Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Mechanistic Role of Tempol: Synthesis, Catalysed Reactions and Therapeutic Potential

Author(s): Abhishek Tiwari*, Varsha Tiwari, Bimal Krishna Banik and Biswa Mohan Sahoo

Volume 19, Issue 9, 2023

Published on: 15 June, 2023

Page: [859 - 878] Pages: 20

DOI: 10.2174/1573406419666230505150020

Price: $65

Abstract

Tempol (TP) was introduced in 1960 by Lebedev and Kazarnovskii and is an excellent catalyst extensively used in the synthesis and oxidation of various reagents. 4-Hydroxy-2,2,6,6- tetramethylpiperidin-1-oxyl (TP) has also been explored against various disorders like inflammation, superoxide anion-influenced molecular linked behavioural modifications, radical capturing, cardioprotective, protective ocular damage, against skin burns, fibrocystic diseases, breast cancer prevention, respiratory infections, alopecia, and cerebral malaria, etc. This review article comprises five major aspects of TP namely (a) Approx. 25 different Synthesis schemes of TP (b) major reactions catalysed by TP (c) Therapeutic potential of TP. It also provides scientific information that supports the use of TP which may be proven as a “MIRACLE” drug for the treatment of numerous disorders namely in reducing the reactive oxygen species, superoxide mutases, vision disorders, cancer as well as in covid. It also possesses a significant role in minimising side effects in combination therapy. This review will be beneficial to researchers, healthcare, and academic professionals for further research.

Keywords: Superoxide dismutase, COVID-19, Radical capturing, RNA-dependent, RNA polymerase, fibrocystic diseases, Cardioprotective.

Graphical Abstract
[1]
Brennan, M.L.; Hazen, S.L. Amino acid and protein oxidation in cardiovascular disease. Amino Acids, 2003, 25(3-4), 365-374.
[http://dx.doi.org/10.1007/s00726-003-0023-y] [PMID: 14661097]
[2]
Kris-Etherton, P.M.; Lichtenstein, A.H.; Howard, B.V.; Steinberg, D.; Witztum, J.L. Antioxidant vitamin supplements and cardiovascular disease. Circulation, 2004, 110(5), 637-641.
[http://dx.doi.org/10.1161/01.CIR.0000137822.39831.F1] [PMID: 15289389]
[3]
Szabó, C.; Ischiropoulos, H.; Radi, R. Peroxynitrite: Biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov., 2007, 6(8), 662-680.
[http://dx.doi.org/10.1038/nrd2222] [PMID: 17667957]
[4]
Augusto, O.; Bonini, M.G.; Amanso, A.M.; Linares, E.; Santos, C.C.X.; De Menezes, S.L. Nitrogen dioxide and carbonate radical anion: Two emerging radicals in biology. Free Radic. Biol. Med., 2002, 32(9), 841-859.
[http://dx.doi.org/10.1016/S0891-5849(02)00786-4] [PMID: 11978486]
[5]
Wipf, P.; Xiao, J.; Jiang, J.; Belikova, N.A.; Tyurin, V.A.; Fink, M.P.; Kagan, V.E. Mitochondrial targeting of selective electron scavengers: synthesis and biological analysis of hemigramicidin-TEMPO conjugates. J. Am. Chem. Soc., 2005, 127(36), 12460-12461.
[http://dx.doi.org/10.1021/ja053679l] [PMID: 16144372]
[6]
Fremy, E. Literature of electrolysis. Liebigs Ann., 1845, 56, 315-354.
[7]
Sheldon, R.A.; Arends, I.W.C.E.; ten Brink, G.J.; Dijksman, A. Green, catalytic oxidations of alcohols. Acc. Chem. Res., 2002, 35(9), 774-781.
[http://dx.doi.org/10.1021/ar010075n] [PMID: 12234207]
[8]
Sheldon, R.A.; Arends, I.W.C.E. Organocatalytic oxidations mediated by nitroxyl radicals. Adv. Synth. Catal., 2004, 346(910), 1051-1071.
[http://dx.doi.org/10.1002/adsc.200404110]
[9]
Bobbitt, J.M.; Bruckner, C.; Merbouh, N. Oxoammonium and nitroxide-catalysed oxidations of alcohols. Org. React., 2009, 74, 103-425.
[http://dx.doi.org/10.1002/0471264180.or074.02]
[10]
Bruckner, C. Stable Radicals; Hicks, R.G., Ed.; John Wiley: United Kingdom, 2010, pp. 433-456.
[http://dx.doi.org/10.1002/9780470666975.ch12]
[11]
Tebben, L.; Studer, A. Nitroxides: Applications in synthesis and in polymer chemistry. Angew. Chem. Int. Ed., 2011, 50(22), 5034-5068.
[http://dx.doi.org/10.1002/anie.201002547] [PMID: 21538729]
[12]
Ciriminna, R.; Pagliaro, M. Industrial oxidations with organo-catalyst TP and its derivatives. Org. Process Res. Dev., 2010, 14(1), 245-251.
[http://dx.doi.org/10.1021/op900059x]
[13]
Garcia-Mancheno, O.; Stopka, T. TP derivatives as alternative mild oxidants in carbon-carbon coupling reactions. Synthesis, 2013, 45, 1602-1611.
[http://dx.doi.org/10.1055/s-0033-1338480]
[14]
Fukai, T.; Ushio-Fukai, M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal., 2011, 15(6), 1583-1606.
[http://dx.doi.org/10.1089/ars.2011.3999] [PMID: 21473702]
[15]
Soule, B.; Hyodo, F.; Matsumoto, K.; Simone, N.; Cook, J.; Krishna, M.; Mitchell, J. The chemistry and biology of nitroxide compounds. Free Radic. Biol. Med., 2007, 42(11), 1632-1650.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.02.030] [PMID: 17462532]
[16]
Kagan, V.E.; Jiang, J. Bayır, H.; Stoyanovsky, D.A. Targeting nitroxides to mitochondria: location, location, location, and …concentration☆Highlight Commentary on “Mitochondria superoxide dismutase mimetic inhibits peroxide-induced oxidative damage and apoptosis: Role of mitochondrial superoxide”. Free Radic. Biol. Med., 2007, 43(3), 348-350.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.03.030] [PMID: 17602949]
[17]
Thiemermann, C. Membrane-permeable radical scavengers (tempol) for shock, ischemia-reperfusion injury, and inflammation. Crit. Care Med., 2003, 31(S1), S76-S84.
[http://dx.doi.org/10.1097/00003246-200301001-00011] [PMID: 12544980]
[18]
Radi, R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc. Natl. Acad. Sci., 2004, 101(12), 4003-4008.
[http://dx.doi.org/10.1073/pnas.0307446101] [PMID: 15020765]
[19]
Wertz, S.; Studer, A. Nitroxide-catalyzed transition-metal-free aerobic oxidation processes. Green Chem., 2013, 15(11), 3116.
[http://dx.doi.org/10.1039/c3gc41459k]
[20]
Fink, M.P.; Macias, C.A.; Xiao, J.; Tyurina, Y.Y.; Delude, R.L.; Greenberger, J.S.; Kagan, V.E.; Wipf, P. Hemigramicidin-TEMPO conjugates: Novel mitochondria-targeted antioxidants. Crit. Care Med., 2007, 35(S9), S461-S467.
[http://dx.doi.org/10.1097/01.CCM.0000279192.96303.E7] [PMID: 17713394]
[21]
Fernandes, D.; Medinas, D.; Alves, M.; Augusto, O. Tempol diverts peroxynitrite/carbon dioxide reactivity toward albumin and cells from protein?tyrosine nitration to protein?cysteine nitrosation. Free Radic. Biol. Med., 2005, 38(2), 189-200.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.09.027] [PMID: 15607902]
[22]
Macias, C.A.; Chiao, J.W.; Xiao, J.; Arora, D.S.; Tyurina, Y.Y.; Delude, R.L.; Wipf, P.; Kagan, V.E.; Fink, M.P. Treatment with a novel hemigramicidin-TEMPO conjugate prolongs survival in a rat model of lethal hemorrhagic shock. Ann. Surg., 2007, 245(2), 305-314.
[http://dx.doi.org/10.1097/01.sla.0000236626.57752.8e] [PMID: 17245186]
[23]
Vaz, S.M.; Augusto, O. Inhibition of myeloperoxidase-mediated protein nitration by tempol: Kinetics, mechanism, and implications. Proc. Natl. Acad. Sci., 2008, 105(24), 8191-8196.
[http://dx.doi.org/10.1073/pnas.0708211105] [PMID: 18499804]
[24]
Lewandowski, M.; Gwozdzinski, K. Nitroxides as antioxidants and anticancer drugs. Int. J. Mol. Sci., 2017, 18(11), 2490.
[http://dx.doi.org/10.3390/ijms18112490] [PMID: 29165366]
[25]
Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. 2-azaadamantane N-oxyl (AZADO) and 1-Me-AZADO: Highly efficient organocatalysts for oxidation of alcohols. J. Am. Chem. Soc., 2006, 128(26), 8412-8413.
[http://dx.doi.org/10.1021/ja0620336] [PMID: 16802802]
[26]
Laight, D.W.; Andrews, T.J.; Haj-Yehia, A.I.; Carrier, M.J.; Änggård, E.E. Microassay of superoxide anion scavenging activity in vitro. Environ. Toxicol. Pharmacol., 1997, 3(1), 65-68.
[http://dx.doi.org/10.1016/S1382-6689(96)00143-3] [PMID: 21781760]
[27]
Wilcox, C.S. Effects of tempol and redox-cycling nitroxides in models of oxidative stress. Pharmacol. Ther., 2010, 126(2), 119-145.
[http://dx.doi.org/10.1016/j.pharmthera.2010.01.003] [PMID: 20153367]
[28]
Khattab, M.M. TEMPOL, a membrane-permeable radical scavenger, attenuates peroxynitrite- and superoxide anion-enhanced carrageenan-induced paw edema and hyperalgesia: A key role for superoxide anion. Eur. J. Pharmacol., 2006, 548(1-3), 167-173.
[http://dx.doi.org/10.1016/j.ejphar.2006.08.007] [PMID: 16973155]
[29]
Tal, M. A novel antioxidant alleviates heat hyperalgesia in rats with an experimental painful peripheral neuropathy. Neuroreport, 1996, 7(8), 1382-1384.
[http://dx.doi.org/10.1097/00001756-199605310-00010] [PMID: 8856680]
[30]
Joseph, PA. New Applications of TP in Organic Synthesis; University of York. Chemistry PhD thesis, 2015.
[31]
Fall, A.; Sene, M.; Gaye, M.; Gómez, G.; Fall, Y. Ionic liquid-supported TEMPO as catalyst in the oxidation of alcohols to aldehydes and ketones. Tetrahedron Lett., 2010, 51(34), 4501-4504.
[http://dx.doi.org/10.1016/j.tetlet.2010.06.086]
[32]
Zhu, J.; Wang, P.; Lu, M. Synthesis of novel magnetic silica supported hybrid ionic liquid combining TEMPO and polyoxometalate and its application for selective oxidation of alcohols. RSC Advances, 2012, 2(22), 8265-8268.
[http://dx.doi.org/10.1039/c2ra20588b]
[33]
Buchmeiser, M.R. Polymer-supported well-defined metathesis catalysts. Chem. Rev., 2009, 109(2), 303-321.
[http://dx.doi.org/10.1021/cr800207n] [PMID: 18980343]
[34]
Fraile, J.M.; García, J.I.; Mayoral, J.A. Noncovalent immobilization of enantioselective catalysts. Chem. Rev., 2009, 109(2), 360-417.
[http://dx.doi.org/10.1021/cr800363y] [PMID: 19090693]
[35]
Benaglia, M.; Puglisi, A.; Cozzi, F. Polymer-supported organic catalysts. Chem. Rev., 2003, 103(9), 3401-3430.
[http://dx.doi.org/10.1021/cr010440o] [PMID: 12964876]
[36]
Subhani, M.A.; Beigi, M. Eilbracht P2008. Polyurethane- and polystyrenesupported 2,2,6,6-tetramethyl-piperidine-1-oxyl (TP); facile preparation, catalytic oxidation and application in a membrane reactor. Adv. Synth. Catal., 2008, 50, 2903-2909.
[http://dx.doi.org/10.1002/adsc.200800369]
[37]
Gheorghe, A.; Matsuno, A.; Reiser, O. Expedient immobilization of TP by copper-catalysed azide- alkyne [3+2]- cycloaddition onto polystyrene resin. Adv. Synth. Catal., 2006, 348(9), 1016-1020.
[http://dx.doi.org/10.1002/adsc.200606043]
[38]
Gilhespy, M.; Lok, M.; Baucherel, X. Polymer-supported nitroxyl radical catalyst for selective aerobic oxidation of primary alcohols to aldehydes. Chem. Commun. (Camb.), 2005, 1085-1086(8), 1085-1086.
[http://dx.doi.org/10.1039/b415902k] [PMID: 15719124]
[39]
Pozzi, G.; Cavazzini, M.; Quici, S.; Benaglia, M.; Dell’Anna, G. Poly(ethylene glycol)-supported TEMPO: an efficient, recoverable metal-free catalyst for the selective oxidation of alcohols. Org. Lett., 2004, 6(3), 441-443.
[http://dx.doi.org/10.1021/ol036398w] [PMID: 14748613]
[40]
Weik, S.; Nicholson, G.; Jung, G.; Rademann, J. Oxoammonium resins as metal-free, highly reactive, versatile polymeric oxidation reagents. Angew. Chem. Int. Ed., 2001, 40(8), 1436-1439.
[http://dx.doi.org/10.1002/1521-3773(20010417)40:8<1436:AID-ANIE1436>3.0.CO;2-X]
[41]
Knoop, C.A.; Studer, A. Hydroxy- and silyloxy-substituted TEMPO derivatives for the living free-radical polymerization of styrene and n-butyl acrylate: synthesis, kinetics, and mechanistic studies. J. Am. Chem. Soc., 2003, 125(52), 16327-16333.
[http://dx.doi.org/10.1021/ja037948o] [PMID: 14692774]
[42]
Shibuya, M.; Tomizawa, M.; Sasano, Y.; Iwabuchi, Y. An expeditious entry to 9-azabicyclo[3.3.1]nonane N-oxyl (ABNO): another highly active organocatalyst for oxidation of alcohols. J. Org. Chem., 2009, 74(12), 4619-4622.
[http://dx.doi.org/10.1021/jo900486w] [PMID: 19476345]
[43]
Demizu, Y.; Shiigi, H.; Oda, T.; Matsumura, Y.; Onomura, O. Efficient oxidation of alcohols electrochemically mediated by azabicyclo-N-oxyls. Tetrahedron Lett., 2008, 49(1), 48-52.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.016]
[44]
Holczknecht, O.; Cavazzini, M.; Quici, S.; Shepperson, I.; Pozzi, G. Selective oxidation of alcohols to carbonyl compounds mediated by fluorous tagged TP radicals. Adv. Synth. Catal., 2005, 347(5), 677-688.
[http://dx.doi.org/10.1002/adsc.200404343]
[45]
Huang, J.Y.; Li, S.J.; Wang, Y.G. TEMPO-linked metalloporphyrins as efficient catalysts for selective oxidation of alcohols and sulfides. Tetrahedron Lett., 2006, 47(32), 5637-5640.
[http://dx.doi.org/10.1016/j.tetlet.2006.06.039]
[46]
Dane, E.L.; Swager, T.M. Synthesis of a water-soluble 1,3-bis(diphenylene)-2-phenylallyl radical. J. Org. Chem., 2010, 75(10), 3533-3536.
[http://dx.doi.org/10.1021/jo100577g] [PMID: 20420445]
[47]
Angelin, M.; Hermansson, M.; Dong, H.; Ramström, O. Direct, mild, and selective synthesis of unprotected dialdo-glycosides. Eur. J. Org. Chem., 2006, 2006(19), 4323-4326.
[http://dx.doi.org/10.1002/ejoc.200600288]
[48]
Zhang, C.; Li, X-Q. An environmentally benign tp-catalysed efficient alcohol oxidation system with a recyclable hypervalent iodine (III) reagent and its facile preparation. Synthesis, 2009, 2009(7), 1163-1169.
[http://dx.doi.org/10.1055/s-0028-1087850]
[49]
Zhao, X.F.; Zhang, C. An environmentally benign TP-catalysed efficient alcohol oxidation system with a recyclable hypervalent iodine (III) reagent and its facile preparation. Synthesis, 2007, 551-557.
[http://dx.doi.org/10.1055/s-2007-965889]
[50]
De Luca, L.; Giacomelli, G.; Porcheddu, A. A very mild and chemoselective oxidation of alcohols to carbonyl compounds. Org. Lett., 2001, 3(19), 3041-3043.
[http://dx.doi.org/10.1021/ol016501m] [PMID: 11554838]
[51]
Kimura, Y.; Okada, T.; Asawa, T.; Sugiyama, Y.; Kirihara, M.; Iwai, T. Sodium hypochlorite pentahydrate (NaOCl•5H2O) crystals as an extra¬ordinary oxidant for primary and secondary alcohols. Synlett, 2014, 25(4), 596-598.
[http://dx.doi.org/10.1055/s-0033-1340483]
[52]
Aoyama, T.; Tamura, N.; Takido, T.; Kodomari, M. Novel [4-Hydroxy-TEMPO + NaCl]/SiO2 as a reusable catalyst for aerobic oxidation of alcohols to carbonyls. Synlett, 2012, 23(9), 1397-1401.
[http://dx.doi.org/10.1055/s-0031-1290980]
[53]
Vatèle, J.M. Yb(OTf) 3 -catalyzed oxidation of alcohols with iodosylbenzene mediated by TEMPO. Synlett, 2006, 2006(13), 2055-2058.
[http://dx.doi.org/10.1055/s-2006-948181]
[54]
Ansari, I.A.; Gree, R. TP-catalysed aerobic oxidation of alcohols to aldehydes and ketones in ionic liquid. Org. Lett., 2001, 1507-1509.
[http://dx.doi.org/10.1021/ol025721c] [PMID: 11975615]
[55]
Vatèle, J-M.; Attoui, M. TP/NBu4Br-catalysed selective alcohol oxidation with periodic acid. Synlett, 2014, 25(20), 2923-2927.
[http://dx.doi.org/10.1055/s-0034-1378913]
[56]
Kim, S.S.; Jung, H.C. An efficient aerobic oxidation of alcohols to aldehydes and ketones with TEMPO/Ceric ammonium nitrate as catalysts. Synthesis, 2003, 2135-2137(14), 2135-2137.
[http://dx.doi.org/10.1055/s-2003-41065]
[57]
Ding, C.; Liu, R.; Zhang, G.; Li, S.; Lei, J.; Zhang, G.; Xie, X. An efficient biomimetic aerobic oxidation of alcohols catalysed by Iron combined with amino acids. Synlett, 2015, 27(6), 956-960.
[http://dx.doi.org/10.1055/s-0035-1561290]
[58]
Liu, J.; Ma, S. Iron-catalyzed aerobic oxidation of allylic alcohols: The issue of C═C bond isomerization. Org. Lett., 2013, 15(20), 5150-5153.
[http://dx.doi.org/10.1021/ol402434x] [PMID: 24099324]
[59]
Könning, D.; Hiller, W.; Christmann, M. One-pot oxidation/isomerization of Z-allylic alcohols with oxygen as stoichiometric oxidant. Org. Lett., 2012, 14(20), 5258-5261.
[http://dx.doi.org/10.1021/ol302420k] [PMID: 23039225]
[60]
Furukawa, K.; Shibuya, M.; Yamamoto, Y. Chemoselective catalytic oxidation of 1,2-diols to α-hydroxy acids controlled by TEMPO–ClO 2 charge-transfer complex. Org. Lett., 2015, 17(9), 2282-2285.
[http://dx.doi.org/10.1021/acs.orglett.5b01003] [PMID: 25886211]
[61]
Jing, Y.; Daniliuc, C.G.; Studer, A. Direct conversion of alcohols to α-chloro aldehydes and α-chloro ketones. Org. Lett., 2014, 16(18), 4932-4935.
[http://dx.doi.org/10.1021/ol5024568] [PMID: 25197943]
[62]
Wang, B.; Zhu, J.; Wei, Y.; Luo, G.; Qu, H.; Liu, L.X.C. U2 O-Catalyzed C(SP3)-H/C(SP3)-H Cross-Coupling Using TEMPO: Synthesis of 3-(2-Oxoalkyl)-3-hydroxyoxindoles. Synth. Commun., 2015, 45(24), 2841-2848.
[http://dx.doi.org/10.1080/00397911.2015.1111383]
[63]
Vatèle, J-M.; Barnych, B. One-Pot Bi(OTf)3-catalyzed oxidative deprotection of tert-butyldimethyl silyl ethers with TEMPO and co-oxidants. Synlett, 2011, 2011(14), 2048-2052.
[http://dx.doi.org/10.1055/s-0030-1260980]
[64]
Jiang, X.; Zhang, J.; Ma, S. Iron catalysis for room-temperature aerobic oxidation of alcohols to carboxylic acids. J. Am. Chem. Soc., 2016, 138(27), 8344-8347.
[http://dx.doi.org/10.1021/jacs.6b03948] [PMID: 27304226]
[65]
Tanaka, T.; Yazaki, R.; Ohshima, T. Chemo-selective Catalytic α-Oxidation of Carboxylic Acids: Iron/Alkali Metal Cooperative Redox Active Catalysis. JACS, 2020, 142, 4517-4524.
[http://dx.doi.org/10.1021/jacs.0c00727]
[66]
Shibuya, M.; Doi, R.; Shibuta, T.; Uesugi, S.; Iwabuchi, Y. Organocatalytic one-pot oxidative cleavage of terminal diols to dehomologated carboxylic acids. Org. Lett., 2012, 14(19), 5006-5009.
[http://dx.doi.org/10.1021/ol3021429] [PMID: 22991924]
[67]
Togo, H.; Shimojo, H.; Moriyama, K. Simple one-pot conversion of alcohols into nitriles. Synthesis, 2013, 45(15), 2155-2164.
[http://dx.doi.org/10.1055/s-0033-1338489]
[68]
Noh, J.H.; Kim, J. Aerobic oxidative conversion of aromatic aldehydes to nitriles using a nitroxyl/NOx catalyst system. J. Org. Chem., 2015, 80(22), 11624-11628.
[http://dx.doi.org/10.1021/acs.joc.5b02333] [PMID: 26505657]
[69]
Guérin, C.; Bellosta, V.; Guillamot, G.; Cossy, J. Mild nonepimerizing N-alkylation of amines by alcohols without transition metals. Org. Lett., 2011, 13(13), 3534-3537.
[http://dx.doi.org/10.1021/ol201351a] [PMID: 21650188]
[70]
Khan, I.A.; Saxena, A.K. Metal-free, mild, nonepimerizing, chemo- and enantio- or diastereoselective N-alkylation of amines by alcohols via oxidation/imine-iminium formation/reductive amination: A pragmatic synthesis of octahydropyrazinopyridoindoles and higher ring analogues. J. Org. Chem., 2013, 78(23), 11656-11669.
[http://dx.doi.org/10.1021/jo4012249] [PMID: 23988233]
[71]
Tiwari, V.; Badavath, V.N.; Singh, A.K.; Kandasamy, J. A highly efficient TEMPO mediated oxidation of sugar primary alcohols into uronic acids using 1-chloro-1,2-benziodoxol-3(1H)-one at room temperature. Tetrahedron Lett., 2018, 59(26), 2511-2514.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.021]
[72]
Yang, G.; Song, M.; Wang, W.; Zhu, W.; An, C.; Gao, X. In situ formation of NOx and Br anion for aerobic oxidation of benzylic alcohols without transition metal. Synlett, 2010, 2010(3), 437-440.
[http://dx.doi.org/10.1055/s-0029-1219202]
[73]
Brioche, J.; Masson, G.; Zhu, J. Passerini three-component reaction of alcohols under catalytic aerobic oxidative conditions. Org. Lett., 2010, 12(7), 1432-1435.
[http://dx.doi.org/10.1021/ol100012y] [PMID: 20218637]
[74]
Zhang, G.; Xing, Y.; Xu, S.; Ding, C.; Shan, S. Fe(III)/l-Valine-catalyzed one-pot synthesis of n-sulfinyl- and n-sulfonylimines via oxidative cascade reaction of alcohols with sulfinamides or sulfonamides. Synlett, 2018, 29(9), 1232-1238.
[http://dx.doi.org/10.1055/s-0037-1609320]
[75]
Zhang, E.; Tian, H.; Xu, S.; Yu, X.; Xu, Q. Iron-catalyzed direct synthesis of imines from amines or alcohols and amines via aerobic oxidative reactions under air. Org. Lett., 2013, 15(11), 2704-2707.
[http://dx.doi.org/10.1021/ol4010118] [PMID: 23683112]
[76]
Yin, W.; Wang, C.; Huang, Y. Highly practical synthesis of nitriles and heterocycles from alcohols under mild conditions by aerobic double dehydrogenative catalysis. Org. Lett., 2013, 15(8), 1850-1853.
[http://dx.doi.org/10.1021/ol400459y] [PMID: 23560642]
[77]
Bolm, C.; Magnus, A.S.; Hildebrand, J.P. Catalytic synthesis of aldehydes and ketones under mild conditions using TEMPO/Oxone. Org. Lett., 2000, 2(8), 1173-1175.
[http://dx.doi.org/10.1021/ol005792g] [PMID: 10804582]
[78]
Jiang, N.; Ragauskas, A.J. Copper(II)-catalyzed aerobic oxidation of primary alcohols to aldehydes in ionic liquid [bmpy]PF6. Org. Lett., 2005, 7(17), 3689-3692.
[http://dx.doi.org/10.1021/ol051293+] [PMID: 16092851]
[79]
Jiang, N.; Ragauskas, A.J. Cu(II)-catalyzed selective aerobic oxidation of alcohols under mild conditions. J. Org. Chem., 2006, 71(18), 7087-7090.
[http://dx.doi.org/10.1021/jo060837y] [PMID: 16930071]
[80]
Hoover, J.M.; Ryland, B.L.; Stahl, S.S. Copper/TEMPO-catalyzed aerobic alcohol oxidation: Mechanistic assessment of different catalyst systems. ACS Catal., 2013, 3(11), 2599-2605.
[http://dx.doi.org/10.1021/cs400689a] [PMID: 24558634]
[81]
de la Torre, A.; Kaiser, D.; Maulide, N. Flexible and chemoselective oxidation of amides to α-keto amides and α-hydroxy amides. J. Am. Chem. Soc., 2017, 139(19), 6578-6581.
[http://dx.doi.org/10.1021/jacs.7b02983] [PMID: 28485589]
[82]
Kano, T.; Shirozu, F.; Maruoka, K. Metal-free enantioselective hydroxyamination of aldehydes with nitrosocarbonyl compounds catalyzed by an axially chiral amine. J. Am. Chem. Soc., 2013, 135(48), 18036-18039.
[http://dx.doi.org/10.1021/ja4099627] [PMID: 24215509]
[83]
Maity, S.; Naveen, T.; Sharma, U.; Maiti, D. Stereoselective nitration of olefins with (t)BuONO and TEMPO: direct access to nitroolefins under metal-free conditions. Org. Lett., 2013, 15(13), 3384-3387.
[http://dx.doi.org/10.1021/ol401426p] [PMID: 23772945]
[84]
Naveen, T.; Maity, S.; Sharma, U.; Maiti, D. A predictably selective nitration of olefin with Fe(NO3)3 and TEMPO. J. Org. Chem., 2013, 78(12), 5949-5954.
[http://dx.doi.org/10.1021/jo400598p] [PMID: 23692506]
[85]
Chen, F.E.; Kuang, Y.Y.; Dai, H.F.; Lu, L.; Huo, M. A Selective and mild oxidation of primary amines to nitriles with trichloroisocyanuric acid. Synthesis, 2003, 2629-2631(17), 2629-2631.
[http://dx.doi.org/10.1055/s-2003-42431]
[86]
Lu, W.; Shen, Z. Direct synthesis of alkenylboronates from alkenes and pinacol diboron via copper catalysis. Org. Lett., 2019, 21(1), 142-146.
[http://dx.doi.org/10.1021/acs.orglett.8b03599] [PMID: 30570264]
[87]
Zhang, C.; Jiao, N. Copper-catalysed synthesis of azaspirocyclohexadienones from α-azido-n-arylamides under an oxygen atmosphere. JACS, 2010, 132, 28-29.
[http://dx.doi.org/10.1021/ja908911n]
[88]
Pradhan, P.P.; Bobbitt, J.M.; Bailey, W.F. Oxidative cleavage of benzylic and related ethers, using an oxoammonium salt. J. Org. Chem., 2009, 74(24), 9524-9527.
[http://dx.doi.org/10.1021/jo902144b] [PMID: 19877704]
[89]
Itoh, T.; Shimizu, Y.; Kanai, M. Copper-catalyzed regio- and stereoselective intermolecular three-component oxyarylation of allenes. Org. Lett., 2014, 16(10), 2736-2739.
[http://dx.doi.org/10.1021/ol501022d] [PMID: 24766635]
[90]
Cui, Z.; Du, D.M. Enantioselective synthesis of β-hydrazino alcohols using alcohols and N -Boc-hydrazine as substrates. Org. Lett., 2016, 18(21), 5616-5619.
[http://dx.doi.org/10.1021/acs.orglett.6b02841] [PMID: 27786480]
[91]
Xie, X.; Stahl, S.S. Efficient and selective Cu/nitroxyl-catalyzed methods for aerobic oxidative lactonization of diols. J. Am. Chem. Soc., 2015, 137(11), 3767-3770.
[http://dx.doi.org/10.1021/jacs.5b01036] [PMID: 25751494]
[92]
Shibuya, M.; Tomizawa, M.; Iwabuchi, Y. Oxidative rearrangement of tertiary allylic alcohols employing oxoammonium salts. J. Org. Chem., 2008, 73(12), 4750-4752.
[http://dx.doi.org/10.1021/jo800634r] [PMID: 18500838]
[93]
Chamorro-Arenas, D.; Osorio-Nieto, U.; Quintero, L.; Hernández-García, L.; Sartillo-Piscil, F.; Piscil, F. Selective, catalytic, and dual C(sp 3)–H oxidation of piperazines and morpholines under transition-metal-free conditions. J. Org. Chem., 2018, 83(24), 15333-15346.
[http://dx.doi.org/10.1021/acs.joc.8b02564]
[94]
Cai, Y.; Jalan, A.; Kubosumi, A.R.; Castle, S.L. Microwave-promoted tin-free iminyl radical cyclization with TEMPO trapping: A practical synthesis of 2-acylpyrroles. Org. Lett., 2015, 17(3), 488-491.
[http://dx.doi.org/10.1021/ol5035047] [PMID: 25594391]
[95]
Chen, F.; Yang, X.L.; Wu, Z.W.; Han, B. Synthesis of Isoxazoline/Cyclic nitrone-featured methylenes using unsaturated ketoximes: A dual role of TEMPO. J. Org. Chem., 2016, 81(7), 3042-3050.
[http://dx.doi.org/10.1021/acs.joc.6b00180] [PMID: 26954339]
[96]
Vadivelu, M; Sampath, S; Muthu, K; Karthikeyan, K Praveen, C Harnessing the TP-catalysed aerobic oxidation for machetti-de sarlo reaction toward sustainable synthesis of isoxazole libraries. J Org Chem, 2019, 84, 13636.
[http://dx.doi.org/10.1021/acs.joc.9b01896]
[97]
An, H.; Mai, S.; Xuan, Q.; Zhou, Y.; Song, Q. Gold-catalyzed radical-involved intramolecular cyclization of internal N -propargylamides for the construction of 5-oxazole ketones. J. Org. Chem., 2019, 84(1), 401-408.
[http://dx.doi.org/10.1021/acs.joc.8b02334] [PMID: 30516044]
[98]
Lin, J.P.; Zhang, F.H.; Long, Y.Q. Solvent/oxidant-switchable synthesis of multisubstituted quinazolines and benzimidazoles via metal-free selective oxidative annulation of arylamidines. Org. Lett., 2014, 16(11), 2822-2825.
[http://dx.doi.org/10.1021/ol500864r] [PMID: 24814536]
[99]
Chu, X.Q.; Cao, W.B.; Xu, X.P.; Ji, S.J. Iron catalysis for modular pyrimidine synthesis through β-ammoniation/cyclization of saturated carbonyl compounds with amidines. J. Org. Chem., 2017, 82(2), 1145-1154.
[http://dx.doi.org/10.1021/acs.joc.6b02767] [PMID: 28032761]
[100]
Zhan, J.L.; Wu, M.W.; Chen, F.; Han, B. Cu-Catalyzed [3 + 3] annulation for the synthesis of pyrimidines via β-C(sp 3)–H functionalization of saturated ketones. J. Org. Chem., 2016, 81(23), 11994-12000.
[http://dx.doi.org/10.1021/acs.joc.6b02181] [PMID: 27805404]
[101]
Chen, G.; Wang, Z.; Zhang, X.; Fan, X. Synthesis of functionalized pyridines via Cu(II)-catalyzed one-pot cascade reactions of inactivated saturated ketones with electron-deficient enamines. J. Org. Chem., 2017, 82(20), 11230-11237.
[http://dx.doi.org/10.1021/acs.joc.7b01901] [PMID: 28990782]
[102]
Ding, X.; Qiu, Y. Long metal-free TEMPO-Promoted C(sp3)–H amination to afford multi-substituted benzimidazoles. J. Org. Chem., 2014, 79(1), 4727-4734.
[PMID: 24299147]
[103]
Xu, Z.M.; Li, H.X.; Young, D.J.; Zhu, D.L.; Li, H.Y.; Lang, J.P. Exogenous photosensitizer-, metal-, and base-free visible-light-promoted C–H thiolation via reverse hydrogen atom transfer. Org. Lett., 2019, 21(1), 237-241.
[http://dx.doi.org/10.1021/acs.orglett.8b03679] [PMID: 30575402]
[104]
Zhang, Y.; Hu, H.; Shi, F.; Lu, Z.; Zhu, X.; Kan, W.; Wang, X. Transition-metal-free synthesis of indolizines from electron-deficient¬ alkenes via one-pot reaction using TEMPO as an oxidant. Synthesis, 2015, 48(3), 413-420.
[http://dx.doi.org/10.1055/s-0035-1560973]
[105]
Liu, J.; Huang, J.; Jia, K.; Du, T.; Zhao, C.; Zhu, R.; Liu, X. Direct oxidative dearomatization of indoles with aromatic ketones: Rapid access to 2,2-disubstituted indolin-3-ones. Synthesis, 2020, 52(5), 763-768.
[http://dx.doi.org/10.1055/s-0039-1691528]
[106]
Han, B.; Yang, X.L.; Wang, C.; Bai, Y.W.; Pan, T.C.; Chen, X.; Yu, W. CuCl/DABCO/4-HO-TEMPO-catalyzed aerobic oxidative synthesis of 2-substituted quinazolines and 4H-3,1-benzoxazines. J. Org. Chem., 2012, 77(2), 1136-1142.
[http://dx.doi.org/10.1021/jo2020399] [PMID: 22168403]
[107]
Chen, Z.; Chen, J.; Liu, M.; Ding, J.; Gao, W.; Huang, X.; Wu, H. Unexpected copper-catalyzed cascade synthesis of quinazoline derivatives. J. Org. Chem., 2013, 78(22), 11342-11348.
[http://dx.doi.org/10.1021/jo401908g] [PMID: 24134489]
[108]
Hu, W.; Lin, J.P.; Song, L.R.; Long, Y.Q. Direct synthesis of 2-aryl-4-quinolones via transition-metal-free intramolecular oxidative C(sp(3))-H/C(sp(3))-H coupling. Org. Lett., 2015, 17(5), 1268-1271.
[http://dx.doi.org/10.1021/acs.orglett.5b00248] [PMID: 25700137]
[109]
Maji, M.S.; Murarka, S.; Studer, A. Transition-metal-free Sonogashira-type coupling of ortho-substituted aryl and alkynyl Grignard reagents by using 2,2,6,6-tetramethylpiperidine-N-oxyl radical as an oxidant. Org. Lett., 2010, 12(17), 3878-3881.
[http://dx.doi.org/10.1021/ol1015702] [PMID: 20704186]
[110]
Zhu, X.; Wang, Y.F.; Ren, W.; Zhang, F.L.; Chiba, S. TEMPO-mediated aliphatic C-H oxidation with oximes and hydrazones. Org. Lett., 2013, 15(13), 3214-3217.
[http://dx.doi.org/10.1021/ol4014969] [PMID: 23767852]
[111]
Zhang, Z.; Gao, Y.; Liu, Y.; Li, J.; Xie, H.; Li, H.; Wang, W. Organocatalytic aerobic oxidation of benzylic sp 3 C–H bonds of ethers and alkylarenes promoted by a recyclable TEMPO catalyst. Org. Lett., 2015, 17(21), 5492-5495.
[http://dx.doi.org/10.1021/acs.orglett.5b02877] [PMID: 26513695]
[112]
Subissi, L.; Imbert, I.; Ferron, F.; Collet, A.; Coutard, B.; Decroly, E.; Canard, B. SARS-CoV ORF1b-encoded nonstructural proteins 12–16: Replicative enzymes as antiviral targets. Antiviral Res., 2014, 101, 122-130.
[http://dx.doi.org/10.1016/j.antiviral.2013.11.006] [PMID: 24269475]
[113]
Nunziata, M; Bernard, APL; Debangsu, S; Li, Y; Bollinger, JM; Krebs, C; Pierson, TC; Linehan, WM; Rouault, TA Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets. Science, 2021, 373(6551), 236-241.
[http://dx.doi.org/10.1126/science.abi5224]
[114]
Sun, X.L.; Wang, S.Y.; Qi, Z.M.; Wan, N.; Zhang, B.L.; He, W. Design, synthesis, and biological evaluation of novel Tempol derivatives as effective antitumor agents. Res. Chem. Intermed., 2016, 42(10), 7659-7673.
[http://dx.doi.org/10.1007/s11164-016-2560-5]
[115]
Zarling, J.A.; Brunt, V.E.; Vallerga, A.K.; Li, W.; Tao, A.; Zarling, D.A.; Minson, C.T. Nitroxide pharmaceutical development for age-related degeneration and disease. Front. Genet., 2015, 6, 325.
[http://dx.doi.org/10.3389/fgene.2015.00325] [PMID: 26594225]
[116]
Chen, H.; Luo, J.; Li, X.; Liu, P.; Jiang, R. The synthesis of Tempol–phenol derivatives and their protection against radical-induced damage. J. Radioanal. Nucl. Chem., 2013, 298(1), 443-447.
[http://dx.doi.org/10.1007/s10967-013-2452-8]
[117]
Prabhutendolkar, A.; Liu, X.; Mathias, E.V.; Ba, Y.; Kornfield, J.A. Synthesis of chlorambucil-tempol adduct and its delivery using fluoroalkyl double-ended poly (ethylene glycol) micelles. Drug Deliv., 2006, 13(6), 433-440.
[http://dx.doi.org/10.1080/10717540600559452] [PMID: 17002971]
[118]
Fujiwara, H.; Fujiwara, E.; Kobayashi, H. Synthesis, structure and physical properties of donors containing a PROXYL radical. Synth. Met., 2003, 135-136, 533-534.
[http://dx.doi.org/10.1016/S0379-6779(02)00722-1]
[119]
Yamato, M.; Kawano, K.; Yamanaka, Y.; Saiga, M.; Yamada, K. TEMPOL increases NAD+ and improves redox imbalance in obese mice. Redox Biol., 2016, 8, 316-322.
[http://dx.doi.org/10.1016/j.redox.2016.02.007] [PMID: 26942863]
[120]
Nakatsuji, S.; Akashi, N.; Suzuki, K.; Enoki, T.; Kinoshita, N. Preparation and properties of a hydroxy-tp-substituted TTF and ITS CT complexes, molecular crystals and liquid crystals science and technology. Mol CrystLiq, 1995, 268(1), 153-159.
[http://dx.doi.org/10.1080/10587259508031003]
[121]
Pawcenis, D.; Chlebda, D.K.; Jędrzejczyk, R.J.; Leśniak, M.; Sitarz, M.; Łojewska, J. Preparation of silver nanoparticles using different fractions of TEMPO-oxidized nanocellulose. Eur. Polym. J., 2019, 116, 242-255.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.04.022]
[122]
Alavi, M.; Nokhodchi, A. Antimicrobial and wound healing activities of electrospun nanofibers based on functionalized carbohydrates and proteins. Cellulose, 2022, 29(3), 1331-1347.
[http://dx.doi.org/10.1007/s10570-021-04412-6]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy