Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

AmpC Inhibition: An Explicit Approach against Multi-Drug Resistance (MDR)

Author(s): Manish Kaushik, Aditi Kaushik*, Akash Jain, Jasmine Chaudhary and Vrinda Gupta

Volume 23, Issue 20, 2023

Published on: 22 May, 2023

Page: [1919 - 1927] Pages: 9

DOI: 10.2174/1568026623666230504095005

Price: $65

conference banner
Abstract

Multi-drug resistance and its transmission is a ubiquitous health issue worldwide. The beta-lactamase AmpC resistance is a major concern among all health settings like hospitals and child care centers, etc. The clinical pipeline of the new antibiotics remains dry due to the production of AmpC beta-lactamases by the bacteria to develop resistance against antibiotics. According to the global antimicrobial resistance and use surveillance system, the rate of resistance to ciprofloxacin an antibiotic commonly used to treat urinary tract infections, varied from 8.4% to 92.9% for Escherichia coli and from 4.1% to 79.4% for Klebsiellapneumoniae in different countries. The lack of comprehensiveness within the data makes a choice problematic for the selection of appropriate β-lactam antibiotic for the treatment of resistant microorganisms. Most experts agree it is prudent to avoid expanded-spectrum (i.e. third-generation) cephalosporins for the treatment of organisms posing the greatest risk of AmpC induction. Nonetheless, the development of specific inhibitors for the AmpC enzyme, either naturally or synthetically, is only unfolding. To date, there is no single and clinically active drug available that inhibits the AmpC enzyme and combats multidrug resistance and its transmission in individuals. The deficit of the enzyme inhibitor focused the researchers to work in the area. This present review will emphasize on the chemistry, and structure of clinically important and potent inhibitors against AmpC enzymes.

Keywords: Multi-drug Resistance, AmpC resistance, β-lactam antibiotic, AmpC induction, AmpC inhibition, Enzyme.

Next »
Graphical Abstract
[1]
Armin, S.; Fallah, F.; Navidinia, M.; Vosoghian, S. Prevalence of blaOXA-1 and blaDHA-1 AmpC β-lactamase-producing and methicillin-resistant Staphylococcus aureus in Iran. Arch. Pediatr. Infect. Dis., 2017, 5(4), e36778.
[2]
Goudarzi, M.; Navidinia, M.; Beiranvand, E.; Goudarzi, H. Phenotypic and molecular characterization of methicillin-resistant Staphylococcus aureus clones carrying the panton-valentine leukocidin genes disseminating in iranian hospitals. Microb. Drug Resist., 2018, 24(10), 1543-1551.
[http://dx.doi.org/10.1089/mdr.2018.0033] [PMID: 29894277]
[3]
Fahimzad, S.A.; Ghasemi, M.; Shiva, F.; Ghadiri, K.; Navidinia, M.; Karimi, A. Susceptibility pattern of bacillecalmette-guerin strains against pyrazinamide and other major anti-mycobacterial drugs. Arch. Pediatr. Infect. Dis., 2015, 3(1TB), e17814.
[4]
Mohsen, J.; Fatemeh, F.; Shams, B.R.; Masoumeh, N.; Abdolah, K.; Sedigheh, R.T.; Ali, H. The first report of CMY, Aac (6′) -IbAnd 16s rnamethylase genes among Pseudomonas Aeruginosa isolates from Iran. Arch. Pediatr. Infect. Dis., 2013, 1(3), 109-112.
[5]
Navidinia, M.; Goudarzi, M.; Rameshe, S.M.; Farajollahi, Z.; Ebadi Asl, P. khosravi, S.Z.; Mounesi, M.R. Molecular Characterization of resistance genes in MDR-ESKAPE pathogens. J. Pure Appl. Microbiol., 2017, 11(2), 779-792.
[http://dx.doi.org/10.22207/JPAM.11.2.17]
[6]
Navidinia, M. The clinical importance of emerging ESKAPE pathogens in nosocomial infections. J. Paramed. Sci., 2016, 7(3), 2008-4978.
[7]
Peerayeh, S.N.; Navidinia, M.; Fallah, F.; Bakhshi, B.; Jamali, J. Pathogenicity determinants and epidemiology of uropathogenicE.coli(UPEC) strains isolated from children with Urinary Tract Infection (UTI) to define distinct pathotypes. Biomed. Res., 2018, 29(10), 2035-2043.
[8]
Navidinia, M.; Najar Peerayeh, S.; Fallah, F.; Bakhshi, B. Phylogenetic groups and pathogenicity island markers in escherichia coli isolated from children. Jundishapur J. Microbiol., 2013, 6(10), e8362.
[http://dx.doi.org/10.5812/jjm.8362]
[9]
Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med., 2004, 10(S12), S122-S129.
[http://dx.doi.org/10.1038/nm1145] [PMID: 15577930]
[10]
Kallen, A.J.; Srinivasan, A. Current epidemiology of multidrug-resistant gram-negative bacilli in the United States. Infect. Control Hosp. Epidemiol., 2010, 31(S1), S51-S54.
[http://dx.doi.org/10.1086/655996] [PMID: 20929371]
[11]
Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis., 2009, 48(1), 1-12.
[http://dx.doi.org/10.1086/595011] [PMID: 19035777]
[12]
Livermore, D.M. Beta-lactamase-mediated resistance and opportunities for its control. J. Antimicrob. Chemother., 1998, 41(s4), 25-41.
[http://dx.doi.org/10.1093/jac/41.suppl_4.25]
[13]
Livermore, D.M.; Brown, D.F.J. Detection of β-lactamase-mediated resistance. J. Antimicrob. Chemother., 2001, 48(Suppl. 1), 59-64.
[http://dx.doi.org/10.1093/jac/48.suppl_1.59] [PMID: 11420337]
[14]
Llarrull, L.I.; Testero, S.A.; Fisher, J.F.; Mobashery, S. The future of the β-lactams. Curr. Opin. Microbiol., 2010, 13(5), 551-557.
[http://dx.doi.org/10.1016/j.mib.2010.09.008] [PMID: 20888287]
[15]
Worthington, R.J.; Melander, C. Overcoming resistance to β-lactam antibiotics. J. Org. Chem., 2013, 78(9), 4207-4213.
[http://dx.doi.org/10.1021/jo400236f] [PMID: 23530949]
[16]
Bush, K.; Jacoby, G.A. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother., 2010, 54(3), 969-976.
[http://dx.doi.org/10.1128/AAC.01009-09] [PMID: 19995920]
[17]
Cornaglia, G.; Giamarellou, H.; Rossolini, G.M. Metallo-β-lactamases: A last frontier for β-lactams? Lancet Infect. Dis., 2011, 11(5), 381-393.
[http://dx.doi.org/10.1016/S1473-3099(11)70056-1] [PMID: 21530894]
[18]
Hata, M.; Fujii, Y.; Tanaka, Y.; Ishikawa, H.; Ishii, M.; Neya, S.; Tsuda, M.; Hoshino, T. Substrate deacylation mechanisms of serine-beta-lactamases. Biol. Pharm. Bull., 2006, 29(11), 2151-2159.
[http://dx.doi.org/10.1248/bpb.29.2151] [PMID: 17077507]
[19]
Crowder, M.W.; Spencer, J.; Vila, A.J. Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc. Chem. Res., 2006, 39(10), 721-728.
[http://dx.doi.org/10.1021/ar0400241] [PMID: 17042472]
[20]
Mata, C.; Miro, E. Rivera1, A.; Mirelis, B.; Coll, P.; Navarro, F. Prevalence of acquired AmpC b-lactamases in Enterobacteriaceae lacking inducible chromosomal ampC genes at a Spanish hospital from 1999 to 2007. Clin. Microbiol. Infect. Dis., 2010, 16(5), 472-476.
[http://dx.doi.org/10.1111/j.1469-0691.2009.02864.x] [PMID: 19523051]
[21]
Gonçalves Ribeiro, T.; Novais, Â.; Machado, E.; Peixe, L. Acquired AmpC β-Lactamases among Enterobacteriaceae from healthy humans and animals, food, aquatic and trout aquaculture environments in Portugal. Pathogens, 2020, 9(4), 273.
[http://dx.doi.org/10.3390/pathogens9040273] [PMID: 32283601]
[22]
Bauernfeind, A.; Schneider, I.; Jungwirth, R.; Sahly, H.; Ullmann, U. A novel type of AmpC beta-lactamase, ACC-1, produced by a Klebsiella pneumoniae strain causing nosocomial pneumonia. Antimicrob. Agents Chemother., 1999, 43(8), 1924-1931.
[http://dx.doi.org/10.1128/AAC.43.8.1924] [PMID: 10428914]
[23]
Philippon, A.; Arlet, G.; Jacoby, G.A. Plasmid-Determined AmpC-Type β-. Lactamases. Antimicrob. Agents Chemother., 2002, 46(1), 1-11.
[http://dx.doi.org/10.1128/AAC.46.1.1-11.2002] [PMID: 11751104]
[24]
Pérez-Pérez, F.J.; Hanson, N.D. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol., 2002, 40(6), 2153-2162.
[http://dx.doi.org/10.1128/JCM.40.6.2153-2162.2002] [PMID: 12037080]
[25]
Blanc, V.; Mesa, R.; Saco, M.; Lavilla, S.; Prats, G.; Miró, E.; Navarro, F.; Cortés, P.; Llagostera, M. ESBL- and plasmidic class C β-lactamase-producing E. coli strains isolated from poultry, pig and rabbit farms. Vet. Microbiol., 2006, 118(3-4), 299-304.
[http://dx.doi.org/10.1016/j.vetmic.2006.08.002] [PMID: 16973308]
[26]
Hopkins, K.L.; Batchelor, M.J.; Liebana, E.; Deheer-Graham, A.P.; Threlfall, E.J. Characterisation of CTX-M and AmpC genes in human isolates of Escherichia coli identified between 1995 and 2003 in England and Wales. Int. J. Antimicrob. Agents, 2006, 28(3), 180-192.
[http://dx.doi.org/10.1016/j.ijantimicag.2006.03.027] [PMID: 16879949]
[27]
Song, W.; Kim, J.S.; Kim, H.S.; Yong, D.; Jeong, S.H.; Park, M.J.; Lee, K.M. Increasing trend in the prevalence of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal ampC gene at a Korean university hospital from 2002 to 2004. Diagn. Microbiol. Infect. Dis., 2006, 55(3), 219-224.
[http://dx.doi.org/10.1016/j.diagmicrobio.2006.01.012] [PMID: 16545935]
[28]
Empel, J.; Baraniak, A.; Literacka, E.; Mrówka, A.; Fiett, J.; Sadowy, E.; Hryniewicz, W.; Gniadkowski, M. Molecular survey of β-lactamases conferring resistance to newer β-lactams in Enterobacteriaceae isolates from Polish hospitals. Antimicrob. Agents Chemother., 2008, 52(7), 2449-2454.
[http://dx.doi.org/10.1128/AAC.00043-08] [PMID: 18458126]
[29]
Adler, H.; Fenner, L.; Walter, P.; Hohler, D.; Schultheiss, E.; Oezcan, S.; Frei, R. Plasmid-mediated AmpC -lactamases in Enterobacteriaceae lacking inducible chromosomal ampC genes: Prevalence at a Swiss university hospital and occurrence of the different molecular types in Switzerland. J. Antimicrob. Chemother., 2007, 61(2), 457-458.
[http://dx.doi.org/10.1093/jac/dkm472] [PMID: 18065410]
[30]
Dubus, A.; Ledent, P.; Lamotte-Brasseur, J.; Frère, J.M. The roles of residues Tyr150, Glu272, and His314 in class C β-lactamases. Proteins, 1996, 25(4), 473-485.
[PMID: 8865342]
[31]
Chen, Y.; Minasov, G.; Roth, T.A.; Prati, F.; Shoichet, B.K. The deacylation mechanism of AmpC β-lactamase at ultrahigh resolution. J. Am. Chem. Soc., 2006, 128(9), 2970-2976.
[http://dx.doi.org/10.1021/ja056806m] [PMID: 16506777]
[32]
Drawz, S.M.; Bonomo, R.A. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev., 2010, 23(1), 160-201.
[http://dx.doi.org/10.1128/CMR.00037-09] [PMID: 20065329]
[33]
Jacoby, G.A. AmpC β-. Lactamases. Clin. Microbiol. Rev., 2009, 22(1), 161-182.
[http://dx.doi.org/10.1128/CMR.00036-08] [PMID: 19136439]
[34]
Worldwide protein data bank.Crystal structure of AmpC betalactamase from E. coli in complex with ceftazidime. (Accessed January 9, 2023).
[35]
Jenks, P.J.; Hu, Y.M.; Danel, F.; Mehtar, S.; Livermore, D.M. Plasmid-mediated production of Class I (AmpC) β-lactamase by two Klebsiella pneumoniae isolates from the UK. J. Antimicrob. Chemother., 1995, 35(1), 235-236.
[http://dx.doi.org/10.1093/jac/35.1.235] [PMID: 7768779]
[36]
Babic, M.; Hujer, A.; Bonomo, R. What’s new in antibiotic resistance? Focus on β-lactamases. Drug Resist. Updat., 2006, 9(3), 142-156.
[http://dx.doi.org/10.1016/j.drup.2006.05.005] [PMID: 16899402]
[37]
Hanson, N.D.; Sanders, C.C. Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae. Curr. Pharm. Des., 1999, 5(11), 881-894.
[http://dx.doi.org/10.2174/1381612805666230112191507] [PMID: 10539994]
[38]
Power, P.; Galleni, M.; Ayala, J.A.; Gutkind, G. Biochemical and molecular characterization of three new variants of AmpC β-lactamases from Morganella morganii. Antimicrob. Agents Chemother., 2006, 50(3), 962-967.
[http://dx.doi.org/10.1128/AAC.50.3.962-967.2006] [PMID: 16495258]
[39]
Katrijn, L.; Rensing, K.L.; Abdallah, H.M.; Koek, A.; Elmowalid, G.A.; Christina, M.J.E.; Grauls, V.; Naiemi, N.A.; Dijk, K.V. Prevalence of plasmid-mediated AmpC in Enterobacteriaceae isolated from humans and from retail meat in Zagazig, Egypt. Antimicrob. Resist. Infect. Control, 2019, 8(45), 1-8.
[40]
Pehlivanlar Önen, S. Aslantaş Ö.; Şebnem Yılmaz, E.; Kürekci, C. Prevalence of β-Lactamase Producing Escherichia coli from Retail Meat in Turkey. J. Food Sci., 2015, 80(9), M2023-M2029.
[http://dx.doi.org/10.1111/1750-3841.12984] [PMID: 26256548]
[41]
Ghodousi, A.; Bonura, C.; Di Noto, A.M.; Mammina, C. Extended-spectrum ß-lactamase, AmpC-producing, and fluoroquinolone-resistant Escherichia coli in retail broiler chicken meat, Italy. Foodborne Pathog. Dis., 2015, 12(7), 619-625.
[http://dx.doi.org/10.1089/fpd.2015.1936] [PMID: 26135894]
[42]
Maamar, E.; Hammami, S.; Alonso, C.A.; Dakhli, N.; Abbassi, M.S.; Ferjani, S.; Hamzaoui, Z.; Saidani, M.; Torres, C.; Boutiba-Ben Boubaker, I. High prevalence of extended-spectrum and plasmidic AmpC beta-lactamase-producing Escherichia coli from poultry in Tunisia. Int. J. Food Microbiol., 2016, 231, 69-75.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2016.05.001] [PMID: 27220012]
[43]
Then, R.L.; Angehrn, P. Trapping of nonhydrolyzable cephalosporins by cephalosporinases in Enterobacter cloacae and Pseudomonas aeruginosa as a possible resistance mechanism. Antimicrob. Agents Chemother., 1982, 21(5), 711-717.
[http://dx.doi.org/10.1128/AAC.21.5.711] [PMID: 6808912]
[44]
Vu, H.; Nikaido, H. Role of β-lactam hydrolysis in the mechanism of resistance of a β-lactamase-constitutive Enterobacter cloacae strain to expanded-spectrum β-lactams. Antimicrob. Agents Chemother., 1985, 27(3), 393-398.
[http://dx.doi.org/10.1128/AAC.27.3.393] [PMID: 3873215]
[45]
Lamotte-Brasseur, J.; Dubus, A.; Wade, R.C. pKa calculations for class C? -lactamases: The role of tyr-150. Proteins, 2000, 40(1), 23-28.
[http://dx.doi.org/10.1002/(SICI)1097-0134(20000701)40:1<23:AID-PROT40>3.0.CO;2-7] [PMID: 10813827]
[46]
Oefner, C.; D’Arcy, A.; Daly, J.J.; Gubernator, K.; Charnas, R.L.; Heinze, I.; Hubschwerlen, C.; Winkler, F.K. Refined crystal structure of β-lactamase from Citrobacter freundiiindicates a mechanism for β-lactam hydrolysis. Nature, 1990, 343(6255), 284-288.
[http://dx.doi.org/10.1038/343284a0] [PMID: 2300174]
[47]
Watkins, R.R.; Wallace, K.M.P.; Drawz, S.M.; Bonomo, R.A. Novel β-lactamase inhibitors: A therapeutic hope against the scourge of multi drug resistance. Front. Microbiol., 2013, 4, 1-8.
[http://dx.doi.org/10.3389/fmicb.2013.00392]
[48]
Chen, Y.; McReynolds, A.; Shoichet, B.K. Re-examining the role of Lys67 in class C beta-lactamase catalysis. Protein Sci., 2009, 18(3), 662-669.
[PMID: 19241376]
[49]
Bonomo, R.A. β-Lactamases: a focus on current challenges. Cold Spring Harb. Perspect. Med., 2017, 7(1), a025239.
[50]
Luci, G.; Mattioli, F.; Falcone, M.; Paolo, A.D. Pharmacokinetics of non-β-lactam β-lactamase inhibitors. Antibiotics, 2021, 10(7), 769.
[http://dx.doi.org/10.3390/antibiotics10070769]
[51]
Cheng, M.P.; Lee, R.S.; Cheng, A.P.; De L’étoile-Morel, S.; Demir, K.; Yansouni, C.P.; Harris, P.; McDonald, E.G.; Lee, T.C. Beta-lactam/beta-lactamase inhibitor therapy for potential AmpC-producing organisms: a systematic review and meta-analysis. Open Forum Infect. Dis., 2019, 6(7), ofz248.
[http://dx.doi.org/10.1093/ofid/ofz248] [PMID: 31363762]
[52]
Duin, V.D.; Doi, Y. The global epidemiology of carbapenemase producing Enterobacteriaceae. Virulence, 2016, 2016, 1-10.
[PMID: 27593176]
[53]
Drawz, S.M.; Papp-Wallace, K.M.; Bonomo, R.A. New β-lactamase inhibitors: A therapeutic renaissance in an MDR world. Antimicrob. Agents Chemother., 2014, 58(4), 1835-1846.
[http://dx.doi.org/10.1128/AAC.00826-13] [PMID: 24379206]
[54]
Zhanel, G.G.; Lawson, C.D.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Lagacé-Wiens, P.R.S.; Denisuik, A.; Rubinstein, E.; Gin, A.S.; Hoban, D.J.; Lynch, J.P., III; Karlowsky, J.A. Ceftazidime-avibactam: A novel cephalosporin/β-lactamase inhibitor combination. Drugs, 2013, 73(2), 159-177.
[http://dx.doi.org/10.1007/s40265-013-0013-7] [PMID: 23371303]
[55]
Wong, D.; van Duin, D. Novel beta-lactamase inhibitors: unlocking their potential in therapy. Drugs, 2017, 77(6), 615-628.
[http://dx.doi.org/10.1007/s40265-017-0725-1] [PMID: 28303449]
[56]
Hecker, S.J.; Reddy, K.R.; Totrov, M.; Hirst, G.C.; Lomovskaya, O.; Griffith, D.C.; King, P.; Tsivkovski, R.; Sun, D.; Sabet, M.; Tarazi, Z.; Clifton, M.C.; Atkins, K.; Raymond, A.; Potts, K.T.; Abendroth, J.; Boyer, S.H.; Loutit, J.S.; Morgan, E.E.; Durso, S.; Dudley, M.N. Discovery of a cyclic boronic acid b-lactamase inhibitor (RPX7009) with utility vs class A serine carbapenemases. J. Med. Chem., 2015, 58(9), 3682-3692.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00127] [PMID: 25782055]
[57]
Castanheira, M.; Rhomberg, P.R.; Flamm, R.K.; Jones, R.N. Effect of the beta-lactamase inhibitor vaborbactam combined with meropenem against serine carbapenemase-producing enterobacteriaceae. Antimicrob. Agents Chemother., 2016, 60(9), 5454-5458.
[http://dx.doi.org/10.1128/AAC.00711-16] [PMID: 27381386]
[58]
Griffith, D.C.; Loutit, J.S.; Morgan, E.E.; Durso, S.; Dudley, M.N. Phase 1 study of the safety, tolerability, and pharmacokinetics of the β-lactamase inhibitor vaborbactam (RPX7009) in healthy adult subjects. Antimicrob. Agents Chemother., 2016, 60(10), 6326-6332.
[http://dx.doi.org/10.1128/AAC.00568-16] [PMID: 27527080]
[59]
Kaye, K.S.; Bhowmick, T.; Metallidis, S.; Bleasdale, S.C.; Sagan, O.S.; Stus, V.; Vazquez, J.; Zaitsev, V.; Bidair, M.; Chorvat, E.; Dragoescu, P.O.; Fedosiuk, E.; Horcajada, J.P.; Murta, C.; Sarychev, Y.; Stoev, V.; Morgan, E.; Fusaro, K.; Griffith, D.; Lomovskaya, O.; Alexander, E.L.; Loutit, J.; Dudley, M.N.; Giamarellos-Bourboulis, E.J. Effect of meropenem-vaborbactam vs piperacillin-tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection. JAMA, 2018, 319(8), 788-799.
[http://dx.doi.org/10.1001/jama.2018.0438] [PMID: 29486041]
[60]
Lapuebla, A.; Abdallah, M.; Olafisoye, O.; Cortes, C.; Urban, C.; Landman, D.; Quale, J. Activity of imipenem with relebactam against gram-negative pathogens from New York City. Antimicrob. Agents Chemother., 2015, 59(8), 5029-5031.
[http://dx.doi.org/10.1128/AAC.00830-15] [PMID: 26014931]
[61]
Lucasti, C.; Vasile, L.; Sandesc, D.; Venskutonis, D.; McLeroth, P.; Lala, M.; Rizk, M.L.; Brown, M.L.; Losada, M.C.; Pedley, A.; Kartsonis, N.A.; Paschke, A. Phase 2, dose-ranging study of relebactam with imipenem/cilastatin in subjects with complicated intra-abdominal infection. Antimicrob. Agents Chemother., 2016, 60(10), 6234-6243.
[http://dx.doi.org/10.1128/AAC.00633-16] [PMID: 27503659]
[62]
Eisele, P.; Consalvo, R. Results of phase 2 study of Merck’s Investigational beta-lactamase inhibitor relebactam in combination with imipenem/cilastatin presented at ASM microbe. 2016. Available from: https://www.merck.com/news/results-of-phase-2-study-of-mercks-investigational-beta-lactamase-inhibitor-relebactam-in-combination-with-imipenem-cilastatin-presented-at-asm-microbe/
[63]
Li, D.; McConnell, I. Results of phase 2 study of Merck’s investigational beta-lactamase inhibitor relebactam. 2016. Available from: https://www.merck.com/news/results-of-phase-2-study-of-mercks-investigational-beta-lactamase-inhibitor-relebactam-presented-at-icaac-icc-2015/
[64]
Morandi, F.; Caselli, E.; Morandi, S.; Focia, P.J.; Blázquez, J.; Shoichet, B.K.; Prati, F. Nanomolar inhibitors of AmpC β-lactamase. J. Am. Chem. Soc., 2003, 125(3), 685-695.
[http://dx.doi.org/10.1021/ja0288338] [PMID: 12526668]
[65]
Powers, R.A.; Morandi, F.; Shoichet, B.K. Structure-based discovery of a novel, noncovalent inhibitor of AmpC beta-lactamase. Structure, 2002, 10(7), 1013-1023.
[http://dx.doi.org/10.1016/S0969-2126(02)00799-2] [PMID: 12121656]
[66]
Tondi, D.; Calò, S.; Shoichet, B.K.; Costi, M.P. Structural study of phenyl boronic acid derivatives as AmpC β-lactamase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(11), 3416-3419.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.007] [PMID: 20452208]
[67]
Wyrembak, P.N.; Babaoglu, K.; Pelto, R.B.; Shoichet, B.K.; Pratt, R.F. O-aryloxycarbonyl hydroxamates: new β-lactamase inhibitors that cross-link the active site. J. Am. Chem. Soc., 2007, 129(31), 9548-9549.
[http://dx.doi.org/10.1021/ja072370u] [PMID: 17628063]
[68]
Higgins, P.G.; Stefanik, D.; Page, M.G.P.; Hackel, M.; Seifert, H. In vitro activity of the siderophore monosulfactam BAL30072 against meropenem-non-susceptible Acinetobacter baumannii. J. Antimicrob. Chemother., 2012, 67(5), 1167-1169.
[http://dx.doi.org/10.1093/jac/dks009] [PMID: 22294643]
[69]
Powers, R.A.; Blázquez, J.; Weston, G.S.; Shoichet, B.K.; Morosini, M-I.; Baquero, F. The complexed structure and antimicrobial activity of a non-β-lactam inhibitor of AmpC β-lactamase. Protein Sci., 1999, 8(11), 2330-2337.
[http://dx.doi.org/10.1110/ps.8.11.2330] [PMID: 10595535]
[70]
Parvaiz, N.; Ahmad, F.; Yu, W.; MacKerell, A.D., Jr; Azam, S.S. Discovery of beta-lactamase CMY-10 inhibitors for combination therapy against multi-drug resistant Enterobacteriaceae. PLoS One, 2021, 16(1), e0244967.
[http://dx.doi.org/10.1371/journal.pone.0244967] [PMID: 33449932]
[71]
Genovese, F.; Lazzari, S.; Venturi, E.; Costantino, L.; Blazquez, J.; Ibacache-Quiroga, C.; Costi, M.P.; Tondi, D. Design, synthesis and biological evaluation of non-covalent AmpC β-lactamases inhibitors. Med. Chem. Res., 2017, 26(5), 975-986.
[http://dx.doi.org/10.1007/s00044-017-1809-x]
[72]
Spyrakis, F.; Santucci, M.; Maso, L.; Cross, S.; Gianquinto, E.; Sannio, F.; Verdirosa, F.; De Luca, F.; Docquier, J.D.; Cendron, L.; Tondi, D.; Venturelli, A.; Cruciani, G.; Costi, M.P. Virtual screening identifies broad-spectrum β-lactamase inhibitors with activity on clinically relevant serine- and metallo-carbapenemases. Sci. Rep., 2020, 10(1), 12763.
[http://dx.doi.org/10.1038/s41598-020-69431-y] [PMID: 32728062]
[73]
Jeong, B.G.; Na, J.H.; Bae, D.W.; Park, S.B.; Lee, H.S.; Cha, S.S. Crystal structure of AmpC BER and molecular docking lead to the discovery of broad inhibition activities of halisulfates against β-lactamases. Comput. Struct. Biotechnol. J., 2021, 19, 145-152.
[http://dx.doi.org/10.1016/j.csbj.2020.12.015] [PMID: 33425247]
[74]
Na, J.H.; Cha, S.S. Structural basis for the extended substrate spectrum of AmpC BER and structure-guided discovery of the inhibition activity of citrate against the class C β-lactamases AmpC BER and CMY-10. Acta Crystallogr. D Struct. Biol., 2016, 72(8), 976-985.
[http://dx.doi.org/10.1107/S2059798316011311] [PMID: 27487828]
[75]
Kim, M.K.; An, Y.J.; Na, J.H.; Seol, J.H.; Ryu, J.Y.; Lee, J.W.; Kang, L.W.; Chung, K.M.; Lee, J.H.; Moon, J.H.; Lee, J.S.; Cha, S.S. Structural and mechanistic insights into the inhibition of class C β-lactamases through the adenylylation of the nucleophilic serine. J. Antimicrob. Chemother., 2017, 72(3), 735-743.
[PMID: 27999057]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy