Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Research Article

Uric Acid Elevation by Fructose Overload Exacerbates Nash and Atherosclerosis via Oxidative Stress

Author(s): Moe Fujii, Mai Kakimoto, Ikumi Sato, Koki Honma, Sora Kirihara, Hinako Nakayama, Taketo Fukuoka, Satoshi Hirohata, Kazuya Kitamori, Shang Ran, Shusei Yamamoto and Shogo Watanabe*

Volume 20, Issue 2, 2024

Published on: 13 June, 2023

Page: [250 - 261] Pages: 12

DOI: 10.2174/1573401319666230508150159

Price: $65

conference banner
Abstract

Background: Nonalcoholic steatohepatitis (NASH) is well associated with an increased risk of cardiovascular disease (CVD), regardless of risk factors for metabolic syndrome. However, intermediary factors between NASH and CVD remain unknown. In recent years, hyperuricemia has been associated not only with gout but also with several other organ diseases, such as hypertension, chronic renal failure, and metabolic syndrome. In addition, hyperuricemia was shown to frequently occur in patients with NASH and could be a risk factor for CVD. Furthermore, serum uric acid (UA) levels have been linked with fructose intake.

Objectives: We hypothesized that fructose loading elevates UA levels and exacerbates NASH and atherosclerosis via oxidative stress.

Methods: Stroke-prone spontaneously hypertensive rats (SHRSP5/Dmcr), between 14 to 24 weeks of age, were divided into two groups and fed a high-fat and high-cholesterol (HFC) diet. In addition to the HFC diet, the fructose group was subjected to 10% fructose loading. The oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were performed at 25-week-old, followed by blood sampling, animal sacrifice, endothelial function test, blood biochemistry, histopathological staining, xanthine oxidase activity test, and genetic analysis performed at 26-week-old.

Results: Fructose loading increased UA and oxidative stress levels. In addition, fructose loading induced insulin resistance. The fructose group exhibited aggravated hepatic fibrosis and lipid deposition, as well as enhanced lipid accumulation in the mesenteric arteries.

Conclusion: In the SHRSP5/Dmcr rat model, elevated UA levels were a risk factor for the exacerbation of NASH and atherosclerosis via oxidative stress.

Keywords: Atherosclerosis, fructose, nonalcoholic steatohepatitis (NASH), oxidative stress, stroke-prone spontaneously hypertensive rat 5 (SHRSP5), uric acid.

Graphical Abstract
[1]
Williams CD, Stengel J, Asike MI, et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: A prospective study. Gastroenterology 2011; 140(1): 124-31.
[http://dx.doi.org/10.1053/j.gastro.2010.09.038] [PMID: 20858492]
[2]
Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the study of liver diseases, and American College of gastroenterology. Gastroenterology 2012; 142(7): 1592-609.
[http://dx.doi.org/10.1053/j.gastro.2012.04.001] [PMID: 22656328]
[3]
Nd AM. Non-alcoholic fatty liver disease, an overview. Integr Med 2019; 18(2): 42-9.
[PMID: 31341444]
[4]
Targher G, Day CP, Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N Engl J Med 2010; 363(14): 1341-50.
[http://dx.doi.org/10.1056/NEJMra0912063] [PMID: 20879883]
[5]
Grayson PC, Kim SY, LaValley M, Choi HK. Hyperuricemia and incident hypertension: A systematic review and meta-analysis. Arthritis Care Res 2011; 63(1): 102-10.
[http://dx.doi.org/10.1002/acr.20344] [PMID: 20824805]
[6]
Iseki K, Oshiro S, Tozawa M, Iseki C, Ikemiya Y, Takishita S. Significance of hyperuricemia on the early detection of renal failure in a cohort of screened subjects. Hypertens Res 2001; 24(6): 691-7.
[http://dx.doi.org/10.1291/hypres.24.691] [PMID: 11768729]
[7]
Zhu P, Liu Y, Han L, Xu G, Ran J. Serum uric acid is associated with incident chronic kidney disease in middle-aged populations: A meta-analysis of 15 cohort studies. PLoS One 2014; 9(6): e100801.
[http://dx.doi.org/10.1371/journal.pone.0100801] [PMID: 24959886]
[8]
Hikita M, Ohno I, Mori Y, Ichida K, Yokose T, Hosoya T. Relationship between hyperuricemia and body fat distribution. Intern Med 2007; 46(17): 1353-8.
[http://dx.doi.org/10.2169/internalmedicine.46.0045] [PMID: 17827832]
[9]
Sertoglu E, Ercin CN, Celebi G, et al. The relationship of serum uric acid with non-alcoholic fatty liver disease. Clin Biochem 2014; 47(6): 383-8.
[http://dx.doi.org/10.1016/j.clinbiochem.2014.01.029] [PMID: 24525254]
[10]
Mosca A, Nobili V, De Vito R, et al. Serum uric acid concentrations and fructose consumption are independently associated with NASH in children and adolescents. J Hepatol 2017; 66(5): 1031-6.
[http://dx.doi.org/10.1016/j.jhep.2016.12.025] [PMID: 28214020]
[11]
Alderman MH. Serum uric acid as a cardiovascular risk factor for heart disease. Curr Hypertens Rep 2001; 3(3): 184-9.
[http://dx.doi.org/10.1007/s11906-001-0036-4] [PMID: 11353567]
[12]
Abdelmalek MF, Suzuki A, Guy C, et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 2010; 51(6): 1961-71.
[http://dx.doi.org/10.1002/hep.23535] [PMID: 20301112]
[13]
Collison KS, Saleh SM, Bakheet RH, et al. Diabetes of the liver: The link between nonalcoholic fatty liver disease and HFCS-55. Obesity 2009; 17(11): 2003-13.
[http://dx.doi.org/10.1038/oby.2009.58] [PMID: 19282820]
[14]
Sersté T, Bourgeois N. Ageing and the liver. Acta Gastroenterol Belg 2006; 69(3): 296-8.
[PMID: 17168126]
[15]
Kozaki Y, Umetsu R, Mizukami Y, et al. Peripheral gene expression profile of mechanical hyperalgesia induced by repeated cold stress in SHRSP5/Dmcr rats. J Physiol Sci 2015; 65(5): 417-25.
[http://dx.doi.org/10.1007/s12576-015-0380-9] [PMID: 25972297]
[16]
Sweet JG, Chan SL, Cipolla MJ. Effect of hypertension and carotid occlusion on brain parenchymal arteriole structure and reactivity. J Appl Physiol 2015; 119(7): 817-23.
[17]
Kitamori K, Naito H, Tamada H, et al. Development of novel rat model for high-fat and high-cholesterol diet-induced steatohepatitis and severe fibrosis progression in SHRSP5/Dmcr. Environ Health Prev Med 2012; 17(3): 173-82.
[http://dx.doi.org/10.1007/s12199-011-0235-9] [PMID: 21853259]
[18]
Wei J, Lin Y, Li Y, et al. Perinatal exposure to bisphenol A at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology 2011; 152(8): 3049-61.
[http://dx.doi.org/10.1210/en.2011-0045] [PMID: 21586551]
[19]
Matsuura N, Nagasawa K, Minagawa Y, et al. Restraint stress exacerbates cardiac and adipose tissue pathology via β-adrenergic signaling in rats with metabolic syndrome. Am J Physiol Heart Circ Physiol 2015; 308(10): H1275-86.
[http://dx.doi.org/10.1152/ajpheart.00906.2014] [PMID: 25770247]
[20]
Bergman RN, Ider YZ, Bowden CR, Cobelli C. Quantitative estimation of insulin sensitivity. Am J Physiol 1979; 236(6): E667-77.
[PMID: 443421]
[21]
Galvin P, Ward G, Walters J, et al. A simple method for quantitation of insulin sensitivity and insulin release from an intravenous glucose tolerance test. Diabet Med 1992; 9(10): 921-8.
[http://dx.doi.org/10.1111/j.1464-5491.1992.tb01732.x] [PMID: 1478037]
[22]
Nosrati N, Aghazadeh S, Yazdanparast R. Effects of teucrium polium on insulin resistance in nonalcoholic steatohepatitis. J Acupunct Meridian Stud 2010; 3(2): 104-10.
[http://dx.doi.org/10.1016/S2005-2901(10)60019-2] [PMID: 20633523]
[23]
Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005; 41(6): 1313-21.
[http://dx.doi.org/10.1002/hep.20701] [PMID: 15915461]
[24]
Fisher CD, Lickteig AJ, Augustine LM, et al. Experimental nonalcoholic fatty liver disease results in decreased hepatic uptake transporter expression and function in rats. Eur J Pharmacol 2009; 613(1-3): 119-27.
[http://dx.doi.org/10.1016/j.ejphar.2009.04.002] [PMID: 19358839]
[25]
Watanabe S, Kumazaki S, Kusunoki K, et al. A high-fat and highcholesterol diet induces cardiac fibrosis, vascular endothelial, and left ventricular diastolic dysfunction in shrsp5/dmcr rats. J Atheroscler Thromb 2018; 25(5): 439-53.
[http://dx.doi.org/10.5551/jat.40956] [PMID: 29162773]
[26]
Kumazaki S, Nakamura M, Sasaki S, et al. Bile acid metabolism is an intermediary factor between non-alcoholic steatohepatitis and ischemic heart disease in SHRSP5/Dmcr rats. J Nutr Food Sci 2019; 09(04): 1-9.
[27]
Hosoo S, Koyama M, Kato M, et al. The restorative effects of eucommia ulmoides oliver leaf extract on vascular function in spontaneously hypertensive rats. Molecules 2015; 20(12): 21971-81.
[http://dx.doi.org/10.3390/molecules201219826] [PMID: 26690110]
[28]
Horai Y, Utsumi H, Ono Y, Kishimoto T, Ono Y, Fukunari A. Pathological characterization and morphometric analysis of hepatic lesions in SHRSP5/Dmcr, an experimental non-alcoholic steatohepatitis model, induced by high-fat and high-cholesterol diet. Int J Exp Pathol 2016; 97(1): 75-85.
[http://dx.doi.org/10.1111/iep.12169] [PMID: 27037502]
[29]
Jia X, Naito H, Yetti H, et al. The modulation of hepatic adenosine triphosphate and inflammation by eicosapentaenoic acid during severe fibrotic progression in the SHRSP5/Dmcr rat model. Life Sci 2012; 90(23-24): 934-43.
[http://dx.doi.org/10.1016/j.lfs.2012.04.029] [PMID: 22569299]
[30]
Jia X, Suzuki Y, Naito H, et al. A possible role of chenodeoxycholic acid and glycine-conjugated bile acids in fibrotic steatohepatitis in a dietary rat model. Dig Dis Sci 2014; 59(7): 1490-501.
[http://dx.doi.org/10.1007/s10620-014-3028-3] [PMID: 24448653]
[31]
Moriya T, Kitamori K, Naito H, et al. Simultaneous changes in high-fat and high-cholesterol diet-induced steatohepatitis and severe fibrosis and those underlying molecular mechanisms in novel SHRSP5/Dmcr rat. Environ Health Prev Med 2012; 17(6): 444-56.
[http://dx.doi.org/10.1007/s12199-012-0273-y] [PMID: 22407906]
[32]
Naito H, Jia X, Yetti H, et al. Importance of detoxifying enzymes in differentiating fibrotic development between SHRSP5/Dmcr and SHRSP rats. Environ Health Prev Med 2016; 21(5): 368-81.
[http://dx.doi.org/10.1007/s12199-016-0539-x] [PMID: 27209494]
[33]
Yetti H, Naito H, Jia X, et al. High-fat-cholesterol diet mainly induced necrosis in fibrotic steatohepatitis rat by suppressing caspase activity. Life Sci 2013; 93(18-19): 673-80.
[http://dx.doi.org/10.1016/j.lfs.2013.09.013] [PMID: 24071521]
[34]
Yamamoto S, Sato I, Fukuhama N, et al. Bile acids aggravate nonalcoholic steatohepatitis and cardiovascular disease in SHRSP5/Dmcr rat model. Exp Mol Pathol 2020; 114: 104437.
[http://dx.doi.org/10.1016/j.yexmp.2020.104437] [PMID: 32246926]
[35]
Konta T, Ichikawa K, Kawasaki R, et al. Association between serum uric acid levels and mortality: A nationwide community-based cohort study. Sci Rep 2020; 10(1): 6066.
[http://dx.doi.org/10.1038/s41598-020-63134-0] [PMID: 32269262]
[36]
Toop C, Gentili S. Fructose beverage consumption induces a metabolic syndrome phenotype in the rat: A systematic review and meta-analysis. Nutrients 2016; 8(9): 577.
[http://dx.doi.org/10.3390/nu8090577] [PMID: 27657120]
[37]
Sievenpiper JL, de Souza RJ, Mirrahimi A, et al. Effect of fructose on body weight in controlled feeding trials: A systematic review and meta-analysis. Ann Intern Med 2012; 156(4): 291-304.
[http://dx.doi.org/10.7326/0003-4819-156-4-201202210-00007] [PMID: 22351714]
[38]
Vos MB, Lavine JE. Dietary fructose in nonalcoholic fatty liver disease. Hepatology 2013; 57(6): 2525-31.
[http://dx.doi.org/10.1002/hep.26299] [PMID: 23390127]
[39]
Rolo AP, Teodoro JS, Palmeira CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med 2012; 52(1): 59-69.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.003] [PMID: 22064361]
[40]
Kunitomo M. Oxidative stress and atherosclerosis. Yakugaku Zasshi 2007; 127(12): 1997-2014.
[http://dx.doi.org/10.1248/yakushi.127.1997] [PMID: 18057788]
[41]
Sparks JD, Sparks CE, Adeli K. Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia. Arterioscler Thromb Vasc Biol 2012; 32(9): 2104-12.
[http://dx.doi.org/10.1161/ATVBAHA.111.241463] [PMID: 22796579]
[42]
Capeau J. Insulin resistance and steatosis in humans. Diabetes Metab 2008; 34(6): 649-57.
[http://dx.doi.org/10.1016/S1262-3636(08)74600-7] [PMID: 19195626]
[43]
Nigro J, Osman N, Dart AM, Little PJ. Insulin resistance and atherosclerosis. Endocr Rev 2006; 27(3): 242-59.
[http://dx.doi.org/10.1210/er.2005-0007] [PMID: 16492903]
[44]
Bobridge KS, Haines GL, Mori TA, et al. Dietary fructose in relation to blood pressure and serum uric acid in adolescent boys and girls. J Hum Hypertens 2013; 27(4): 217-24.
[http://dx.doi.org/10.1038/jhh.2012.36] [PMID: 22971754]
[45]
Baskol G, Baskol M, Kocer D. Oxidative stress and antioxidant defenses in serum of patients with non-alcoholic steatohepatitis. Clin Biochem 2007; 40(11): 776-80.
[http://dx.doi.org/10.1016/j.clinbiochem.2007.02.006] [PMID: 17477913]
[46]
Nakatsu Y, Seno Y, Kushiyama A, et al. The xanthine oxidase inhibitor febuxostat suppresses development of nonalcoholic steatohepatitis in a rodent model. Am J Physiol Gastrointest Liver Physiol 2015; 309(1): G42-51.
[http://dx.doi.org/10.1152/ajpgi.00443.2014] [PMID: 25999428]
[47]
Schwartz IF, Grupper A, Chernichovski T, et al. Hyperuricemia attenuates aortic nitric oxide generation, through inhibition of arginine transport, in rats. J Vasc Res 2011; 48(3): 252-60.
[http://dx.doi.org/10.1159/000320356] [PMID: 21099230]
[48]
Zharikov S, Krotova K, Hu H, et al. Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells. Am J Physiol Cell Physiol 2008; 295(5): C1183-90.
[http://dx.doi.org/10.1152/ajpcell.00075.2008] [PMID: 18784379]
[49]
Sautin YY, Nakagawa T, Zharikov S, Johnson RJ. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidasemediated oxidative/nitrosative stress. Am J Physiol Cell Physiol 2007; 293(2): C584-96.
[http://dx.doi.org/10.1152/ajpcell.00600.2006] [PMID: 17428837]
[50]
Gersch C, Palii SP, Kim KM, Angerhofer A, Johnson RJ, Henderson GN. Inactivation of nitric oxide by uric acid. Nucleosides Nucleotides Nucleic Acids 2008; 27(8): 967-78.
[http://dx.doi.org/10.1080/15257770802257952] [PMID: 18696365]
[51]
Sánchez-Lozada LG, Tapia E, López-Molina R, et al. Effects of acute and chronic l -arginine treatment in experimental hyperuricemia. Am J Physiol Renal Physiol 2007; 292(4): F1238-44.
[http://dx.doi.org/10.1152/ajprenal.00164.2006] [PMID: 17190912]
[52]
Khosla UM, Zharikov S, Finch JL, et al. Hyperuricemia induces endothelial dysfunction. Kidney Int 2005; 67(5): 1739-42.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00273.x] [PMID: 15840020]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy