-Husseiny, W.M.; El Morsy, A.M.; El-Gendy, M.A.; El-Sayed, M.A.A. Synthesis, antitumour activities and molecular docking of thiocarboxylic acid ester-based NSAID scaffolds: COX-2 inhibition and mechanistic studies. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 989-998.
[http://dx.doi.org/10.1080/14756366.2018.1474878] [PMID: 29806488]
[66]
Kummari, B.; Polkam, N.; Ramesh, P.; Anantaraju, H.; Yogeeswari, P.; Anireddy, J.S.; Guggilapu, S.D.; Babu, B.N. Design and synthesis of 1,2,3-triazole–etodolac hybrids as potent anticancer molecules. RSC Advances, 2017, 7(38), 23680-23686.
[http://dx.doi.org/10.1039/C6RA28525B]
[67]
Prescott, L.F. Clinical features and management of analgesic poisoning. Hum. Toxicol., 1984, 3((1_suppl)(Suppl.),), 75s-84S.
[http://dx.doi.org/10.1177/096032718400300109] [PMID: 6148306]
[68]
Althagafi, I.; El-Metwaly, N.M.; Elghalban, M.G.; Farghaly, T.A.; Khedr, A.M. Synthesis of pyrazolone derivatives and their nanometer Ag(I) complexes and physicochemical, DNA binding, antitumor, and theoretical implementations. Bioinorg. Chem. Appl., 2018, 2018, 1-15.
[http://dx.doi.org/10.1155/2018/2727619] [PMID: 29861710]
[69]
Gu, W.; Dai, Y.; Qiang, H.; Shi, W.; Liao, C.; Zhao, F.; Huang, W.; Qian, H. Discovery of novel 2-substituted-4-(2-fluorophenoxy) pyridine derivatives possessing pyrazolone and triazole moieties as dual c-Met/VEGFR-2 receptor tyrosine kinase inhibitors. Bioorg. Chem., 2017, 72, 116-122.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.001] [PMID: 28411406]
[70]
Liu, L.; Norman, M.H.; Lee, M.; Xi, N.; Siegmund, A.; Boezio, A.A.; Booker, S.; Choquette, D.; D’Angelo, N.D.; Germain, J.; Yang, K.; Yang, Y.; Zhang, Y.; Bellon, S.F.; Whittington, D.A.; Harmange, J.C.; Dominguez, C.; Kim, T.S.; Dussault, I. Structure-based design of novel class II c-Met inhibitors: 2. SAR and kinase selectivity profiles of the pyrazolone series. J. Med. Chem., 2012, 55(5), 1868-1897.
[http://dx.doi.org/10.1021/jm201331s] [PMID: 22320327]
[71]
Dawood, D.H.; Nossier, E.S.; Ali, M.M.; Mahmoud, A.E. Synthesis and molecular docking study of new pyrazole derivatives as potent anti-breast cancer agents targeting VEGFR-2 kinase. Bioorg. Chem., 2020, 101, 103916.
[http://dx.doi.org/10.1016/j.bioorg.2020.103916] [PMID: 32559576]
[72]
Norman, M.H.; Liu, L.; Lee, M.; Xi, N.; Fellows, I.; D’Angelo, N.D.; Dominguez, C.; Rex, K.; Bellon, S.F.; Kim, T.S.; Dussault, I. Structure-based design of novel class II c-Met inhibitors: 1. Identification of pyrazolone-based derivatives. J. Med. Chem., 2012, 55(5), 1858-1867.
[http://dx.doi.org/10.1021/jm201330u] [PMID: 22320343]
[73]
Tripathy, R.; McHugh, R.J.; Ghose, A.K.; Ott, G.R.; Angeles, T.S.; Albom, M.S.; Huang, Z.; Aimone, L.D.; Cheng, M.; Dorsey, B.D. Pyrazolone-based anaplastic lymphoma kinase (ALK) inhibitors: Control of selectivity by a benzyloxy group. Bioorg. Med. Chem. Lett., 2011, 21(24), 7261-7264.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.055] [PMID: 22061645]
[74]
Shamsuzzaman, S.; Mashrai, A.; Ahmad, A.; Dar, A.M.; Khanam, H.; Danishuddin, M.; Khan, A.U. Synthesis, evaluation and docking studies on steroidal pyrazolones as anticancer and antimicrobial agents. Med. Chem. Res., 2014, 23(1), 348-362.
[http://dx.doi.org/10.1007/s00044-013-0636-y]
[75]
Adhikari, S.; Singh, M.; Sharma, P.; Arora, S. Pyrazolones as a Potential Anticancer Scaffold: Recent Trends and Future Perspectives. J. Appl. Pharm. Sci., 2021, 11, 26-37.
[76]
Fadaly, W.A.A.; Elshaier, Y.A.M.M.; Hassanein, E.H.M.; Abdellatif, K.R.A. New 1,2,4-triazole/pyrazole hybrids linked to oxime moiety as nitric oxide donor celecoxib analogs: Synthesis, cyclooxygenase inhibition anti-inflammatory, ulcerogenicity, anti-proliferative activities, apoptosis, molecular modeling and nitric oxide release studies. Bioorg. Chem., 2020, 98, 103752.
[http://dx.doi.org/10.1016/j.bioorg.2020.103752] [PMID: 32197148]
[77]
Bocca, C.; Bozzo, F.; Bassignana, A.; Miglietta, A. Antiproliferative effect of a novel nitro-oxy derivative of celecoxib in human colon cancer cells: role of COX-2 and nitric oxide. Anticancer Res., 2010, 30(7), 2659-2666.
[PMID: 20682995]
[78]
Qiu, H.Y.; Wang, P.F.; Li, Z.; Ma, J.T.; Wang, X.M.; Yang, Y.H.; Zhu, H.L. Synthesis of dihydropyrazole sulphonamide derivatives that act as anti-cancer agents through COX-2 inhibition. Pharmacol. Res., 2016, 104, 86-96.
[http://dx.doi.org/10.1016/j.phrs.2015.12.025] [PMID: 26723906]
[79]
Schönthal, A.H.; Chen, T.C.; Hofman, F.M.; Louie, S.G.; Petasis, N.A. Celecoxib analogs that lack COX-2 inhibitory function: preclinical development of novel anticancer drugs. Expert Opin. Investig. Drugs, 2008, 17(2), 197-208.
[http://dx.doi.org/10.1517/13543784.17.2.197] [PMID: 18230053]
[80]
Kassab, A.E.; El-Nassan, H.B.; Abdelhaleem, E.F.; Khalil, O.M. Design and synthesis of novel celecoxib analogues with potential cytotoxic and pro-apoptotic activity against breast cancer cell line MCF-7. Med. Chem., 2022, 18(8), 903-914.
[http://dx.doi.org/10.2174/1573406418666220309123648] [PMID: 35264093]
[81]
Catarro, M.; Serrano, J.L.; Ramos, S.S.; Silvestre, S.; Almeida, P. Nimesulide analogues: From anti-inflammatory to antitumor agents. Bioorg. Chem., 2019, 88, 102966.
[http://dx.doi.org/10.1016/j.bioorg.2019.102966] [PMID: 31075744]
[82]
Zhong, B.; Cai, X.; Chennamaneni, S.; Yi, X.; Liu, L.; Pink, J.J.; Dowlati, A.; Xu, Y.; Zhou, A.; Su, B. From COX-2 inhibitor nimesulide to potent anti-cancer agent: Synthesis, in vitro, in vivo and pharmacokinetic evaluation. Eur. J. Med. Chem., 2012, 47(1), 432-444.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.012] [PMID: 22119125]
[83]
Zhong, B.; Cai, X.; Yi, X.; Zhou, A.; Chen, S.; Su, B. In vitro and in vivo effects of a cyclooxygenase-2 inhibitor nimesulide analog JCC76 in aromatase inhibitors-insensitive breast cancer cells. J. Steroid Biochem. Mol. Biol., 2011, 126(1-2), 10-18.
[http://dx.doi.org/10.1016/j.jsbmb.2011.03.018] [PMID: 21458568]
[84]
Mareddy, J.; Suresh, N.; Kumar, C.G.; Kapavarapu, R.; Jayasree, A.; Pal, S. 1,2,3-Triazole-nimesulide hybrid: Their design, synthesis and evaluation as potential anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(3), 518-523.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.030] [PMID: 28011214]
[85]
Jaragh-Alhadad, L.A.; Ali, M.S. Methoxybenzamide derivative of nimesulide from anti-fever to anti-cancer: Chemical characterization and cytotoxicity. Saudi Pharm. J., 2022, 30(5), 485-493.
[http://dx.doi.org/10.1016/j.jsps.2022.03.004] [PMID: 35693435]
[86]
Su, B.; Chen, S. Lead optimization of COX-2 inhibitor nimesulide analogs to overcome aromatase inhibitor resistance in breast cancer cells. Bioorg. Med. Chem. Lett., 2009, 19(23), 6733-6735.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.109] [PMID: 19854050]
[87]
Harras, M.F.; Sabour, R.; Ammar, Y.A.; Mehany, A.B.M.; Farrag, A.M.; Eissa, S.I. Design synthesis and cytotoxicity studies of some novel indomethacin-based heterocycles as anticancer and apoptosis inducing agents. J. Mol. Struct., 2021, 1228, 129455.
[http://dx.doi.org/10.1016/j.molstruc.2020.129455]
[88]
Sever, B. Altıntop, M.D.; Kuş G.; Özkurt, M.; Özdemir, A.; Kaplancıklı Z.A. Indomethacin based new triazolothiadiazine derivatives: Synthesis, evaluation of their anticancer effects on T98 human glioma cell line related to COX-2 inhibition and docking studies. Eur. J. Med. Chem., 2016, 113, 179-186.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.036] [PMID: 26927686]
[89]
Adasme, M.F.; Parisi, D.; Sveshnikova, A.; Schroeder, M. Structure-based drug repositioning: Potential and limits. Semin. Cancer Biol., 2021, 68, 192-198.
[http://dx.doi.org/10.1016/j.semcancer.2020.01.010] [PMID: 32032699]
[90]
Talevi, A.; Bellera, C.L. Challenges and opportunities with drug repurposing: Finding strategies to find alternative uses of therapeutics. Expert Opin. Drug Discov., 2020, 15(4), 397-401.
[http://dx.doi.org/10.1080/17460441.2020.1704729] [PMID: 31847616]
[91]
Issa, N.T.; Stathias, V.; Schürer, S.; Dakshanamurthy, S. Machine and deep learning approaches for cancer drug repurposing. Semin. Cancer Biol., 2021, 68, 132-142.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.011] [PMID: 31904426]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy