Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Mini-Review Article

Therapeutic Applications of Plant and Nutraceutical-Based Compounds for the Management of Type 2 Diabetes Mellitus: A Narrative Review

Author(s): Susha Dinesh*, Sameer Sharma and Rajan Chourasiya

Volume 20, Issue 2, 2024

Published on: 06 July, 2023

Article ID: e050523216593 Pages: 19

DOI: 10.2174/1573399819666230505140206

Price: $65

Abstract

Diabetes mellitus is a condition caused by a deficiency in insulin production or sensitivity that is defined by persistent hyperglycemia as well as disturbances in glucose, lipid, and protein metabolism. Uncurbed diabetes or incessant hyperglycemic condition can lead to severe complications, including renal damage, visual impairment, cardiovascular disease, neuropathy, etc., which promotes diabetes-associated morbidity and mortality rates. The therapeutic management of diabetes includes conventional medications and nutraceuticals as complementary therapies. Nutraceuticals are bioactive compounds derived from food sources that have health-promoting properties and are instrumental in the management and treatment of various maladies. Nutraceuticals are clinically exploited to tackle DM pathogenesis, and the clinical evidence suggests that nutraceuticals can modulate biochemical parameters related to diabetes pathogenesis and comorbidities. Hypoglycemic medicines are designed to mitigate DM in traditional medicinal practice. This review intends to emphasize and comment on the various therapeutic strategies available to manage this chronic condition, conventional drugs, and the potential role of nutraceuticals in managing the complexity of the disease and reducing the risk of complications. In contrast to conventional antihyperglycemic drugs, nutraceutical supplements offer a higher efficacy and lesser adverse effects. To substantiate the efficacy and safety of various functional foods in conjunction with conventional hypoglycemic medicines, additional data from clinical studies are required.

Keywords: Diabetes mellitus, nutraceuticals, functional foods, complementary therapies, supplements, T1DM, T2DM.

[1]
Jawad F, Ejaz K. Gestational diabetes mellitus in South Asia: Epidemiology. J Pak Med Assoc 2016; 66(9): S5-7.
[PMID: 27582153]
[2]
Unnikrishnan R, Anjana RM, Mohan V. Diabetes mellitus and its complications in India. Nat Rev Endocrinol 2016; 12(6): 357-70.
[http://dx.doi.org/10.1038/nrendo.2016.53] [PMID: 27080137]
[3]
Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol 2020; 16(7): 377-90.
[http://dx.doi.org/10.1038/s41581-020-0278-5] [PMID: 32398868]
[4]
Lee HS, Hwang JS. Genetic Aspects of type 1 diabetes. Ann Pediatr Endocrinol Metab 2019; 24(3): 143-8.
[http://dx.doi.org/10.6065/apem.2019.24.3.143] [PMID: 31607106]
[5]
Thomas MC. The clustering of cardiovascular, renal, adipo-metabolic eye and liver disease with type 2 diabetes. Metabolism 2022; 128: 154961.
[http://dx.doi.org/10.1016/j.metabol.2021.154961] [PMID: 34958818]
[6]
Kautzky-Willer A, Harreiter J, Pacini G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev 2016; 37(3): 278-316.
[http://dx.doi.org/10.1210/er.2015-1137] [PMID: 27159875]
[7]
Kelly J, Karlsen M, Steinke G. Type 2 diabetes remission and lifestyle medicine: A position statement from the american college of lifestyle medicine. Am J Lifestyle Med 2020; 14(4): 406-19.
[http://dx.doi.org/10.1177/1559827620930962] [PMID: 33281521]
[8]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes Atlas, 9th Ed. Diabet Res Clin Pract 2019; 157: 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843]
[9]
International Diabetes Federation. IDF Diabetes Atlas. (9th Ed.), 2019.
[10]
Pandey S, Sharma V. World diabetes day 2018: Battling the emerging epidemic of diabetic retinopathy. Indian J Ophthalmol 2018; 66(11): 1652-3.
[http://dx.doi.org/10.4103/ijo.IJO_1681_18] [PMID: 30355895]
[11]
Mahalle N, Kulkarni MV, Naik SS, Garg MK. Association of dietary factors with insulin resistance and inflammatory markers in subjects with diabetes mellitus and coronary artery disease in Indian population. J Diabet Complicat 2014; 28(4): 536-41.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.09.008] [PMID: 24746438]
[12]
Indulekha K, Surendar J, Anjana RM, et al. Metabolic obesity, adipocytokines, and inflammatory markers in Asian Indians--CURES-124. Diabetes Technol Ther 2015; 17(2): 134-41.
[http://dx.doi.org/10.1089/dia.2014.0202] [PMID: 25478993]
[13]
Burchfield JG, Kebede MA, Meoli CC, et al. High dietary fat and sucrose result in an extensive and time-dependent deterioration in health of multiple physiological systems in mice. J Biol Chem 2018; 293(15): 5731-45.
[http://dx.doi.org/10.1074/jbc.RA117.000808] [PMID: 29440390]
[14]
Burgeiro A, Cerqueira M, Varela-Rodríguez B, et al. Glucose and lipid dysmetabolism in a rat model of prediabetes induced by a high-sucrose diet. Nutrients 2017; 9(6): 638.
[http://dx.doi.org/10.3390/nu9060638] [PMID: 28635632]
[15]
Guthrie RA, Guthrie DW. Pathophysiology of diabetes mellitus. Crit Care Nurs Q 2004; 27(2): 113-25.
[http://dx.doi.org/10.1097/00002727-200404000-00003] [PMID: 15137354]
[16]
Tan SY, Mei Wong JL, Sim YJ, et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr 2019; 13(1): 364-72.
[http://dx.doi.org/10.1016/j.dsx.2018.10.008] [PMID: 30641727]
[17]
Tsapas A, Avgerinos I, Karagiannis T, et al. Comparative effectiveness of glucose-lowering drugs for type 2 diabetes. Ann Intern Med 2020; 173(4): 278-86.
[http://dx.doi.org/10.7326/M20-0864] [PMID: 32598218]
[18]
Dyer AH, Briggs R, Mockler D, Gibney J, Kennelly SP. Non-pharmacological interventions for cognition in patients with Type 2 diabetes mellitus: A systematic review. QJM 2020; 113(3): 155-61.
[PMID: 30825309]
[19]
Mozaffarian D. Dietary and policy priorities to reduce the global crises of obesity and diabetes. Nat Food 2020; 1(1): 38-50.
[http://dx.doi.org/10.1038/s43016-019-0013-1]
[20]
Bahrampour N, Mirzababaei A, Hosseininasab D, Abaj F, Clark CCT, Mirzaei K. High intake of dietary phytochemical index may be related to reducing risk of diabetic nephropathy: A case–control study. BMC Nutr 2023; 9(1): 14.
[http://dx.doi.org/10.1186/s40795-023-00676-2] [PMID: 36647176]
[21]
Sievenpiper JL, Dworatzek PDN. Food and dietary pattern-based recommendations: An emerging approach to clinical practice guidelines for nutrition therapy in diabetes. Can J Diabetes 2013; 37(1): 51-7.
[http://dx.doi.org/10.1016/j.jcjd.2012.11.001] [PMID: 24070749]
[22]
Evert AB, Boucher JL, Cypress M, et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 2014; 37(S1): S120-43.
[http://dx.doi.org/10.2337/dc14-S120] [PMID: 24357208]
[23]
Shafi S, Tabassum N, Ahmad F. Diabetic nephropathy and herbal medicines. Int J Phytopharmacol 2012; 3: 10-7.
[24]
Aanstoot HJ, Rodriguez H, Weinzimer S, Vint N, Koeneman L. Precision dosing of rapid-acting insulin matters. Diabetes Technol Ther 2020; 22(5): 346-51.
[http://dx.doi.org/10.1089/dia.2019.0374] [PMID: 32125891]
[25]
Nicolucci A, Ceriello A, Di Bartolo P, Corcos A, Orsini Federici M. Rapid-acting insulin analogues vs regular human insulin: A meta-analysis of effects on glycemic control in patients with diabetes. Diabetes Ther 2020; 11(3): 573-84.
[http://dx.doi.org/10.1007/s13300-019-00732-w] [PMID: 31873857]
[26]
Chow L, Valesky W. Subcutaneous rapid-acting insulin analogs for diabetic ketoacidosis. Acad Emerg Med 2021; 28(6): 700-2.
[http://dx.doi.org/10.1111/acem.14170] [PMID: 33145848]
[27]
Melo KFS, Bahia LR, Pasinato B, et al. Short-acting insulin analogues vs regular human insulin on postprandial glucose and hypoglycemia in type 1 diabetes mellitus: A systematic review and meta-analysis. Diabetol Metab Syndr 2019; 11(1): 2.
[http://dx.doi.org/10.1186/s13098-018-0397-3] [PMID: 30622653]
[28]
Rallapeta RP, Manthri RG, Kalawat T, Sachan A, Lakshmi AY, Hulikal N. Utility of short-acting intravenous insulin therapy in preparation of F-18 fluorodeoxyglucose positron emission tomography computed tomography scan in cancer patients incidentally detected with high blood glucose levels on the day of test. Indian J Nucl Med 2020; 35(2): 110-5.
[PMID: 32351264]
[29]
Silver B, Ramaiya K, Andrew SB, et al. EADSG guidelines: Insulin therapy in diabetes. Diabet Ther 2018; 9(2): 449-92.
[http://dx.doi.org/10.1007/s13300-018-0384-6] [PMID: 29508275]
[30]
Kent DJ, McMahill-Walraven CN, Panozzo CA, et al. Descriptive analysis of long- and intermediate-acting insulin and key safety outcomes in adults with type 2 diabetes mellitus. J Manag Care Spec Pharm 2019; 25(11): 1162-71.
[http://dx.doi.org/10.18553/jmcp.2019.19042] [PMID: 31405345]
[31]
Yang CT, Li KY, Yang CY, Ou HT, Kuo S. A nationwide cohort study for comparative vascular safety of long-acting insulin analogue vs intermediate-acting human insulin in type 2 diabetes. Sci Rep 2021; 11(1): 4152.
[http://dx.doi.org/10.1038/s41598-021-83253-6] [PMID: 33602950]
[32]
Pedersen-Bjergaard U, Fabricius TW, Thorsteinsson B. Synthetic long-acting insulin analogs for the management of type 1 diabetes: An update. Expert Opin Pharmacother 2021; 22(16): 2251-9.
[http://dx.doi.org/10.1080/14656566.2021.1970136] [PMID: 34467826]
[33]
Hemmingsen B, Metzendorf MI, Richter B. (Ultra-)long-acting insulin analogues for people with type 1 diabetes mellitus. Cochrane Libr 2021; 2021(4): CD013498.
[http://dx.doi.org/10.1002/14651858.CD013498.pub2] [PMID: 33662147]
[34]
Sanchez-Rangel E, Inzucchi SE. Metformin: Clinical use in type 2 diabetes. Diabetologia 2017; 60(9): 1586-93.
[http://dx.doi.org/10.1007/s00125-017-4336-x] [PMID: 28770321]
[35]
Lv Z, Guo Y. Metformin and its benefits for various diseases. Front Endocrinol 2020; 11: 191.
[http://dx.doi.org/10.3389/fendo.2020.00191] [PMID: 32425881]
[36]
Hostalek U, Campbell I. Metformin for diabetes prevention: Update of the evidence base. Curr Med Res Opin 2021; 37(10): 1705-17.
[http://dx.doi.org/10.1080/03007995.2021.1955667] [PMID: 34281467]
[37]
Lv W, Wang X, Xu Q, Lu W. Mechanisms and characteristics of sulfonylureas and glinides. Curr Top Med Chem 2020; 20(1): 37-56.
[http://dx.doi.org/10.2174/1568026620666191224141617] [PMID: 31884929]
[38]
Tao Y, e M, Shi J, Zhang Z. Sulfonylureas use and fractures risk in elderly patients with type 2 diabetes mellitus: A meta-analysis study. Aging Clin Exp Res 2021; 33(8): 2133-9.
[http://dx.doi.org/10.1007/s40520-020-01736-4] [PMID: 33104983]
[39]
Xie Y, Bowe B, Gibson AK, McGill JB, Maddukuri G, Al-Aly Z. Comparative effectiveness of sodium-glucose cotransporter 2 inhibitors vs sulfonylureas in patients with type 2 diabetes. JAMA Intern Med 2021; 181(8): 1043-53.
[http://dx.doi.org/10.1001/jamainternmed.2021.2488] [PMID: 34180939]
[40]
Nath CK, Longkumer C, Barman B, et al. Idiopathic post prandial glucose lowering, a whistle blower for subclinical hypothyroidism and insulin resistance. A cross-sectional study in Tertiary Care Centre of northeast India. J Family Med Prim Care 2020; 9(9): 4637-40.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_867_20] [PMID: 33209776]
[41]
Philip J, Fernandez CJ. Efficacy and cardiovascular safety of meglitinides. Curr Drug Saf 2021; 16(2): 207-16.
[http://dx.doi.org/10.2174/1574886315666201026125848] [PMID: 33106149]
[42]
Hedrington MS, Davis SN. Considerations when using alpha-glucosidase inhibitors in the treatment of type 2 diabetes. Expert Opin Pharmacother 2019; 20(18): 2229-35.
[http://dx.doi.org/10.1080/14656566.2019.1672660] [PMID: 31593486]
[43]
Coleman RL, Scott CAB, Lang Z, Bethel MA, Tuomilehto J, Holman RR. Meta-analysis of the impact of alpha-glucosidase inhibitors on incident diabetes and cardiovascular outcomes. Cardiovasc Diabetol 2019; 18(1): 135.
[http://dx.doi.org/10.1186/s12933-019-0933-y] [PMID: 31623625]
[44]
Usman B, Sharma N, Satija S, et al. Recent developments in alpha-glucosidase inhibitors for management of type-2 diabetes: An update. Curr Pharm Des 2019; 25(23): 2510-25.
[http://dx.doi.org/10.2174/1381612825666190717104547] [PMID: 31333110]
[45]
Lebovitz HE. Thiazolidinediones: The forgotten diabetes medications. Curr Diab Rep 2019; 19(12): 151.
[http://dx.doi.org/10.1007/s11892-019-1270-y] [PMID: 31776781]
[46]
Hurren KM, Dunham MW. Are thiazolidinediones a preferred drug treatment for type 2 diabetes? Expert Opin Pharmacother 2021; 22(2): 131-3.
[http://dx.doi.org/10.1080/14656566.2020.1853100] [PMID: 33280446]
[47]
Grant JS, Graven LJ. Progressing from metformin to sulfonylureas or meglitinides. Workplace Health Saf 2016; 64(9): 433-9.
[http://dx.doi.org/10.1177/2165079916644263] [PMID: 27621259]
[48]
Thakkar S, More N, Sharma D, Kapusetti G, Kalia K, Misra M. Fast dissolving electrospun polymeric films of anti-diabetic drug repaglinide: Formulation and evaluation. Drug Dev Ind Pharm 2019; 45(12): 1921-30.
[http://dx.doi.org/10.1080/03639045.2019.1680994] [PMID: 31625774]
[49]
Iftikhar M, Lu Y, Zhou M. An overview of therapeutic potential of N-alkylated 1-deoxynojirimycin congeners. Carbohydr Res 2021; 504: 108317.
[http://dx.doi.org/10.1016/j.carres.2021.108317] [PMID: 33932806]
[50]
Padhi S, Nayak AK, Behera A. Type II diabetes mellitus: A review on recent drug based therapeutics. Biomed Pharmacother 2020; 131: 110708.
[http://dx.doi.org/10.1016/j.biopha.2020.110708] [PMID: 32927252]
[51]
Deepthi B, Sowjanya K, Lidiya B, Bhargavi RS, Babu PS. A modern review of diabetes mellitus: An annihilatory metabolic disorder. J in silico in vitro Pharmacol 2017; 3(1)
[52]
George CM, Brujin LL, Will K, Howard-Thompson A. Management of blood glucose with noninsulin therapies in type 2 diabetes. Am Fam Physician 2015; 92(1): 27-34.
[PMID: 26132124]
[53]
Ipsen EØ, Madsen KS, Chi Y, et al. Pioglitazone for prevention or delay of type 2 diabetes mellitus and its associated complications in people at risk for the development of type 2 diabetes mellitus. Cochrane Libr 2020; 2020(11): CD013516.
[http://dx.doi.org/10.1002/14651858.CD013516.pub2] [PMID: 33210751]
[54]
Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): A multicentre, randomised, open-label trial. Lancet 2009; 373(9681): 2125-35.
[http://dx.doi.org/10.1016/S0140-6736(09)60953-3] [PMID: 19501900]
[55]
Moore LE, Clokey D, Rappaport VJ, Curet LB. Metformin compared with glyburide in gestational diabetes: A randomized controlled trial. Obstet Gynecol 2010; 115(1): 55-9.
[http://dx.doi.org/10.1097/AOG.0b013e3181c52132] [PMID: 20027034]
[56]
Osaro E, Onwuka F, Osaro E. Effect of combined therapy of diabinese and nicotinic acid on liver enzymes in rabbits with dithizone-induced diabetes. J Exp Pharmacol 2010; 2: 145-53.
[http://dx.doi.org/10.2147/JEP.S11490] [PMID: 27186100]
[57]
Chung M, Kourides I, Canovatchel W, Sutfin T, Messig M, Chaiken RL. Pharmacokinetics and pharmacodynamics of extended-release glipizide GITS compared with immediate-release glipizide in patients with type II diabetes mellitus. J Clin Pharmacol 2002; 42(6): 651-7.
[http://dx.doi.org/10.1177/00970002042006007] [PMID: 12043953]
[58]
Sá M, Sarraguça JM, De Sousa FF, Sarraguça MS, Lopes JA, Lima AD. Structural, thermal, vibrational, solubility and dft studies of a tolbutamide co-amorphous drug delivery system for treatment of diabetes. Int J Pharm 2022; 615: 121500.
[59]
Foretz M, Guigas B, Viollet B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol 2019; 15(10): 569-89.
[http://dx.doi.org/10.1038/s41574-019-0242-2] [PMID: 31439934]
[60]
Almulla MA. Location-based expert system for diabetes diagnosis and medication recommendation. Kuwait J Sci 2020; 48(1)
[http://dx.doi.org/10.48129/kjs.v48i1.8687]
[61]
Guo L, Liu G, Chen L, et al. Comparison of clinical efficacy and safety of metformin sustained-release tablet (II) (Dulening) and metformin tablet (Glucophage) in treatment of type 2 diabetes mellitus. Front Endocrinol 2021; 12: 712200.
[http://dx.doi.org/10.3389/fendo.2021.712200]
[62]
Samimi M, Jamilian M, Asemi Z, Esmaillzadeh A. Effects of omega-3 fatty acid supplementation on insulin metabolism and lipid profiles in gestational diabetes: Randomized, double-blind, placebo-controlled trial. Clin Nutr 2015; 34(3): 388-93.
[http://dx.doi.org/10.1016/j.clnu.2014.06.005] [PMID: 24973862]
[63]
Zhang B, Zhang X, Zhang C, Sun G, Sun X. Berberine improves the protective effects of metformin on diabetic nephropathy in db/db mice through Trib1-dependent inhibiting inflammation. Pharm Res 2021; 38(11): 1807-20.
[http://dx.doi.org/10.1007/s11095-021-03104-x] [PMID: 34773184]
[64]
Iwase Y, Kamei N, Takeda-Morishita M. Antidiabetic effects of omega-3 polyunsaturated fatty acids: From mechanism to therapeutic possibilities. Pharmacol Pharm 2015; 6(3): 190-200.
[http://dx.doi.org/10.4236/pp.2015.63020]
[65]
Pivari F, Mingione A, Brasacchio C, Soldati L. Curcumin and type 2 diabetes mellitus: Prevention and treatment. Nutrients 2019; 11(8): 1837.
[http://dx.doi.org/10.3390/nu11081837] [PMID: 31398884]
[66]
Öztürk E, Arslan AKK, Yerer MB, Bishayee A. Resveratrol and diabetes: A critical review of clinical studies. Biomed Pharmacother 2017; 95: 230-4.
[http://dx.doi.org/10.1016/j.biopha.2017.08.070] [PMID: 28843911]
[67]
Hadi A, Arab A, Hajianfar H, et al. The effect of fenugreek seed supplementation on serum irisin levels, blood pressure, and liver and kidney function in patients with type 2 diabetes mellitus: A parallel randomized clinical trial. Complement Ther Med 2020; 49: 102315.
[http://dx.doi.org/10.1016/j.ctim.2020.102315] [PMID: 32147060]
[68]
Gao Y, Li X, Huang Y, Chen J, Qiu M. Bitter melon and diabetes mellitus. Food Rev Int 2021; 1-21.
[http://dx.doi.org/10.1080/87559129.2021.1923733]
[69]
Leach MJ, Kumar S. Cinnamon for diabetes mellitus. Cochrane Database Syst Rev 2012; 2012(9): CD007170.
[PMID: 22972104]
[70]
Sharma S, Mandal A, Kant R, Jachak S, Jagzape M. Is cinnamon efficacious for glycaemic control in type-2 diabetes mellitus? J Pak Med Assoc 2020; 70(11): 2065-9.
[PMID: 33341863]
[71]
Hannon BA, Fairfield WD, Adams B, Kyle T, Crow M, Thomas DM. Use and abuse of dietary supplements in persons with diabetes. Nutr Diabetes 2020; 10(1): 14.
[http://dx.doi.org/10.1038/s41387-020-0117-6] [PMID: 32341338]
[72]
Petroni ML, Brodosi L, Marchignoli F, et al. Nutrition in patients with type 2 diabetes: Present knowledge and remaining challenges. Nutrients 2021; 13(8): 2748.
[http://dx.doi.org/10.3390/nu13082748] [PMID: 34444908]
[73]
Lewgood J, Oliveira B, Korzepa M, et al. Efficacy of dietary and supplementation interventions for individuals with Type 2 diabetes. Nutrients 2021; 13(7): 2378.
[http://dx.doi.org/10.3390/nu13072378] [PMID: 34371888]
[74]
Bacanli M, Dilsiz SA, Başaran N, Başaran AA. Effects of phytochemicals against diabetes. Adv Food Nutr Res 2019; 89: 209-38.
[http://dx.doi.org/10.1016/bs.afnr.2019.02.006] [PMID: 31351526]
[75]
Kumar S, Mittal A, Babu D, Mittal A. Herbal medicines for diabetes management and its secondary complications. Curr Diabetes Rev 2021; 17(4): 437-56.
[http://dx.doi.org/10.2174/18756417MTExfMTQ1z] [PMID: 33143632]
[76]
Mirfeizi M, Mehdizadeh TZ, Mirfeizi SZ, Asghari MJ, Rezvani HR, Afzali M. Controlling type 2 diabetes mellitus with herbal medicines: A triple-blind randomized clinical trial of efficacy and safety. J Diabetes 2016; 8(5): 647-56.
[http://dx.doi.org/10.1111/1753-0407.12342] [PMID: 26362826]
[77]
Konstantinidi M, Koutelidakis AE. Functional foods and bioactive compounds: A review of its possible role on weight management and obesity’s metabolic consequences. Medicines 2019; 6(3): 94.
[http://dx.doi.org/10.3390/medicines6030094] [PMID: 31505825]
[78]
Medina-Vera I, Sanchez-Tapia M, Noriega-López L, et al. A dietary intervention with functional foods reduces metabolic endotoxaemia and attenuates biochemical abnormalities by modifying faecal microbiota in people with type 2 diabetes. Diabetes Metab 2019; 45(2): 122-31.
[http://dx.doi.org/10.1016/j.diabet.2018.09.004] [PMID: 30266575]
[79]
Homayouni A, Bagheri N, Mohammad-Alizadeh-Charandabi S, et al. Prevention of gestational diabetes mellitus (gdm) and probiotics: Mechanism of action: A review. Curr Diabetes Rev 2020; 16(6): 538-45.
[http://dx.doi.org/10.2174/18756417OTk1lOTEbTcVY] [PMID: 31544699]
[80]
Sun Z, Sun X, Li J, et al. Using probiotics for type 2 diabetes mellitus intervention: Advances, questions, and potential. Crit Rev Food Sci Nutr 2020; 60(4): 670-83.
[http://dx.doi.org/10.1080/10408398.2018.1547268] [PMID: 30632770]
[81]
Tsai YL, Lin TL, Chang CJ, et al. Probiotics, prebiotics and amelioration of diseases. J Biomed Sci 2019; 26(1): 3.
[http://dx.doi.org/10.1186/s12929-018-0493-6] [PMID: 30609922]
[82]
Reynolds AN, Akerman AP, Mann J. Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLoS Med 2020; 17(3): e1003053.
[http://dx.doi.org/10.1371/journal.pmed.1003053] [PMID: 32142510]
[83]
Åberg S, Mann J, Neumann S, Ross AB, Reynolds AN. Whole-grain processing and glycemic control in type 2 diabetes: A randomized crossover trial. Diabet Care 2020; 43(8): 1717-23.
[http://dx.doi.org/10.2337/dc20-0263] [PMID: 32424022]
[84]
Olfert MD, Wattick RA. Vegetarian diets and the risk of diabetes. Curr Diab Rep 2018; 18(11): 101.
[http://dx.doi.org/10.1007/s11892-018-1070-9] [PMID: 30229314]
[85]
Savych A, Marchyshyn S, Kozyr H, Yarema N. Determination of inulin in the herbal mixtures by GC-MS method. Pharmacia 2021; 68(1): 181-7.
[http://dx.doi.org/10.3897/pharmacia.68.e55051]
[86]
Bozbulut R, Sanlier N. Promising effects of β-glucans on glyceamic control in diabetes. Trends Food Sci Technol 2019; 83: 159-66.
[http://dx.doi.org/10.1016/j.tifs.2018.11.018]
[87]
Anjana RM, Vijayalakshmi P, Bhavadharini B, Gayathri R, Lakshmipriya N, Uthra S. Association of whole grains, dairy and dietary fibre with neonatal outcomes in women with gestational diabetes mellitus: The WINGS project (WINGS-12). J Diabetol 2019; 10(3)
[88]
Sacerdote A, Dave P, Lokshin V, Bahtiyar G. Type 2 diabetes mellitus, insulin resistance, and vitamin D. Curr Diab Rep 2019; 19(10): 101.
[http://dx.doi.org/10.1007/s11892-019-1201-y] [PMID: 31506836]
[89]
Maddaloni E, Cavallari I, Napoli N, Conte C. Vitamin D and diabetes mellitus. Front Horm Res 2018; 50: 161-76.
[http://dx.doi.org/10.1159/000486083] [PMID: 29597238]
[90]
Issa CM. Vitamin D and type 2 diabetes mellitus. Adv Exp Med Biol 2017; 996: 193-205.
[http://dx.doi.org/10.1007/978-3-319-56017-5_16] [PMID: 29124701]
[91]
Mitri J, Pittas AG. Vitamin D and diabetes. Endocrinol Metab Clin North Am 2014; 43(1): 205-32.
[http://dx.doi.org/10.1016/j.ecl.2013.09.010] [PMID: 24582099]
[92]
Barbarawi M, Zayed Y, Barbarawi O, et al. Effect of vitamin D supplementation on the incidence of diabetes mellitus. J Clin Endocrinol Metab 2020; 105(8): 2857-68.
[http://dx.doi.org/10.1210/clinem/dgaa335] [PMID: 32491181]
[93]
Fardoun RZ. The use of vitamin E in type 2 diabetes mellitus. Clin Exp Hypertens 2007; 29(3): 135-48.
[http://dx.doi.org/10.1080/10641960701361601] [PMID: 17497341]
[94]
Goldenstein H, Levy NS, Lipener YT, Levy AP. Patient selection and vitamin E treatment in diabetes mellitus. Expert Rev Cardiovasc Ther 2013; 11(3): 319-26.
[http://dx.doi.org/10.1586/erc.12.187] [PMID: 23469912]
[95]
Ma H, Qiao Z, Li N, Zhao Y, Zhang S. The relationship between changes in vitamin A, vitamin E, and oxidative stress levels, and pregnancy outcomes in patients with gestational diabetes mellitus. Ann Palliat Med 2021; 10(6): 6630-6.
[http://dx.doi.org/10.21037/apm-21-1036] [PMID: 34118857]
[96]
Das UN. Vitamin C for type 2 diabetes mellitus and hypertension. Arch Med Res 2019; 50(2): 11-4.
[http://dx.doi.org/10.1016/j.arcmed.2019.05.004] [PMID: 31349946]
[97]
Rajendiran D, Packirisamy S, Gunasekaran K. A review on role of antioxidants in diabetes. Asian J Pharm Clin Res 2018; 11(2): 48-53.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i2.23241]
[98]
Mason SA, Keske MA, Wadley GD. Effects of vitamin C supplementation on glycemic control and cardiovascular risk factors in people with type 2 diabetes: A GRADE-assessed systematic review and meta-analysis of randomized controlled trials. Diabetes Care 2021; 44(2): 618-30.
[http://dx.doi.org/10.2337/dc20-1893] [PMID: 33472962]
[99]
Christie-David DJ, Girgis CM, Gunton JE. Effects of vitamins C and D in type 2 diabetes mellitus. Nutr Diet Suppl 2015; 7: 21-8.
[100]
Dashti HM, Mathew TC, Al-Zaid NS. Efficacy of low-carbohydrate ketogenic diet in the treatment of type 2 diabetes. Med Princ Pract 2021; 30(3): 223-35.
[http://dx.doi.org/10.1159/000512142] [PMID: 33040057]
[101]
Ludwig DS, Hu FB, Tappy L, Brand-Miller J. Dietary carbohydrates: Role of quality and quantity in chronic disease. BMJ 2018; 361: k2340.
[http://dx.doi.org/10.1136/bmj.k2340] [PMID: 29898880]
[102]
Volek JS, Fernandez ML, Feinman RD, Phinney SD. Dietary carbohydrate restriction induces a unique metabolic state positively affecting atherogenic dyslipidemia, fatty acid partitioning, and metabolic syndrome. Prog Lipid Res 2008; 47(5): 307-18.
[http://dx.doi.org/10.1016/j.plipres.2008.02.003] [PMID: 18396172]
[103]
Sainsbury E, Kizirian NV, Partridge SR, Gill T, Colagiuri S, Gibson AA. Effect of dietary carbohydrate restriction on glycemic control in adults with diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract 2018; 139: 239-52.
[http://dx.doi.org/10.1016/j.diabres.2018.02.026] [PMID: 29522789]
[104]
Garg A, Bonanome A, Grundy SM, Zhang ZJ, Unger RH. Comparison of a high-carbohydrate diet with a high-monounsaturated-fat diet in patients with non-insulin-dependent diabetes mellitus. N Engl J Med 1988; 319(13): 829-34.
[http://dx.doi.org/10.1056/NEJM198809293191304] [PMID: 3045553]
[105]
Nuttall FQ, Gannon MC. Metabolic response of people with type 2 diabetes to a high protein diet. Nutr Metab 2004; 1(1): 6.
[http://dx.doi.org/10.1186/1743-7075-1-6] [PMID: 15507157]
[106]
Comerford K, Pasin G. Emerging evidence for the importance of dietary protein source on glucoregulatory markers and type 2 diabetes: Different effects of dairy, meat, fish, egg, and plant protein foods. Nutrients 2016; 8(8): 446.
[http://dx.doi.org/10.3390/nu8080446] [PMID: 27455320]
[107]
Lee YM, Kim SA, Lee IK, et al. Effect of a brown rice based vegan diet and conventional diabetic diet on glycemic control of patients with type 2 diabetes: A 12-week randomized clinical trial. PLoS One 2016; 11(6): e0155918.
[http://dx.doi.org/10.1371/journal.pone.0155918] [PMID: 27253526]
[108]
Hosseini S, Shojaei S, Hosseini S. The effects of cinnamon on glycemic indexes and insulin resistance in adult male diabetic rats with streptozotocin. Yafteh 2015; 16: 70-8.
[109]
Choi MK, Song IS. Interactions of ginseng with therapeutic drugs. Arch Pharm Res 2019; 42(10): 862-78.
[http://dx.doi.org/10.1007/s12272-019-01184-3] [PMID: 31493264]
[110]
Kassaian N, Azadbakht L, Forghani B, Amini M. Effect of fenugreek seeds on blood glucose and lipid profiles in type 2 diabetic patients. Int J Vitam Nutr Res 2009; 79(1): 34-9.
[http://dx.doi.org/10.1024/0300-9831.79.1.34] [PMID: 19839001]
[111]
Hannan JMA, Ali L, Rokeya B, et al. Soluble dietary fibre fraction of Trigonella foenum-graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption, and enhancing insulin action. Br J Nutr 2007; 97(3): 514-21.
[http://dx.doi.org/10.1017/S0007114507657869] [PMID: 17313713]
[112]
Haghani F, Arabnezhad MR, Mohammadi S, Ghaffarian-Bahraman A. Aloe vera and Streptozotocin-Induced Diabetes Mellitus. Rev Bras Farmacogn 2022; 32(2): 174-87.
[http://dx.doi.org/10.1007/s43450-022-00231-3] [PMID: 35287334]
[113]
Alinejad-Mofrad S, Foadoddini M, Saadatjoo SA, Shayesteh M. Improvement of glucose and lipid profile status with Aloe vera in pre-diabetic subjects: A randomized controlled-trial. J Diabetes Metab Disord 2015; 14(1): 22.
[http://dx.doi.org/10.1186/s40200-015-0137-2] [PMID: 25883909]
[114]
Fuangchan A, Sonthisombat P, Seubnukarn T, et al. Hypoglycemic effect of bitter melon compared with metformin in newly diagnosed type 2 diabetes patients. J Ethnopharmacol 2011; 134(2): 422-8.
[http://dx.doi.org/10.1016/j.jep.2010.12.045] [PMID: 21211558]
[115]
Bedard M. Bitter melon and glucose regulation. Can Pharm J 2004; 137(8): 43.
[116]
Huang F, Deng T, Meng L, Ma X. Dietary ginger as a traditional therapy for blood sugar control in patients with type 2 diabetes mellitus. Medicine 2019; 98(13): e15054.
[http://dx.doi.org/10.1097/MD.0000000000015054] [PMID: 30921234]
[117]
Arablou T, Aryaeian N, Valizadeh M, Sharifi F, Hosseini A, Djalali M. The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. Int J Food Sci Nutr 2014; 65(4): 515-20.
[http://dx.doi.org/10.3109/09637486.2014.880671] [PMID: 24490949]
[118]
Huq A, Haque K, Khan AK. Clinical efficacy and safety of holy basil-based anti-diabetic tea. J Sci Technol 2018; 8(1-2): 1-9.
[119]
Jamshidi N, Cohen M M. The clinical efficacy and safety of tulsi in humans: A systematic review of the literature. Evid Based Complement Alternat Med 2017; 2017: 9217567.
[http://dx.doi.org/10.1155/2017/9217567]
[120]
Andallu B, Ramya V. Antihyperglycemic, cholesterol-lowering and hdl-raising effects of cumin (Cuminum cyminum) seeds in type-2 diabetes. J Nat Rem 2007; 7(1): 142-9.
[121]
Willatgamuwa SA, Platel K, Saraswathi G, Srinivasan K. Antidiabetic influence of dietary cumin seeds in streptozotocin induced diabetic rats. Nutr Res 1998; 18(1): 131-42.
[http://dx.doi.org/10.1016/S0271-5317(97)00207-8]
[122]
Salehi B, Stojanović-Radić Z, Matejić J, et al. The therapeutic potential of curcumin: A review of clinical trials. Eur J Med Chem 2019; 163: 527-45.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.016] [PMID: 30553144]
[123]
Wu W, Geng H, Liu Z, Li H, Zhu Z. Effect of curcumin on rats/mice with diabetic nephropathy: A systematic review and Meta-analysis of randomized controlled trials. J Tradit Chin Med 2014; 34(4): 419-29.
[http://dx.doi.org/10.1016/S0254-6272(15)30041-8] [PMID: 25185359]
[124]
Rahimi HR, Mohammadpour AH, Dastani M, et al. The effect of nano-curcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: A randomized clinical trial. Avicenna J Phytomed 2016; 6(5): 567-77.
[PMID: 27761427]
[125]
Zare R, Nadjarzadeh A, Zarshenas MM, Shams M, Heydari M. Efficacy of cinnamon in patients with type II diabetes mellitus: A randomized controlled clinical trial. Clin Nutr 2019; 38(2): 549-56.
[http://dx.doi.org/10.1016/j.clnu.2018.03.003] [PMID: 29605574]
[126]
Akilen R, Tsiami A, Devendra D, Robinson N. Glycated haemoglobin and blood pressure-lowering effect of cinnamon in multi-ethnic Type 2 diabetic patients in the UK: a randomized, placebo-controlled, double-blind clinical trial. Diabet Med 2010; 27(10): 1159-67.
[http://dx.doi.org/10.1111/j.1464-5491.2010.03079.x] [PMID: 20854384]
[127]
Akilen R, Pimlott Z, Tsiami A, Robinson N. Effect of short-term administration of cinnamon on blood pressure in patients with prediabetes and type 2 diabetes. Nutrition 2013; 29(10): 1192-6.
[http://dx.doi.org/10.1016/j.nut.2013.03.007] [PMID: 23867208]
[128]
Ashraf R, Khan RA, Ashraf I. Garlic (Allium sativum) supplementation with standard antidiabetic agent provides better diabetic control in type 2 diabetes patients. Pak J Pharm Sci 2011; 24(4): 565-70.
[PMID: 21959822]
[129]
Darooghegi Mofrad M, Milajerdi A, Koohdani F, Surkan PJ, Azadbakht L. Garlic supplementation reduces circulating c-reactive protein, tumor necrosis factor, and interleukin-6 in adults: A systematic review and meta-analysis of randomized controlled trials. J Nutr 2019; 149(4): 605-18.
[http://dx.doi.org/10.1093/jn/nxy310] [PMID: 30949665]
[130]
Ashour MN, Megahed HA, Morsy SM, Eltoukhy SI, Youness ER, Habib DF. Antioxidant and radical scavenging properties of garlic oil in streptozotocin induced diabetic rats. Aust J Basic Appl Sci 2011; 5(10): 280-6.
[131]
Abdali D, Samson SE, Grover AK. How effective are antioxidant supplements in obesity and diabetes? Med Princ Pract 2015; 24(3): 201-15.
[http://dx.doi.org/10.1159/000375305] [PMID: 25791371]
[132]
Calvano A, Izuora K, Oh EC, Ebersole JL, Lyons TJ, Basu A. Dietary berries, insulin resistance and type 2 diabetes: An overview of human feeding trials. Food Funct 2019; 10(10): 6227-43.
[http://dx.doi.org/10.1039/C9FO01426H] [PMID: 31591634]
[133]
Hameed A, Galli M, Adamska-Patruno E, Krętowski A, Ciborowski M. Select polyphenol-rich berry consumption to defer or deter diabetes and diabetes-related complications. Nutrients 2020; 12(9): 2538.
[http://dx.doi.org/10.3390/nu12092538] [PMID: 32825710]
[134]
Delpino FM, Figueiredo LM, Gonçalves da Silva T, Flores TR. Effects of blueberry and cranberry on type 2 diabetes parameters in individuals with or without diabetes: A systematic review and meta-analysis of randomized clinical trials. Nutr Metab Cardiovasc Dis 2022; 32(5): 1093-109.
[http://dx.doi.org/10.1016/j.numecd.2022.02.004] [PMID: 35282984]
[135]
Sahai V, Kumar V. Anti-diabetic, hepatoprotective and antioxidant potential of Brassica oleracea sprouts. Biocatal Agric Biotechnol 2020; 25: 101623.
[http://dx.doi.org/10.1016/j.bcab.2020.101623]
[136]
Watanabe M, Ayugase J. Effects of buckwheat sprouts on plasma and hepatic parameters in type 2 diabetic db/db mice. J Food Sci 2010; 75(9): H294-9.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01853.x] [PMID: 21535603]
[137]
Chatterjee C, Gleddie S, Xiao CW. Soybean bioactive peptides and their functional properties. Nutrients 2018; 10(9): 1211.
[http://dx.doi.org/10.3390/nu10091211] [PMID: 30200502]
[138]
Schwingshackl L, Lampousi A-M, Portillo MP, Romaguera D, Hoffmann G, Boeing H. Olive oil in the prevention and management of type 2 diabetes mellitus: A systematic review and meta-analysis of cohort studies and intervention trials. Nutr Diabetes 2017; 7(4): e262.
[http://dx.doi.org/10.1038/nutd.2017.12] [PMID: 28394365]
[139]
Khaw KT, Sharp SJ, Finikarides L, et al. Randomised trial of coconut oil, olive oil or butter on blood lipids and other cardiovascular risk factors in healthy men and women. BMJ Open 2018; 8(3): e020167.
[http://dx.doi.org/10.1136/bmjopen-2017-020167] [PMID: 29511019]
[140]
Saliu JA, Ademiluyi AO, Boligon AA, Oboh G, Schetinger MRC, Rocha JBT. Dietary supplementation of jute leaf (Corchorus olitorius) modulates hepatic delta‐aminolevulinic acid dehydratase (δ‐ALAD) activity and oxidative status in high‐fat fed/low streptozotocin‐induced diabetic rats. J Food Biochem 2019; 43(8): e12949.
[http://dx.doi.org/10.1111/jfbc.12949] [PMID: 31368580]
[141]
Zhan Y, An X, Wang S, Sun M, Zhou H. Basil polysaccharides: A review on extraction, bioactivities and pharmacological applications. Bioorg Med Chem 2020; 28(1): 115179.
[http://dx.doi.org/10.1016/j.bmc.2019.115179] [PMID: 31740199]
[142]
Bower A, Marquez S, de Mejia EG. The health benefits of selected culinary herbs and spices found in the traditional Mediterranean diet. Crit Rev Food Sci Nutr 2016; 56(16): 2728-46.
[http://dx.doi.org/10.1080/10408398.2013.805713] [PMID: 25749238]
[143]
Kooti W, Hasanzadeh-Noohi Z, Sharafi-Ahvazi N, Asadi-Samani M, Ashtary-Larky D. Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chin J Nat Med 2016; 14(10): 732-45.
[http://dx.doi.org/10.1016/S1875-5364(16)30088-7] [PMID: 28236403]
[144]
Kalhotra P, Chittepu VCSR, Osorio-Revilla G, Gallardo-Velazquez T. Phytochemicals in garlic extract inhibit therapeutic enzyme DPP-4 and induce skeletal muscle cell proliferation: A possible mechanism of action to benefit the treatment of diabetes mellitus. Biomolecules 2020; 10(2): 305.
[http://dx.doi.org/10.3390/biom10020305] [PMID: 32075130]
[145]
Chen W, Balan P, Popovich DG. Review of ginseng anti-diabetic studies. Molecules 2019; 24(24): 4501.
[http://dx.doi.org/10.3390/molecules24244501] [PMID: 31835292]
[146]
Babu SN, Govindarajan S, Vijayalakshmi MA, Noor A. Role of zonulin and GLP-1/DPP-IV in alleviation of diabetes mellitus by peptide/polypeptide fraction of Aloe vera in streptozotocin- induced diabetic wistar rats. J Ethnopharmacol 2021; 272: 113949.
[http://dx.doi.org/10.1016/j.jep.2021.113949] [PMID: 33610707]
[147]
Iyer UM, Mani UV. Studies on the effect of curry leaves supplementation (Murraya koenigi) on lipid profile, glycated proteins and amino acids in non-insulin-dependent diabetic patients. Plant Foods Hum Nutr 1990; 40(4): 275-82.
[http://dx.doi.org/10.1007/BF02193851] [PMID: 2174154]
[148]
Agrawal P, Rai V, Singh RB. Randomized placebo-controlled, single blind trial of holy basil leaves in patients with noninsulin-dependent diabetes mellitus. Int J Clin Pharmacol Ther 1996; 34(9): 406-9.
[PMID: 8880292]
[149]
Imran M, Arshad MS, Butt MS, Kwon JH, Arshad MU, Sultan MT. Mangiferin: A natural miracle bioactive compound against lifestyle related disorders. Lipids Health Dis 2017; 16(1): 84.
[http://dx.doi.org/10.1186/s12944-017-0449-y] [PMID: 28464819]
[150]
Kumari M, Jain S, Dave R. Babul (Acacia nilotica). Nutr Food Sci 2014; 44(2): 119-26.
[http://dx.doi.org/10.1108/NFS-06-2013-0072]
[151]
Anitha S, Hiremath US, Hulimani S, Dandin G, Srinivas K. Therapeutic effect of wood apple on hypertension and diabetes. Eco Env & Cons 2015; 21: 1101-6.
[152]
Kang MJ, Kim JH, Choi HN, et al. Hypoglycemic effects of Welsh onion in an animal model of diabetes mellitus. Nutr Res Pract 2010; 4(6): 486-91.
[http://dx.doi.org/10.4162/nrp.2010.4.6.486] [PMID: 21286406]
[153]
Subramoniam A, Pushpangadan P, Rajasekharan S, Evans DA, Latha PG, Valsaraj R. Effects of Artemisia pallens Wall. on blood glucose levels in normal and alloxan-induced diabetic rats. J Ethnopharmacol 1996; 50(1): 13-7.
[http://dx.doi.org/10.1016/0378-8741(95)01329-6] [PMID: 8778502]
[154]
Patil SM, Shirahatti PS, Ramu R. Azadirachta indica A. Juss (neem) against diabetes mellitus: A critical review on its phytochemistry, pharmacology, and toxicology. J Pharm Pharmacol 2022; 74(5): 681-710.
[http://dx.doi.org/10.1093/jpp/rgab098] [PMID: 34562010]
[155]
Jaiyesimi KF, Agunbiade OS, Ajiboye BO, Afolabi OB. Polyphenolic-rich extracts of Andrographis paniculata mitigate hyperglycemia via attenuating β-cell dysfunction, pro-inflammatory cytokines and oxidative stress in alloxan-induced diabetic Wistar albino rat. J Diabetes Metab Disord 2020; 19(2): 1543-56.
[http://dx.doi.org/10.1007/s40200-020-00690-2] [PMID: 33553038]
[156]
Ojewole JAO. Antinociceptive, anti-inflammatory and antidiabetic effects of Bryophyllum pinnatum (Crassulaceae) leaf aqueous extract. J Ethnopharmacol 2005; 99(1): 13-9.
[http://dx.doi.org/10.1016/j.jep.2005.01.025] [PMID: 15848014]
[157]
Mohamed DA, El-Sayed HS, El-Gawad MAMA, Abdelgayed SS, Hamed IM, Mohamed RS. Characterization of stirred yoghurt enriched with probiotics and beetroot and its therapeutic potential in experimental type 2 diabetes. Acta Sci Pol Technol Aliment 2021; 20(4): 429-48.
[http://dx.doi.org/10.17306/J.AFS.0953] [PMID: 34724367]
[158]
Tian Y, Deng F. Phytochemistry and biological activity of mustard (Brassica juncea): A review. CYTA J Food 2020; 18(1): 704-18.
[http://dx.doi.org/10.1080/19476337.2020.1833988]
[159]
Nille GC, Reddy KR. A phytopharmacological review of plant-Cassia auriculata. Int J Pharm Biol Arch 2015; 6: 1-9.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy