Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Design, Synthesis and Molecular Docking Studies of Pyrazoline Derivatives as PI3K Inhibitors

Author(s): Rohit Kumar, Arvind Kumar, Adarsh Kumar, Ankit Kumar Singh and Pradeep Kumar*

Volume 27, Issue 2, 2024

Published on: 14 June, 2023

Page: [256 - 272] Pages: 17

DOI: 10.2174/1386207326666230504163312

Price: $65

Open Access Journals Promotions 2
Abstract

Aim: Design, synthesis and molecular docking studies of quinoline/naphthalene containing pyrazoline derivatives as PI3K inhibitors.

Background: Phosphatidylinositol 3-kinases (PI3Ks) belong to the family of enzymes, which are associated with various cellular functions such as cell growth, proliferation, differentiation etc. Overexpression or any changes in these functions may result in various abnormalities, which in turn cause cancer.

Objectives: To perform synthesis and molecular docking studies of quinoline/naphthalene containing pyrazoline derivatives as PI3K inhibitors.

Methods: 2-Chloroquinoline-3-carbaldehyde was synthesized by a reaction of acetanilide and POCl3. The latter was reacted with substituted acetophenones to synthesize chalcones, which were reacted with substituted phenyl hydrazines to yield pyrazoline derivatives (Series I). Similarly, pchloro benzaldehyde was reacted with 2-acetonapthone to yield chalcone with substituted phenyl hydrazines to yield pyrazoline derivatives (Series II).

Results: The synthetic compounds were subjected to molecular modelling experiments using Schrodinger 2016 software and evaluated in silico for their PI3K binding affinities. All the compounds had better docking scores than AMG-319 (-4.36 Kcal/mol) and comparable docking scores with PI-103 (-6.83 Kcal/mol).

Conclusion: Compounds 5 and 3 had the best docking scores (-7.85 and -7.17 Kcal/mol, respectively). The synthesized compounds have better docking scores than the reference drug AMG-319. As a result, they might be used as lead molecules in investigating PI3K inhibitors.

Keywords: Cancer, PI3K, quinazoline, pyrazoline, naphthalene, in silico, molecular docking.

Graphical Abstract
[1]
Nagai, H.; Kim, Y.H. Cancer prevention from the perspective of global cancer burden patterns. J. Thorac. Dis., 2017, 9(3), 448-451.
[2]
Kuszyk, B.S.; Corl, F.M.; Franano, F.N.; Bluemke, D.A.; Hofmann, L.V.; Fortman, B.J.; Fishman, E.K. Tumor transport physiology: Implications for imaging and imaging-guided therapy. AJR Am. J. Roentgenol., 2001, 177(4), 747-753.
[http://dx.doi.org/10.2214/ajr.177.4.1770747] [PMID: 11566666]
[3]
Rosielle, D.A.; Atwood, M.; Marks, S.; Rilling, W.S. Palliative care and symptom management, Interventional oncology: Principles and practice of image-guided. 2016, 294-314.
[4]
Laird, P.W. Cancer epigenetics. Hum. Mol. Genet., 2005, 14(S1), R65-R76.
[http://dx.doi.org/10.1093/hmg/ddi113] [PMID: 15809275]
[5]
Chaffer, C.L.; Weinberg, R.A. A perspective on cancer cell] metastasis. Science, 2011, 331, 1559-1564.
[http://dx.doi.org/10.1126/science.1203543] [PMID: 21436443]
[6]
Lu, P.; Weaver, V.M.; Werb, Z. The extracellular matrix: A dynamic niche in cancer progression. J. Cell Biol., 2012, 196(4), 395-406.
[http://dx.doi.org/10.1083/jcb.201102147] [PMID: 22351925]
[7]
Hejmadi, M. Introduction to cancer biology; Bookboon, 2014, pp. 1-48.
[8]
Akinleye, A.; Avvaru, P.; Furqan, M.; Song, Y.; Liu, D. Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J. Hematol. Oncol., 2013, 6(1), 88.
[http://dx.doi.org/10.1186/1756-8722-6-88] [PMID: 24261963]
[9]
Kong, D.; Yamori, T. Phosphatidylinositol 3-kinase inhibitors: Promising drug candidates for cancer therapy. Cancer Sci., 2008, 99(9), 1734-1740.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00891.x] [PMID: 18616528]
[10]
Aly, R.M.; Serya, R.; Amira, M.; Al-Ansary, G.H.; Abou El Ella, D.A. Quinoline-based small molecules as effective protein kinases inhibitors. J. Am. Sci., 2016, 12, 10-32.
[11]
Jain, S.; Chandra, V.; Kumar Jain, P.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2019, 12(8), 4920-4946.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[12]
Qian, Y.; Zhang, H.J.; Zhang, H.; Xu, C.; Zhao, J.; Zhu, H.L. Synthesis, molecular modeling, and biological evaluation of cinnamic acid metronidazole ester derivatives as novel anticancer agents. Bioorg. Med. Chem., 2010, 18(14), 4991-4996.
[http://dx.doi.org/10.1016/j.bmc.2010.06.003] [PMID: 20594859]
[13]
Wang, H.H.; Qiu, K.M.; Cui, H.E.; Yang, Y.S. Yin-Luo; Xing, M.; Qiu, X.Y.; Bai, L.F.; Zhu, H.L. Synthesis, molecular docking and evaluation of thiazolyl-pyrazoline derivatives containing benzodioxole as potential anticancer agents. Bioorg. Med. Chem., 2013, 21(2), 448-455.
[http://dx.doi.org/10.1016/j.bmc.2012.11.020] [PMID: 23245802]
[14]
Shahavar Sulthana, S.; Arul Antony, S.; Balachandran, C.; Syed Shafi, S. Thiophene and benzodioxole appended thiazolyl-pyrazoline compounds: Microwave assisted synthesis, antimicrobial and molecular docking studies. Bioorg. Med. Chem. Lett., 2015, 25(14), 2753-2757.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.033] [PMID: 26028159]
[15]
Altıntop, M.D.; Özdemir, A.; Turan-Zitouni, G.; Ilgın, S.; Atlı Ö.; Demirel, R.; Kaplancıklı Z.A. A novel series of thiazolyl–pyrazoline derivatives: Synthesis and evaluation of antifungal activity, cytotoxicity and genotoxicity. Eur. J. Med. Chem., 2015, 92, 342-352.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.055] [PMID: 25576739]
[16]
Kim, J.; Hong, S.; Hong, S. Discovery of new aminopyrimidine-based phosphoinositide 3-kinase beta (PI3Kβ) inhibitors with selectivity over PI3Kα. Bioorg. Med. Chem. Lett., 2011, 21(23), 6977-6981.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.118] [PMID: 22030027]
[17]
Giordanetto, F.; Wållberg, A.; Ghosal, S.; Iliefski, T.; Cassel, J.; Yuan, Z.Q.; von Wachenfeldt, H.; Andersen, S.M.; Inghardt, T.; Tunek, A.; Nylander, S. Discovery of phosphoinositide 3-kinases (PI3K) p110β isoform inhibitor 4-[2-hydroxyethyl(1-naphthylmethyl)amino]-6-[(2S)-2-methylmorpholin-4-yl]-1H-pyrimidin-2-one, an effective antithrombotic agent without associated bleeding and insulin resistance. Bioorg. Med. Chem. Lett., 2012, 22(21), 6671-6676.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.102] [PMID: 23010262]
[18]
Ciraolo, E.; Morello, F.; Hirsch, E. Present and future of PI3K pathway inhibition in cancer: perspectives and limitations. Curr. Med. Chem., 2011, 18(18), 2674-2685.
[http://dx.doi.org/10.2174/092986711796011193] [PMID: 21649577]
[19]
Che, H.; Guo, H.; Si, X.; You, Q.; Lou, W. PP121, a dual inhibitor of tyrosine and phosphoinositide kinases, inhibits anaplastic thyroid carcinoma cell proliferation and migration. Tumour Biol., 2014, 35(9), 8659-8664.
[http://dx.doi.org/10.1007/s13277-014-2118-3] [PMID: 24867098]
[20]
Herko, A.; Mavis, C.; Czuczman, M. S.; Hernandez, F. AMG 319, a novel inhibitor of phosphoinositide-3 kinase delta (PI3Kd), demonstrates activity in lymphoma pre-clinical models. Am. Soc. Hematol., 2012, 3718-3718.
[http://dx.doi.org/10.1182/blood.V120.21.3718.3718]
[21]
Gaonkar, S.L.; Vignesh, U.N. Synthesis and pharmacological properties of chalcones: A review. Res. Chem. Intermed., 2017, 43(11), 6043-6077.
[http://dx.doi.org/10.1007/s11164-017-2977-5]
[22]
Joshi, V.D.; Kshirsagar, M.D.; Sarita, S. Synthesis and antimicrobial activities of various pyrazolines from chalcones. Int. J. Chemtech Res., 2012, 4, 971-975.
[23]
Van Den Driessche, G.; Fourches, D. Adverse drug reactions triggered by the common HLA-B*57:01 variant: a molecular docking study. J. Cheminform., 2017, 9(1), 13.
[http://dx.doi.org/10.1186/s13321-017-0202-6] [PMID: 28303164]
[24]
Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[25]
Kumar, S.; Singh, J.; Narasimhan, B.; Shah, S.A.A.; Lim, S.M.; Ramasamy, K.; Mani, V. Reverse pharmacophore mapping and molecular docking studies for discovery of GTPase HRas as promising drug target for bis-pyrimidine derivatives. Chem. Cent. J., 2018, 12(1), 106.
[http://dx.doi.org/10.1186/s13065-018-0475-5] [PMID: 30345469]
[26]
Sharma, V.; Sharma, P.C.; Kumar, V. In silico molecular docking analysis of natural pyridoacridines as anticancer agents. Adv Chem, 2016, 2016, 5409387.
[http://dx.doi.org/10.1155/2016/5409387]
[27]
Deep, A.; Singh, J.; Kumar, M.; Mansuri, R.; Sahoo, G.C. Inhibitor designing, virtual screening, and docking studies for methyltransferase: A potential target against dengue virus. J. Pharm. Bioallied Sci., 2016, 8(3), 188-194.
[http://dx.doi.org/10.4103/0975-7406.171682] [PMID: 27413346]
[28]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[29]
Lenselink, E.B.; Louvel, J.; Forti, A.F.; van Veldhoven, J.P.D.; de Vries, H.; Mulder-Krieger, T.; McRobb, F.M.; Negri, A.; Goose, J.; Abel, R.; van Vlijmen, H.W.T.; Wang, L.; Harder, E.; Sherman, W.; IJzerman, A.P.; Beuming, T. Predicting binding affinities for GPCR ligands using free-energy perturbation. ACS Omega, 2016, 1(2), 293-304.
[http://dx.doi.org/10.1021/acsomega.6b00086] [PMID: 30023478]
[30]
Kalra, S.; Joshi, G.; Munshi, A.; Kumar, R. Structural insights of cyclin dependent kinases: Implications in design of selective inhibitors. Eur. J. Med. Chem., 2017, 142, 424-458.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.071] [PMID: 28911822]
[31]
Nandhakumar, R.; Suresh, T.; Jude, A.L.C. Rajesh kannan, V.; Mohan, P.S. Synthesis, antimicrobial activities and cytogenetic studies of newer diazepino quinoline derivatives via Vilsmeier–Haack reaction. Eur. J. Med. Chem., 2007, 42(8), 1128-1136.
[http://dx.doi.org/10.1016/j.ejmech.2007.01.004] [PMID: 17331623]
[32]
Hamama, W.S.; Ibrahim, M.E.; Gooda, A.A.; Zoorob, H.H. Recent advances in the chemistry of 2-chloroquinoline-3-carbaldehyde and related analogs. RSC Advances, 2018, 8(16), 8484-8515.
[http://dx.doi.org/10.1039/C7RA11537G] [PMID: 35539824]
[33]
Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Claisen–Schmidt condensation catalyzed by metal-organic frameworks. Adv. Synth. Catal., 2010, 352(4), 711-717.
[http://dx.doi.org/10.1002/adsc.200900747]
[34]
Guo, S.; Wang, J.; Guo, D.; Zhang, X.; Fan, X. Synthesis of 3,5-disubstituted pyrazoles via cyclocondensation of 1,2-allenic ketones with hydrazines: Application to the synthesis of 5-(5-methyl-pyrazol-3-yl)-2′-deoxycytidine. RSC Advances, 2012, 2(9), 3772-3777.
[http://dx.doi.org/10.1039/c2ra20274c]
[35]
Johnson, M.; Younglove, B.; Lee, L.; LeBlanc, R.; Holt, H., Jr; Hills, P.; Mackay, H.; Brown, T.; Mooberry, S.L.; Lee, M. Design, synthesis, and biological testing of pyrazoline derivatives of combretastatin-A4. Bioorg. Med. Chem. Lett., 2007, 17(21), 5897-5901.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.105] [PMID: 17827004]
[36]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Zaprutko, L.; Gzella, A.; Lesyk, R. Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity. Eur. J. Med. Chem., 2009, 44(4), 1396-1404.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.032] [PMID: 19000643]
[37]
Roecker, A.J.; Coleman, P.J.; Mercer, S.P.; Schreier, J.D.; Buser, C.A.; Walsh, E.S.; Hamilton, K.; Lobell, R.B.; Tao, W.; Diehl, R.E.; South, V.J.; Davide, J.P.; Kohl, N.E.; Yan, Y.; Kuo, L.C.; Li, C.; Fernandez-Metzler, C.; Mahan, E.A.; Prueksaritanont, T.; Hartman, G.D. Kinesin spindle protein (KSP) inhibitors. Part 8: Design and synthesis of 1,4-diaryl-4,5-dihydropyrazoles as potent inhibitors of the mitotic kinesin KSP. Bioorg. Med. Chem. Lett., 2007, 17(20), 5677-5682.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.074] [PMID: 17766111]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy