Generic placeholder image

New Emirates Medical Journal

Editor-in-Chief
ISSN (Online): 0250-6882

Review Article

Caveolae’s Behavior in Norm and Pathology

Author(s): Basheer Abdullah Marzoog*

Volume 4, Issue 2, 2023

Published on: 18 July, 2023

Article ID: e080523216639 Pages: 10

DOI: 10.2174/0250688204666230508112229

open_access

conference banner
Abstract

Objectives: Caveolins are universal multifunctional physiologically active microparticles that collaborate in the caveolae formation to maintain the metabolic homeostatic balance of the cells. In fact, remarkable advances in the molecular biopathology of caveolae have been made in recent years by exploring the role of caveolae in norm and physiopathology.

Methods: The current literature data on the caveolae behavior in norm and pathology were revised.

Results: Caveolae are expressed in various cell types, highly concentrated in endothelial cells, cardiomyocytes, and epithelial cells. Physiologically, caveolae contribute to maintaining a signaling balance between the various homeostatic processes, including pro-growth and pro-survival, such as endothelial nitric oxide synthase, glycogen synthase kinase-3β, p42/p44 mitogen-activated protein kinase, PKA, SFK, PKC, Akt through regulation of tyrosine kinases, G protein-coupled receptor, endothelial nitric oxide synthase, and MAPK pathways, and their signaling dysfunction is directly attributed to the pathogenesis of cardiovascular diseases, regeneration inhibition, neurodegenerative diseases, infection, osteoporosis, diabetes, and tumour induction and progression.

Conclusion: Regulation of the ratio and penetrance of caveolae activity/expression is a clinically significant potential therapeutic strategy to enhance the current therapies and eliminate the etiopathogenetic pathway of rising homeostatic disorders.

Keywords: Caveolin, Scaffold protein, Endothelial nitric oxide synthase, Regeneration, Pathogenesis, Caveola.

[1]
Lian X, Matthaeus C, Kaßmann M, Daumke O, Gollasch M. Pathophysiological role of caveolae in hypertension. Front Med 2019; 6: 153.
[http://dx.doi.org/10.3389/fmed.2019.00153] [PMID: 31355199]
[2]
Boscher C, Nabi IR. Caveolin-1: Role in cell signaling. Adv Exp Med Biol 2012; 729: 29-50.
[http://dx.doi.org/10.1007/978-1-4614-1222-9_3] [PMID: 22411312]
[3]
Yan F, Su L, Chen X, Wang X, Gao H, Zeng Y. Molecular regulation and clinical significance of caveolin‐1 methylation in chronic lung diseases. Clin Transl Med 2020; 10(1): 151-60.
[http://dx.doi.org/10.1002/ctm2.2] [PMID: 32508059]
[4]
Zhou Y, Ariotti N, Rae J, et al. Caveolin-1 and cavin1 act synergistically to generate a unique lipid environment in caveolae. J Cell Biol 2021; 220(3): e202005138.
[http://dx.doi.org/10.1083/jcb.202005138] [PMID: 33496726]
[5]
Ariotti N, Rae J, Leneva N, et al. Molecular characterization of caveolin-induced membrane curvature. J Biol Chem 2015; 290(41): 24875-90.
[http://dx.doi.org/10.1074/jbc.M115.644336] [PMID: 26304117]
[6]
Codenotti S, Faggi F, Ronca R, et al. Caveolin-1 enhances metastasis formation in a human model of embryonal rhabdomyosarcoma through Erk signaling cooperation. Cancer Lett 2019; 449: 135-44.
[http://dx.doi.org/10.1016/j.canlet.2019.02.013] [PMID: 30771426]
[7]
Zhang D, Gava AL, Van Krieken R, et al. The caveolin-1 regulated protein follistatin protects against diabetic kidney disease. Kidney Int 2019; 96(5): 1134-49.
[http://dx.doi.org/10.1016/j.kint.2019.05.032] [PMID: 31492508]
[8]
Díaz MI, Díaz P, Bennett JC, et al. Caveolin-1 suppresses tumor formation through the inhibition of the unfolded protein response. Cell Death Dis 2020; 11(8): 648.
[http://dx.doi.org/10.1038/s41419-020-02792-4] [PMID: 32811828]
[9]
Zhang X, Ramírez CM, Aryal B, et al. Cav-1 (Caveolin-1) deficiency increases autophagy in the endothelium and attenuates vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 40(6): 1510-22.
[http://dx.doi.org/10.1161/ATVBAHA.120.314291] [PMID: 32349535]
[10]
Hou K, Li S, Zhang M, Qin X. Caveolin-1 in autophagy: A potential therapeutic target in atherosclerosis. Clin Chim Acta 2021; 513: 25-33.
[http://dx.doi.org/10.1016/j.cca.2020.11.020] [PMID: 33279502]
[11]
Williams TM, Lisanti MP. The caveolin proteins. Genome Biol 2004; 5(3): 214.
[http://dx.doi.org/10.1186/gb-2004-5-3-214] [PMID: 15003112]
[12]
Kruglikov IL, Scherer PE. Caveolin as a universal target in dermatology. Int J Mol Sci 2019; 21(1): 80.
[http://dx.doi.org/10.3390/ijms21010080] [PMID: 31877626]
[13]
Yamada E. The fine structure of the gall bladder epithelium of the mouse. J Cell Biol 1955; 1(5): 445-58.
[http://dx.doi.org/10.1083/jcb.1.5.445]
[14]
Palade GE. Fine structure of blood capillaries. J Appl Phys 1953; 24: 1424.
[15]
Wang J, Luo Q, Liu M, et al. TBRG4 silencing promotes progression of squamous cell carcinoma via regulation of CAV-1 expression and ROS formation. Cell Mol Biol 2020; 66(2): 157-64.
[http://dx.doi.org/10.14715/cmb/2020.66.2.26] [PMID: 32415943]
[16]
Marzoog B. Lipid behavior in metabolic syndrome pathophysiology. Curr Diabetes Rev 2022; 18(6): e150921196497.
[http://dx.doi.org/10.2174/1573399817666210915101321] [PMID: 34525924]
[17]
Marzoog BA. The metabolic syndrome puzzles; possible pathogenesis and management. Curr Diabetes Rev 2022; 18
[http://dx.doi.org/10.2174/1573399818666220429100411] [PMID: 35507784]
[18]
Marzoog BA, Vlasova TI. Systemic and local hypothermia in the context of cell regeneration. Cryo Lett 2022; 43(2): 66-73.
[http://dx.doi.org/10.54680/fr22210110112] [PMID: 36626147]
[19]
Marzoog BA. Endothelial cell autophagy in the context of disease development. Anat Cell Biol 2023; 56(1): 16-24.
[http://dx.doi.org/10.5115/acb.22.098] [PMID: 36267005]
[20]
Marzoog BA. Recent advances in molecular biology of metabolic syndrome pathophysiology: endothelial dysfunction as a potential therapeutic target. J Diabetes Metab Disord 2022; 21(2): 1903-11.
[http://dx.doi.org/10.1007/s40200-022-01088-y] [PMID: 36065330]
[21]
Marzoog BA, Vlasova TI. Membrane lipids under norm and pathology. Eur J Clin Exp Med 2021; 19(1): 59-75.
[http://dx.doi.org/10.15584/ejcem.2021.1.9]
[22]
Abdullah Marzoog B. Adaptive and Compensatory Mechanisms of the Cardiovascular System and Disease Risk Factors in young males and females. Emir Med J 2023; 4(1): e281122211293.
[http://dx.doi.org/10.2174/04666221128110145]
[23]
Marzoog BA. Pulmonary fibrosis; risk factors and molecular triggers, insight for neo therapeutic approach. Curr Respir Med Rev 2022; 18(4): 259-66.
[http://dx.doi.org/10.2174/1573398X18666220806124019]
[24]
Marzoog BA. Local lung fibroblast autophagy in the context of lung fibrosis pathogenesis. Curr Respir Med Rev 2023; 19(1): 6-11.
[http://dx.doi.org/10.2174/1573398X19666221130141600]
[25]
Abdullah MB. Autophagy as an anti-senescent in aging neurocytes. Curr Mol Med 2023; 23 ahead of print
[http://dx.doi.org/10.2174/1566524023666230120102718] [PMID: 36683318]
[26]
Marzoog BA. Autophagy in endothelial cell dysfunction. Curr Mol Med 2022.
[27]
Busija AR, Patel HH, Insel PA. Caveolins and cavins in the trafficking, maturation, and degradation of caveolae: implications for cell physiology. Am J Physiol Cell Physiol 2017; 312(4): C459-77.
[http://dx.doi.org/10.1152/ajpcell.00355.2016] [PMID: 28122734]
[28]
de Almeida CJG. Caveolin-1 and caveolin-2 can be antagonistic partners in inflammation and beyond. Front Immunol 2017; 8: 1530.
[http://dx.doi.org/10.3389/fimmu.2017.01530] [PMID: 29250058]
[29]
Dudãu M, Codrici E, Tanase C, Gherghiceanu M, Enciu AM, Hinescu ME. Caveolae as potential hijackable gates in cell communication. Front Cell Dev Biol 2020; 8: 581732.
[http://dx.doi.org/10.3389/fcell.2020.581732] [PMID: 33195223]
[30]
Tiwari A, Copeland CA, Han B, Hanson CA, Raghunathan K, Kenworthy AK. Caveolin-1 is an aggresome-inducing protein. Sci Rep 2016; 6(1): 38681.
[http://dx.doi.org/10.1038/srep38681] [PMID: 27929047]
[31]
Simón L, Campos A, Leyton L, Quest AFG. Caveolin-1 function at the plasma membrane and in intracellular compartments in cancer. Cancer Metastasis Rev 2020; 39(2): 435-53.
[http://dx.doi.org/10.1007/s10555-020-09890-x] [PMID: 32458269]
[32]
Volonte D, Liu Z, Shiva S, Galbiati F. Caveolin-1 controls mitochondrial function through regulation of m-AAA mitochondrial protease. Aging 2016; 8(10): 2355-69.
[http://dx.doi.org/10.18632/aging.101051] [PMID: 27705926]
[33]
Cesnekova J, Rodinova M, Hansikova H, Zeman J, Stiburek L. Loss of mitochondrial AAA proteases AFG3L2 and YME1L impairs mitochondrial structure and respiratory chain biogenesis. Int J Mol Sci 2018; 19(12): 3930.
[http://dx.doi.org/10.3390/ijms19123930] [PMID: 30544562]
[34]
Schilling JM, Head BP, Patel HH. Caveolins as regulators of stress adaptation. Mol Pharmacol 2018; 93(4): 277-85.
[http://dx.doi.org/10.1124/mol.117.111237] [PMID: 29358220]
[35]
Bravo-Sagua R, Parra V, Ortiz-Sandoval C, et al. Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER–mitochondria communication during the early phase of ER stress. Cell Death Differ 2019; 26(7): 1195-212.
[http://dx.doi.org/10.1038/s41418-018-0197-1] [PMID: 30209302]
[36]
Pedriali G, Rimessi A, Sbano L, et al. Regulation of endoplasmic reticulum–mitochondria Ca2+ transfer and its importance for anti-cancer therapies. Front Oncol 2017; 7: 180.
[http://dx.doi.org/10.3389/fonc.2017.00180] [PMID: 28913175]
[37]
Servili E, Trus M, Maayan D, Atlas D. β-Subunit of the voltage-gated Ca 2+ channel Cav1.2 drives signaling to the nucleus via H-Ras. Proc Natl Acad Sci 2018; 115(37): E8624-33.
[http://dx.doi.org/10.1073/pnas.1805380115] [PMID: 30150369]
[38]
Ma H, Groth RD, Cohen SM, et al. γCaMKII shuttles Ca²⁺/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell 2014; 159(2): 281-94.
[http://dx.doi.org/10.1016/j.cell.2014.09.019] [PMID: 25303525]
[39]
Tang Y, Fang W, Xiao Z, et al. Nicotinamide ameliorates energy deficiency and improves retinal function in Cav-1 -/- Mice. J Neurochem 2020; 157(3): 550-60.
[http://dx.doi.org/10.1111/jnc.15266]
[40]
Tian J, Popal MS, Huang R, et al. Caveolin as a novel potential therapeutic target in cardiac and vascular diseases: A mini review. Aging Dis 2020; 11(2): 378-89.
[http://dx.doi.org/10.14336/AD.2019.09603] [PMID: 32257548]
[41]
Wang F, Gu H, Zhang D. Caveolin-1 and ATP binding cassette transporter A1 and G1-mediated cholesterol efflux. Cardiovasc Hematol Disord Drug Targets 2014; 14(2): 142-8.
[http://dx.doi.org/10.2174/1871529X14666140505122802] [PMID: 24801727]
[42]
Ramírez CM, Zhang X, Bandyopadhyay C, et al. Caveolin-1 regulates atherogenesis by attenuating low-density lipoprotein transcytosis and vascular inflammation independently of endothelial nitric oxide synthase activation. Circulation 2019; 140(3): 225-39.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038571] [PMID: 31154825]
[43]
Otis JP, Shen MC, Quinlivan V, Anderson JL, Farber SA. 2Intestinal epithelial cell Caveolin 1 regulates fatty acid and lipoprotein cholesterol plasma levels. Dis Model Mech 2017; 10(3): dmm.027300.
[http://dx.doi.org/10.1242/dmm.027300] [PMID: 28130355]
[44]
Xu S, Zhou X, Yuan D, Xu Y, He P. Caveolin-1 scaffolding domain promotes leukocyte adhesion by reduced basal endothelial nitric oxide-mediated ICAM-1 phosphorylation in rat mesenteric venules. Am J Physiol Heart Circ Physiol 2013; 305(10): H1484-93.
[http://dx.doi.org/10.1152/ajpheart.00382.2013] [PMID: 24043249]
[45]
Bae GD, Park EY, Kim K, Jang SE, Jun HS, Oh YS. Upregulation of caveolin-1 and its colocalization with cytokine receptors contributes to beta cell apoptosis. Sci Rep 2019; 9(1): 16785.
[http://dx.doi.org/10.1038/s41598-019-53278-z] [PMID: 31728004]
[46]
Rathinasabapathy A, Copeland C, Crabtree A, et al. Expression of a human caveolin-1 mutation in mice drives inflammatory and metabolic defect-associated pulmonary arterial hypertension. Front Med 2020; 7: 540.
[http://dx.doi.org/10.3389/fmed.2020.00540] [PMID: 33015095]
[47]
Weiss CR, Guan Q, Ma Y, et al. The potential protective role of caveolin-1 in intestinal inflammation in TNBS-induced murine colitis. PLoS One 2015; 10(3): e0119004.
[http://dx.doi.org/10.1371/journal.pone.0119004] [PMID: 25756273]
[48]
Haddad D, Al Madhoun A, Nizam R, Al-Mulla F. Role of caveolin-1 in diabetes and its complications. Oxid Med Cell Longev 2020; 2020: 1-20.
[http://dx.doi.org/10.1155/2020/9761539] [PMID: 32082483]
[49]
Surguchov A. Caveolin: A new link between diabetes and AD. Cell Mol Neurobiol 2020; 40(7): 1059-66.
[http://dx.doi.org/10.1007/s10571-020-00796-4]
[50]
Bonds JA, Shetti A, Bheri A, et al. Depletion of caveolin-1 in type 2 diabetes model induces Alzheimer’s disease pathology precursors. J Neurosci 2019; 39(43): 8576-83.
[http://dx.doi.org/10.1523/JNEUROSCI.0730-19.2019] [PMID: 31527120]
[51]
Fernandez-Rojo MA, Ramm GA. Caveolin-1 function in liver physiology and disease. Trends Mol Med 2016; 22(10): 889-904.
[http://dx.doi.org/10.1016/j.molmed.2016.08.007] [PMID: 27633517]
[52]
Nwosu ZC, Ebert MP, Dooley S, Meyer C. Caveolin-1 in the regulation of cell metabolism: A cancer perspective. Mol Cancer 2016; 15(1): 71.
[http://dx.doi.org/10.1186/s12943-016-0558-7] [PMID: 27852311]
[53]
Shteyer E, Liao Y, Muglia LJ, Hruz PW, Rudnick DA. Disruption of hepatic adipogenesis is associated with impaired liver regeneration in mice. Hepatology 2004; 40(6): 1322-32.
[http://dx.doi.org/10.1002/hep.20462] [PMID: 15565660]
[54]
Williams TM, Lisanti MP. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol 2005; 288(3): C494-506.
[http://dx.doi.org/10.1152/ajpcell.00458.2004] [PMID: 15692148]
[55]
Razani B, Engelman JA, Wang XB, et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 2001; 276(41): 38121-38.
[http://dx.doi.org/10.1074/jbc.M105408200] [PMID: 11457855]
[56]
Razani B, Combs TP, Wang XB, et al. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem 2002; 277(10): 8635-47.
[http://dx.doi.org/10.1074/jbc.M110970200] [PMID: 11739396]
[57]
Cohen AW, Razani B, Schubert W, et al. Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes 2004; 53(5): 1261-70.
[http://dx.doi.org/10.2337/diabetes.53.5.1261] [PMID: 15111495]
[58]
Cohen AW, Schubert W, Brasaemle DL, Scherer PE, Lisanti MP. Caveolin-1 expression is essential for proper nonshivering thermogenesis in brown adipose tissue. Diabetes 2005; 54(3): 679-86.
[http://dx.doi.org/10.2337/diabetes.54.3.679] [PMID: 15734843]
[59]
Frank PG, Lisanti MP. Caveolin-1 and liver regeneration: Role in proliferation and lipogenesis. Cell Cycle 2007; 6(2): 115-6.
[http://dx.doi.org/10.4161/cc.6.2.3722] [PMID: 17314510]
[60]
Shihata WA, Michell DL, Andrews KL, Chin-Dusting JPF. Caveolae: A role in endothelial inflammation and mechanotransduction? Front Physiol 2016; 7: 628.
[http://dx.doi.org/10.3389/fphys.2016.00628] [PMID: 28066261]
[61]
Sudhahar V, Okur MN, O’Bryan JP, et al. Caveolin-1 stabilizes ATP7A, a copper transporter for extracellular SOD, in vascular tissue to maintain endothelial function. Am J Physiol Cell Physiol 2020; 319(5): C933-44.
[http://dx.doi.org/10.1152/ajpcell.00151.2020] [PMID: 32936699]
[62]
Samarakoon R, Higgins SP, Higgins CE, Higgins PJ. The TGF-β1/p53/PAI-1 signaling axis in vascular senescence: role of caveolin-1. Biomolecules 2019; 9(8): 341.
[http://dx.doi.org/10.3390/biom9080341] [PMID: 31382626]
[63]
Zimnicka AM, Husain YS, Shajahan AN, et al. Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae. Mol Biol Cell 2016; 27(13): 2090-106.
[http://dx.doi.org/10.1091/mbc.E15-11-0756] [PMID: 27170175]
[64]
Yoon HJ, Surh YJ. Modulation of cancer cell growth and progression by caveolin-1 in the tumor microenvironment. Adv Exp Med Biol 2020; 1277: 63-74.
[http://dx.doi.org/10.1007/978-3-030-50224-9_4] [PMID: 33119865]
[65]
Grivas D, González-Rajal Á, Guerrero Rodríguez C, Garcia R, de la Pompa JL. Loss of Caveolin-1 and caveolae leads to increased cardiac cell stiffness and functional decline of the adult zebrafish heart. Sci Rep 2020; 10(1): 12816.
[http://dx.doi.org/10.1038/s41598-020-68802-9] [PMID: 32733088]
[66]
Sanders YY, Liu H, Scruggs AM, Duncan SR, Huang SK, Thannickal VJ. Epigenetic regulation of caveolin-1 gene expression in lung fibroblasts. Am J Respir Cell Mol Biol 2017; 56(1): 50-61.
[http://dx.doi.org/10.1165/rcmb.2016-0034OC] [PMID: 27560128]
[67]
Yu W, Chen H, Yang H, et al. Dissecting molecular mechanisms underlying pulmonary vascular smooth muscle cell dedifferentiation in pulmonary hypertension: Role of mutated caveolin-1 (Cav1F92A)-bone marrow mesenchymal stem cells. Heart Lung Circ 2019; 28(10): 1587-97.
[http://dx.doi.org/10.1016/j.hlc.2018.08.002] [PMID: 30262154]
[68]
Wang Q, Lao M, Xu Z, Ding M, Guo S, Li L. Caveolin‑1 modulates hypertensive vascular remodeling via regulation of the Notch pathway. Mol Med Rep 2020; 22(5): 4320-8.
[http://dx.doi.org/10.3892/mmr.2020.11508] [PMID: 33000233]
[69]
Marudamuthu AS, Bhandary YP, Fan L, et al. Caveolin-1–derived peptide limits development of pulmonary fibrosis. Sci Transl Med 2019; 11(522): eaat2848.
[http://dx.doi.org/10.1126/scitranslmed.aat2848] [PMID: 31826982]
[70]
Lin X, Barravecchia M, Matthew Kottmann R, Sime P, Dean DA. Caveolin-1 gene therapy inhibits inflammasome activation to protect from bleomycin-induced pulmonary fibrosis. Sci Rep 2019; 9(1): 19643.
[http://dx.doi.org/10.1038/s41598-019-55819-y] [PMID: 31873099]
[71]
Wang X, Cai L, Xie JX, et al. A caveolin binding motif in Na/K-ATPase is required for stem cell differentiation and organogenesis in mammals and C. elegans. Sci Adv 2020; 6(22): eaaw5851.
[http://dx.doi.org/10.1126/sciadv.aaw5851] [PMID: 32537485]
[72]
Yang R, Wang J, Zhou Z, et al. Role of caveolin-1 in epidermal stem cells during burn wound healing in rats. Dev Biol 2019; 445(2): 271-9.
[http://dx.doi.org/10.1016/j.ydbio.2018.11.015] [PMID: 30476483]
[73]
Yang S, Zhao J, Huang S, et al. Reduced hydration-induced decreased caveolin-1 expression causes epithelial-to-mesenchymal transition. Am J Transl Res 2020; 12(12): 8067-83.
[PMID: 33437382]
[74]
Liu J, Han C, Wang YJ, et al. Caveolin-1 downregulation promotes the dopaminergic neuron-like differentiation of human adipose-derived mesenchymal stem cells. Neural Regen Res 2021; 16(4): 714-20.
[http://dx.doi.org/10.4103/1673-5374.295342] [PMID: 33063733]
[75]
Pan G, Zhang H, Zhu A, et al. Treadmill exercise attenuates cerebral ischaemic injury in rats by protecting mitochondrial function via enhancement of caveolin-1. Life Sci 2021; 264: 118634.
[http://dx.doi.org/10.1016/j.lfs.2020.118634] [PMID: 33148419]
[76]
Qian XL, Pan YH, Huang QY, et al. Caveolin-1: A multifaceted driver of breast cancer progression and its application in clinical treatment. OncoTargets Ther 2019; 12: 1539-52.
[http://dx.doi.org/10.2147/OTT.S191317] [PMID: 30881011]
[77]
Lin CJ, Yun EJ, Lo UG, et al. The paracrine induction of prostate cancer progression by caveolin-1. Cell Death Dis 2019; 10(11): 834.
[http://dx.doi.org/10.1038/s41419-019-2066-3] [PMID: 31685812]
[78]
Kim YJ, Kim JH, Kim O, et al. Caveolin-1 enhances brain metastasis of non-small cell lung cancer, potentially in association with the epithelial-mesenchymal transition marker SNAIL. Cancer Cell Int 2019; 19(1): 171.
[http://dx.doi.org/10.1186/s12935-019-0892-0] [PMID: 31297035]
[79]
Zhang C, Huang H, Zhang J, et al. Caveolin-1 promotes invasion and metastasis by upregulating Pofut1 expression in mouse hepatocellular carcinoma. Cell Death Dis 2019; 10(7): 477.
[http://dx.doi.org/10.1038/s41419-019-1703-1] [PMID: 31209283]
[80]
Thompson TC, Timme TL, Li L, Goltsov A. Caveolin-1, a metastasis-related gene that promotes cell survival in prostate cancer. Apoptosis 1999; 4(4): 233-7.
[http://dx.doi.org/10.1023/A:1009612708099] [PMID: 14634273]
[81]
Williams TM, Hassan GS, Li J, et al. Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer: genetic ablation of Cav-1 delays advanced prostate tumor development in tramp mice. J Biol Chem 2005; 280(26): 25134-45.
[http://dx.doi.org/10.1074/jbc.M501186200] [PMID: 15802273]
[82]
Lobos-González L, Aguilar L, Diaz J, et al. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells. Pigment Cell Melanoma Res 2013; 26(4): 555-70.
[http://dx.doi.org/10.1111/pcmr.12085] [PMID: 23470013]
[83]
Joshi B, Pawling J, Shankar J, et al. Caveolin-1 Y14 phosphorylation suppresses tumor growth while promoting invasion. Oncotarget 2019; 10(62): 6668-77.
[http://dx.doi.org/10.18632/oncotarget.27313] [PMID: 31803361]
[84]
Gerstenberger W, Wrage M, Kettunen E, et al. Stromal Caveolin-1 and Caveolin-2 Expression in Primary Tumors and Lymph Node Metastases. Anal Cell Pathol (Amst) 2018; 2018: 1-8.
[http://dx.doi.org/10.1155/2018/8651790] [PMID: 29850392]
[85]
Lamaze C, Torrino S. Caveolae and cancer: A new mechanical perspective. Biomed J 2015; 38(5): 367-79.
[http://dx.doi.org/10.4103/2319-4170.164229] [PMID: 26345539]
[86]
Liu Y, Wang M, Wang D, Fay W P, Korthuis R J, Sowa G. Elevated post-ischemic tissue injury and leukocyte-endothelial adhesive interactions in mice with global deficiency in caveolin-2: Role of PAI-1. Am J Physiol Circ Physiol 2021; 320(3): H1185-98.
[http://dx.doi.org/10.1152/ajpheart.00682.2020]
[87]
Lei Y, Song M, Wu J, Xing C, Sun X. eNOS activity in CAV1 knockout mouse eyes. Invest Ophthalmol Vis Sci 2016; 57(6): 2805-13.
[http://dx.doi.org/10.1167/iovs.15-18841] [PMID: 27228562]
[88]
Liu Y, Qi X, Li G, Sowa G. Caveolin-2 deficiency induces a rapid anti-tumor immune response prior to regression of implanted murine lung carcinoma tumors. Sci Rep 2019; 9(1): 18970.
[http://dx.doi.org/10.1038/s41598-019-55368-4] [PMID: 31831780]
[89]
Papadopoulos C, Papadimas GK, Kekou K, et al. Caveolinopathies in greece. Neurologist 2015; 20(1): 8-12.
[http://dx.doi.org/10.1097/NRL.0000000000000036] [PMID: 26185955]
[90]
Sohn J, Brick RM, Tuan RS. From embryonic development to human diseases: The functional role of caveolae/caveolin. Birth Defects Res C Embryo Today 2016; 108(1): 45-64.
[http://dx.doi.org/10.1002/bdrc.21121] [PMID: 26991990]
[91]
Shah DS, Nisr RB, Stretton C, Krasteva-Christ G, Hundal HS. Caveolin‐3 deficiency associated with the dystrophy P104L mutation impairs skeletal muscle mitochondrial form and function. J Cachexia Sarcopenia Muscle 2020; 11(3): 838-58.
[http://dx.doi.org/10.1002/jcsm.12541] [PMID: 32090499]
[92]
Kim SY, Kim KH, Schilling JM, et al. Protective role of cardiac-specific overexpression of caveolin-3 in cirrhotic cardiomyopathy. Am J Physiol Gastrointest Liver Physiol 2020; 318(3): G531-41.
[http://dx.doi.org/10.1152/ajpgi.00346.2019] [PMID: 31961720]
[93]
Cuadrado I, Castejon B, Martin AM, et al. Nitric oxide induces cardiac protection by preventing extracellular matrix degradation through the complex caveolin-3/emmprin in cardiac myocytes. PLoS One 2016; 11(9): e0162912.
[http://dx.doi.org/10.1371/journal.pone.0162912] [PMID: 27649573]
[94]
Sellers SL, Trane AE, Bernatchez PN. Caveolin as a potential drug target for cardiovascular protection. Front Physiol 2012; 3: 280.
[http://dx.doi.org/10.3389/fphys.2012.00280] [PMID: 22934034]
[95]
Kruglikov IL, Scherer PE. Caveolin-1 as a target in prevention and treatment of hypertrophic scarring. NPJ Regen Med 2019; 4(1): 9.
[http://dx.doi.org/10.1038/s41536-019-0071-x] [PMID: 31044089]
[96]
Chen H, Chen X, Li W, Shen J. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: Potential application for drug discovery. Acta Pharmacol Sin 2018; 39(5): 669-82.
[http://dx.doi.org/10.1038/aps.2018.27] [PMID: 29595191]
[97]
Qin L, Yang YB, Yang YX, et al. Inhibition of macrophage-derived foam cell formation by ezetimibe via the caveolin-1/MAPK pathway. Clin Exp Pharmacol Physiol 2016; 43(2): 182-92.
[http://dx.doi.org/10.1111/1440-1681.12524] [PMID: 26666965]
[98]
Sawaya AP, Jozic I, Stone RC, et al. Mevastatin promotes healing by targeting caveolin-1 to restore EGFR signaling. JCI Insight 2019; 4(23): e129320.
[http://dx.doi.org/10.1172/jci.insight.129320] [PMID: 31661463]
[99]
Wu Z, Zhu M, Mou X, Ye L. Overexpressing of caveolin-1 in mesenchymal stem cells promotes deep second-degree burn wound healing. J Biosci Bioeng 2021; 131(4): 341-7.
[http://dx.doi.org/10.1016/j.jbiosc.2020.11.010] [PMID: 33423964]
[100]
Jozic I, Sawaya AP, Pastar I, et al. Pharmacological and genetic inhibition of caveolin-1 promotes epithelialization and wound closure. Mol Ther 2019; 27(11): 1992-2004.
[http://dx.doi.org/10.1016/j.ymthe.2019.07.016] [PMID: 31409528]
[101]
Katsuno-Kambe H, Parton RG, Yap AS, Teo JL. Caveolin‐1 influences epithelial collective cell migration via FMNL2 formin. Biol Cell 2021; 113(2): 107-17.
[http://dx.doi.org/10.1111/boc.202000116] [PMID: 33169848]
[102]
Luo S, Yang M, Zhao H, et al. Caveolin-1 regulates cellular metabolism: A potential therapeutic target in kidney Disease. Front Pharmacol 2021; 12: 768100.
[http://dx.doi.org/10.3389/fphar.2021.768100] [PMID: 34955837]
[103]
Yin H, Liu T, Zhang Y, Yang B. Caveolin proteins: A molecular insight into disease. Front Med 2016; 10(4): 397-404.
[http://dx.doi.org/10.1007/s11684-016-0483-6] [PMID: 27896622]
[104]
Copeland CA, Han B, Tiwari A, et al. A disease-associated frameshift mutation in caveolin-1 disrupts caveolae formation and function through introduction of a de novo ER retention signal. Mol Biol Cell 2017; 28(22): 3095-111.
[http://dx.doi.org/10.1091/mbc.e17-06-0421] [PMID: 28904206]

© 2024 Bentham Science Publishers | Privacy Policy