Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Nutritional Fuelling for Microgravity Environment of Space Missions

Author(s): Sneha Chopra, Som Nath Singh and Pulkit Mathur*

Volume 20, Issue 4, 2024

Published on: 19 June, 2023

Page: [450 - 465] Pages: 16

DOI: 10.2174/1573401319666230503162143

Price: $65

Abstract

Since the beginning of space missions, the food systems have undergone a sea change with prolonged manned missions and permanent space habitats. We have a better understanding of physiological changes which happen in humans in space and help in adaptation to the space environment. Yet, much remains underexplored and warrants further research.

Space missions today involve a considerable number of individuals operating in a microgravity environment for both short and long periods. The provision of food for such missions and managing the physio-pathological changes that affect nutritional requirements continue to be challenging. Food systems (food and beverages) used during every program to date have been shelf‐stable and were composed primarily of rehydratable or thermostabilized food items. Such foods usually have a lower hedonic value than fresh or frozen foods. Consequently, a reliable food system must provide a wide range of palatable and attractive foods as well as the tools to prepare them (through rehydration, heating, and cooling) to enhance the taste sensation of the crew. Adequate nutrition with easily accessible food is essential to this effort. To deliver nutritional recommendations to crew members for long-duration space missions, it is important to understand how nutritional status and general physiology are linked and affected by microgravity exposure. In view of this, it has been pointed out that nutritional countermeasures could rectify the physiological and behavioural anomalies during microgravity exposure. In this comprehensive narrative review, we have provided an overview of a few recent advances such as silkworm protein, good mood-vegan diet, 3-D food printing, and space garden’s produce for onboard support to food systems. It has also been found that exercise could be an addition to nutritional interventions. Areas of space exploration that require more in-depth research using ground-based bed rest models, as well as inflight microgravity conditions, are highlighted.

Keywords: Space food system, microgravity, nutritional countermeasures, silkworm diet, space garden, 3-D food printing.

Graphical Abstract
[1]
Fang YZ, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition 2002; 18(10): 872-9.
[http://dx.doi.org/10.1016/S0899-9007(02)00916-4] [PMID: 12361782]
[2]
Ferrando AA, Paddon-Jones D, Wolfe RR. Alterations in protein metabolism during space flight and inactivity. Nutrition 2002; 18(10): 837-41.
[http://dx.doi.org/10.1016/S0899-9007(02)00930-9] [PMID: 12361775]
[3]
Zwart SR, Morgan JLL, Smith SM. Iron status and its relations with oxidative damage and bone loss during long-duration space flight on the International Space Station. Am J Clin Nutr 2013; 98(1): 217-23.
[http://dx.doi.org/10.3945/ajcn.112.056465] [PMID: 23719548]
[4]
Morgan JLL, Zwart SR, Heer M, Ploutz-Snyder R, Ericson K, Smith SM. Bone metabolism and nutritional status during 30-day head-down-tilt bed rest. J Appl Physiol 2012; 113(10): 1519-29.
[http://dx.doi.org/10.1152/japplphysiol.01064.2012] [PMID: 22995395]
[5]
Smith SM, Zwart SR, Block G, Rice BL, Davis-Street JE. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J Nutr 2005; 135(3): 437-43.
[http://dx.doi.org/10.1093/jn/135.3.437] [PMID: 15735075]
[6]
Cena H, Sculati M, Roggi C. Nutritional concerns and possible countermeasures to nutritional issues related to space flight. Eur J Nutr 2003; 42(2): 99-110.
[http://dx.doi.org/10.1007/s00394-003-0392-8] [PMID: 12638031]
[7]
Connaboy C, Sinnott AM, LaGoy AD, et al. Cognitive performance during prolonged periods in isolated, confined, and extreme environments. Acta Astronaut 2020; 177: 545-51.
[http://dx.doi.org/10.1016/j.actaastro.2020.08.018]
[8]
Drummer C, Hesse C, Baisch F, et al. Water and sodium balances and their relation to body mass changes in microgravity. Eur J Clin Invest 2000; 30(12): 1066-75.
[http://dx.doi.org/10.1046/j.1365-2362.2000.00766.x] [PMID: 11122321]
[9]
Douglas GL, Cooper M, Bermudez-Aguirre D, Sirmons T. Risk of performance decrement and crew illness due to an inadequate food system. 2016. Available from: https://www.semanticscholar.org/paper/Risk-of-Performance-Decrement-and-Crew-Illness-Due-Douglas-Cooper/195aee2fd225c02a5b8cf4a89145936f246593b2
[10]
Olabi AA, Lawless HT, Hunter JB, Levitsky DA, Halpern BP. The effect of microgravity and space flight on the chemical senses. J Food Sci 2002; 67(2): 468-78.
[http://dx.doi.org/10.1111/j.1365-2621.2002.tb10622.x] [PMID: 12085931]
[11]
Trotier D, Bensimon JL, Herman P, Tran Ba Huy P, Døving KB, Eloit C. Inflammatory obstruction of the olfactory clefts and olfactory loss in humans: A new syndrome? Chem Senses 2007; 32(3): 285-92.
[http://dx.doi.org/10.1093/chemse/bjl057] [PMID: 17237476]
[12]
Rai B, Kaur J. Mental and physical workload, salivary stress biomarkers and taste perception: Mars desert research station expedition. N Am J Med Sci 2012; 4(11): 577-81.
[http://dx.doi.org/10.4103/1947-2714.103318] [PMID: 23181230]
[13]
Goel N, Bale TL, Epperson CN, et al. Effects of sex and gender on adaptation to space: Behavioral health. J Womens Health 2014; 23(11): 975-86.
[http://dx.doi.org/10.1089/jwh.2014.4911] [PMID: 25259837]
[14]
Reschke MF, Cohen HS, Cerisano JM, et al. Effects of sex and gender on adaptation to space: Neurosensory systems. J Womens Health 2014; 23(11): 959-62.
[http://dx.doi.org/10.1089/jwh.2014.4908] [PMID: 25401941]
[15]
Ronca AE, Baker ES, Bavendam TG, et al. Effects of sex and gender on adaptations to space: Reproductive health. J Womens Health 2014; 23(11): 967-74.
[http://dx.doi.org/10.1089/jwh.2014.4915] [PMID: 25401943]
[16]
Kennedy AR, Crucian B, Huff JL, et al. Effects of sex and gender on adaptation to space: Immune system. J Womens Health 2014; 23(11): 956-8.
[http://dx.doi.org/10.1089/jwh.2014.4913] [PMID: 25401940]
[17]
Ploutz-Snyder L, Bloomfield S, Smith SM, Hunter SK, Templeton K, Bemben D. Effects of sex and gender on adaptation to space: Musculoskeletal health. J Womens Health 2014; 23(11): 963-6.
[http://dx.doi.org/10.1089/jwh.2014.4910] [PMID: 25401942]
[18]
Platts SH, Bairey MCN, Barr Y, Fu Q, Gulati M, Hughson R. Effects of sex and gender on adaptation to space: Cardiovascular alterations. J Womens Health 2014; 23(11): 950-5.
[http://dx.doi.org/10.1089/jwh.2014.4912]
[19]
Agency. TES. The flight of vostok 1 the european space agency. The European Space Agency 2015. Available from: https://www.esa.int/About_Us/ESA_history/50_years_of_humans_in_space/The_flight_of_Vostok_1
[20]
Casaburri AA, Gardner CA. Space food and nutrition: An educator s guide with activities in science and mathematics. National Aeronautics and Space Administration 1999. Available from: https://www.academia.edu/74614928/Space_Food_and_Nutrition_An_Educators_Guide_with_Activities_in_Science_and_Mathematics
[21]
Johnston RS, Dietlein LF, Berry CA. Biomedical results of apollo: Scientific and technical information office. National Aeronautics and Space 1975. Available from: https://ntrs.nasa.gov/citations/19760005580
[22]
Newkirk RW, Ertel ID. Skylab: A chronology: NASA, Nat. Aeronautics and Space Administration 1977. Available from: https://history.nasa.gov/SP-4011.pdf
[23]
Stadler CR, Bourland CT, Rapp RM, Sauer RL. Food system for space shuttle Columbia. J Am Diet Assoc 1982; 80(2): 108-14.
[http://dx.doi.org/10.1016/S0002-8223(21)08424-8] [PMID: 7054254]
[24]
Koenig DW, Pierson DL. Microbiology of the space shuttle water system. Water Sci Technol 1997; 35(11-12): 59-64.
[http://dx.doi.org/10.2166/wst.1997.0710] [PMID: 11540417]
[25]
Smith SM, Lane HW. Nutritional biochemistry of space flight. Life Support Biosph Sci 1999; 6(1): 5-8.
[PMID: 11541543]
[26]
Graebe A, Schuck EL, Lensing P, Putcha L, Derendorf H. Physiological, pharmacokinetic, and pharmacodynamic changes in space. J Clin Pharmacol 2004; 44(8): 837-53.
[http://dx.doi.org/10.1177/0091270004267193] [PMID: 15286087]
[27]
Morgan C. Shuttle-Mir: The United States and russia share history's highest stage. CreateSpace Independent Publishing Platform. Houston, TX (2001). Available from: https://works.bepress.com/clay_morgan/5/
[28]
Perchonok M, Bourland C. NASA food systems. Nutrition 2002; 18(10): 913-20.
[http://dx.doi.org/10.1016/S0899-9007(02)00910-3] [PMID: 12361787]
[29]
Massa G, Romeyn M, Fritsche R. Future food production system development pulling from space biology crop growth testing in veggie. NTRS 2017. Available from: https://ntrs.nasa.gov/citations/20170010429
[30]
Grace DKGL, Wu X. No grocery store, no problem NASA website. NASA 2021.
[31]
Massa GD, Dufour NF, Carver JA, et al. VEG-01: Veggie hardware validation testing on the International Space Station. Open Agric 2017; 2(1): 33-41.
[http://dx.doi.org/10.1515/opag-2017-0003]
[32]
Cooper M, Douglas G, Perchonok M. Developing the NASA food system for long-duration missions. J Food Sci 2011; 76(2): R40-8.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01982.x] [PMID: 21535783]
[33]
Tays GD, Hupfeld KE, McGregor HR, et al. The effects of long duration spaceflight on sensorimotor control and cognition. Front Neural Circuits 2021; 15: 723504.
[http://dx.doi.org/10.3389/fncir.2021.723504] [PMID: 34764856]
[34]
Jain V, Wotring VE. Medically induced amenorrhea in female astronauts. NPJ Microgravity 2016; 2(1): 1-6.
[35]
Affairs U. Only around 1 in 5 space industry workers are women. United Nations 2021. Available from: https://news.un.org/en/story/2021/10/1102082
[36]
Saralyn M, Scott G, Donoviel D, Leveton L, Mahoney E, Charles J. The impact of sex and gender on adaptation to space: Exwcutive summary. J Womens Health 2014; 23(11): 941-7.
[37]
Maillet A, Zaouali-Ajina M, Vorobiev D, et al. Orthostatic tolerance and hormonal changes in women during 120 days of head-down bed rest. Aviat Space Environ Med 2000; 71(7): 706-14.
[PMID: 10902934]
[38]
Arzeno NM, Stenger MB, Lee SMC, Ploutz-Snyder R, Platts SH. Sex differences in blood pressure control during 6° head-down tilt bed rest. Am J Physiol Heart Circ Physiol 2013; 304(8): H1114-23.
[http://dx.doi.org/10.1152/ajpheart.00391.2012] [PMID: 23396455]
[39]
Evans JM, Knapp CF, Goswami N. Artificial gravity as a countermeasure to the cardiovascular deconditioning of spaceflight: Gender perspectives. Front Physiol 2018; 9: 716.
[http://dx.doi.org/10.3389/fphys.2018.00716] [PMID: 30034341]
[40]
Evans JM, Ziegler MG, Patwardhan AR, Ott JB, Kim CS, Leonelli FM. Gender differences in autonomic cardiovascular regulation: Spectral, hormonal, and hemodynamic indexes. J Appl Physiol 2001; 91(6): 2611-8.
[http://dx.doi.org/10.1152/jappl.2001.91.6.2611]
[41]
Hughson RL, Robertson AD, Arbeille P, et al. Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 6-mo spaceflight in male and female astronauts. Am J Physiol Heart Circ Physiol 2016; 310(5): H628-38.
[http://dx.doi.org/10.1152/ajpheart.00802.2015] [PMID: 26747504]
[42]
Mendelsohn ME. Genomic and nongenomic effects of estrogen in the vasculature. Am J Cardiol 2002; 90(1): F3-6.
[http://dx.doi.org/10.1016/S0002-9149(02)02418-9] [PMID: 12106632]
[43]
Da Silva MS, Zimmerman PM, Meguid MM, et al. Anorexia in space and possible etiologies. Nutrition 2002; 18(10): 805-13.
[http://dx.doi.org/10.1016/S0899-9007(02)00915-2] [PMID: 12361771]
[44]
Cvijić G, Janić-Sibalić V, Demajo M, Karakasević A, Petrović VM, Ivanisević-Milovanović OK. The effects of continuous light and darkness on the activity of monoamine oxidase A and B in the hypothalamus, ovaries and uterus of rats. Acta Physiol Hung 1997-1998; 85(3): 269-76.
[PMID: 10101541]
[45]
Ivanisšvić-Milovanović OK, Demajo M, Karakašević A, Pantić V. The effect of constant light on the concentration of catecholamines of the hypothalamus and adrenal glands, circulatory hadrenocorticotropin hormone and progesterone. J Endocrinol Invest 1995; 18(5): 378-83.
[http://dx.doi.org/10.1007/BF03347842] [PMID: 7594228]
[46]
Varma M, Sato T, Zhang L, Meguid MM. Space flight related anorexia. Lancet 2000; 356(9230): 681.
[http://dx.doi.org/10.1016/S0140-6736(05)73828-9] [PMID: 10968463]
[47]
Agureev AN, Kalandarov S, Segal DE. Optimization of cosmonauts' nutrition during the period of acute adaptation and at the closing stage of the mission. Aviakosm Ekolog Med 1997; 31(6): 47-51.
[48]
Ans AH, Anjum I, Satija V, et al. Neurohormonal regulation of appetite and its relationship with stress: A mini literature review. Cureus 2018; 10(7): e3032.
[http://dx.doi.org/10.7759/cureus.3032] [PMID: 30254821]
[49]
Laurens C, Simon C, Vernikos J, Gauquelin-Koch G, Blanc S, Bergouignan A. Revisiting the role of exercise countermeasure on the regulation of energy balance during space flight. Front Physiol 2019; 10: 321.
[http://dx.doi.org/10.3389/fphys.2019.00321] [PMID: 30984019]
[50]
Nicogossian AE, Williams RS, Huntoon CL, Doarn C, Polk JD, Schneider VS. Space physiology and medicine: From evidence to practice. Springer 2016.
[http://dx.doi.org/10.1007/978-1-4939-6652-3]
[51]
Energy and protein requirements. Report of a joint FAO/WHO/UNU Expert Consultation. World Health Organ Tech Rep Ser 1985; 724: 1-206.
[52]
Heer M, Boerger A, Kamps N, Mika C, Korr C, Drummer C. Nutrient supply during recent European missions. Pflugers Arch Eur J Physiol 2000; 441(S2-3): R8-R14.
[http://dx.doi.org/10.1007/s004240000334]
[53]
Institute of medicine standing committee on the scientific evaluation of dietary Reference I, its Panel on Folate OBV, Choline The National academies collection: Reports funded by National Institutes of Health Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B(6), Folate, Vitamin B(12), Pantothenic Acid, Biotin, and Choline. Washington (DC): National Academies Press (US) 1998.
[54]
Sun D, Krishnan A, Zaman K, Lawrence R, Bhattacharya A, Fernandes G. Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. J Bone Miner Res 2003; 18(7): 1206-16.
[http://dx.doi.org/10.1359/jbmr.2003.18.7.1206]
[55]
Waligora J, Horrigan D. Metabolism and heat dissipation during Apollo EVA periods. Biomedical results of Apollo 1975; 115-28.
[56]
Stein TP. The relationship between dietary intake, exercise, energy balance and the space craft environment. Pflugers Arch Eur J Physiol 2000; 441(S2-3): R21-31.
[http://dx.doi.org/10.1007/s004240000352]
[57]
Stein TP, Leskiw MJ, Schluter MD, Donaldson MR, Larina I. Protein kinetics during and after long-duration spaceflight on MIR. Am J Physiol 1999; 276(6 Pt 1): E1014-21.
[PMID: 10362613]
[58]
Biolo G, Ciocchi B, Stulle M, et al. Calorie restriction accelerates the catabolism of lean body mass during 2 wk of bed rest. Am J Clin Nutr 2007; 86(2): 366-72.
[http://dx.doi.org/10.1093/ajcn/86.2.366] [PMID: 17684207]
[59]
Navasiolava NM, Custaud MA, Tomilovskaya ES, et al. Long-term dry immersion: Review and prospects. Eur J Appl Physiol 2011; 111(7): 1235-60.
[http://dx.doi.org/10.1007/s00421-010-1750-x] [PMID: 21161267]
[60]
Villareal DT, Smith GI, Shah K, Mittendorfer B. Effect of weight loss on the rate of muscle protein synthesis during fasted and fed conditions in obese older adults. Obesity 2012; 20(9): 1780-6.
[http://dx.doi.org/10.1038/oby.2011.280] [PMID: 21938075]
[61]
Zwart SR, Launius RD, Coen GK, Morgan JLL, Charles JB, Smith SM. Body mass changes during long-duration spaceflight. Aviat Space Environ Med 2014; 85(9): 897-904.
[http://dx.doi.org/10.3357/ASEM.3979.2014] [PMID: 25197887]
[62]
Smith SM, Heer MA, Shackelford LC, Sibonga JD, Ploutz-Snyder L, Zwart SR. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry. J Bone Miner Res 2012; 27(9): 1896-906.
[63]
Smith SM, Zwart SR, Heer M, Hudson EK, Shackelford L, Morgan JL. Men and women in space: Bone loss and kidney stone risk after long-duration spaceflight. J Bone Miner Res 2014; 29(7): 1639-45.
[http://dx.doi.org/10.1002/jbmr.2185]
[64]
Faintuch J, Soriano FG, Ladeira JP, Janiszewski M, Velasco IT, Gama-Rodrigues JJ. Changes in body fluid and energy compartments during prolonged hunger strike. Rev Hosp Clin Fac Med Sao Paulo 2000; 55(2): 47-54.
[http://dx.doi.org/10.1590/S0041-87812000000200003] [PMID: 10959123]
[65]
Florian JP, Baisch FJ, Heer M, Pawelczyk JA. Caloric restriction decreases orthostatic tolerance independently from 6° head-down bedrest. PLoS One 2015; 10(4): e0118812.
[http://dx.doi.org/10.1371/journal.pone.0118812] [PMID: 25915488]
[66]
Florian JP, Baisch FJ, Heer M, Pawelczyk JA. Caloric restriction diminishes the pressor response to static exercise. Extrem Physiol Med 2016; 5(1): 2.
[http://dx.doi.org/10.1186/s13728-016-0043-3] [PMID: 26793301]
[67]
Tascher G, Brioche T, Maes P, et al. Proteome-wide adaptations of mouse skeletal muscles during a full month in space. J Proteome Res 2017; 16(7): 2623-38.
[http://dx.doi.org/10.1021/acs.jproteome.7b00201] [PMID: 28590761]
[68]
Buckey JC. Space physiology. USA: Oxford University Press 2006; p. 304. Available from: https://global.oup.com/academic/product/space-physiology-9780195137255?cc=us&lang=en&
[69]
LeBlanc A, Schneider V, Spector E, et al. Calcium absorption, enogenous excretion, and endocrine changes during and after long-term bed rest. Bone 1995; 16(S4): 301S-4S.
[http://dx.doi.org/10.1016/8756-3282(94)00045-2] [PMID: 7626318]
[70]
Fiore CE, Pennisi P, Ciffo F, Scebba C, Amico A, Di Fazzio S. Immobilization-dependent bone collagen breakdown appears to increase with time: Evidence for a lack of new bone equilibrium in response to reduced load during prolonged bed rest. Horm Metab Res 1999; 31(1): 31-6.
[http://dx.doi.org/10.1055/s-2007-978693]
[71]
Soller BR, Cabrera M, Smith SM, Sutton JP. Smart medical systems with application to nutrition and fitness in space. Nutrition 2002; 18(10): 930-6.
[http://dx.doi.org/10.1016/S0899-9007(02)00897-3] [PMID: 12361790]
[72]
Novikov VE, Oganov VS, Kabitskaya OE, Murashko LM, Naidina VP, Chernikhova EA. Mineral bone density and body composition in participants in experiment mars-500. Aviakosm Ekolog Med 2016; 50(1): 35-8.
[73]
Shackelford LC, LeBlanc AD, Driscoll TB, Evans HJ, Rianon NJ, Smith SM. Resistance exercise as a countermeasure to disuse-induced bone loss. J Appl Physiol 2004; 97(1): 119-29.
[http://dx.doi.org/10.1152/japplphysiol.00741.2003]
[74]
Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 2009; 1(6): 6ra14.
[http://dx.doi.org/10.1126/scitranslmed.3000322] [PMID: 20368178]
[75]
Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 2012; 3(1): 4-14.
[http://dx.doi.org/10.4161/gmic.19320] [PMID: 22356853]
[76]
Lane HW, LeBlanc AD, Putcha L, Whitson PA. Nutrition and human physiological adaptations to space flight. Am J Clin Nutr 1993; 58(5): 587-8.
[http://dx.doi.org/10.1093/ajcn/58.5.583] [PMID: 8237860]
[77]
Garrett-Bakelman FE, Darshi M, Green SJ, et al. The NASA twins study: A multidimensional analysis of a year-long human spaceflight. Science 2019; 364(6436): eaau8650.
[http://dx.doi.org/10.1126/science.aau8650] [PMID: 30975860]
[78]
Nutrition NIo. Nutrient requirements and recommended dietary allowances and estimated average requirements for Indians 2020.
[79]
National research council subcommittee on the tenth edition of the recommended dietary A. The National Academies Collection. Reports funded by National Institutes of Health. 1989. Recommended Dietary Allowances: 10th Edition. Washington (DC): National Academies Press (US).
[80]
Calloway DH. The proportions of carbohydrate, fat and protein in space feeding. Life Sci Space Res 1970; 8: 295-301.
[PMID: 11826889]
[81]
Phillips WJ. Starvation and survival: Some military considerations. Mil Med 1994; 159(7): 513-6.
[http://dx.doi.org/10.1093/milmed/159.7.513] [PMID: 7816224]
[82]
Leonard JI, Leach CS, Rambaut PC. Quantitation of tissue loss during prolonged space flight. Am J Clin Nutr 1983; 38(5): 667-79.
[http://dx.doi.org/10.1093/ajcn/38.5.667] [PMID: 6637859]
[83]
Paglialunga S, Dehn CA. Clinical assessment of hepatic de novo lipogenesis in non-alcoholic fatty liver disease. Lipids Health Dis 2016; 15(1): 159.
[http://dx.doi.org/10.1186/s12944-016-0321-5] [PMID: 27640119]
[84]
Macho L, Koška J, Kšinantová L, et al. The response of endocrine system to stress loads during space flight in human subject. Adv Space Res 2003; 31(6): 1605-10.
[http://dx.doi.org/10.1016/S0273-1177(03)00097-8] [PMID: 12971416]
[85]
von Frankenberg AD, Marina A, Song X, Callahan HS, Kratz M, Utzschneider KM. A high-fat, high-saturated fat diet decreases insulin sensitivity without changing intra-abdominal fat in weight-stable overweight and obese adults. Eur J Nutr 2017; 56(1): 431-43.
[http://dx.doi.org/10.1007/s00394-015-1108-6] [PMID: 26615402]
[86]
Josse AR, Atkinson SA, Tarnopolsky MA, Phillips SM. Increased consumption of dairy foods and protein during diet- and exercise-induced weight loss promotes fat mass loss and lean mass gain in overweight and obese premenopausal women. J Nutr 2011; 141(9): 1626-34.
[http://dx.doi.org/10.3945/jn.111.141028] [PMID: 21775530]
[87]
Murphy CH, Hector AJ, Phillips SM. Considerations for protein intake in managing weight loss in athletes. Eur J Sport Sci 2015; 15(1): 21-8.
[http://dx.doi.org/10.1080/17461391.2014.936325] [PMID: 25014731]
[88]
Pasiakos SM, Cao JJ, Margolis LM, et al. Effects of high‐protein diets on fat‐free mass and muscle protein synthesis following weight loss: A randomized controlled trial. FASEB J 2013; 27(9): 3837-47.
[http://dx.doi.org/10.1096/fj.13-230227] [PMID: 23739654]
[89]
Zwart SR, Hargens AR, Smith SM. The ratio of animal protein intake to potassium intake is a predictor of bone resorption in space flight analogues and in ambulatory subjects. Am J Clin Nutr 2004; 80(4): 1058-65.
[http://dx.doi.org/10.1093/ajcn/80.4.1058] [PMID: 15447920]
[90]
Kane GC, Lipsky JJ. Drug-grapefruit juice interactions. Mayo Clin Proc 2000; 75(9): 933-42.
[http://dx.doi.org/10.4065/75.9.933] [PMID: 10994829]
[91]
Zwart SR, Davis-Street JE, Paddon-Jones D, Ferrando AA, Wolfe RR, Smith SM. Amino acid supplementation alters bone metabolism during simulated weightlessness. J Appl Physiol 2005; 99(1): 134-40.
[http://dx.doi.org/10.1152/japplphysiol.01406.2004]
[92]
Vico L, Collet P, Guignandon A, et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 2000; 355(9215): 1607-11.
[http://dx.doi.org/10.1016/S0140-6736(00)02217-0] [PMID: 10821365]
[93]
Steenbergen L, Jongkees BJ, Sellaro R, Colzato LS. Tryptophan supplementation modulates social behavior: A review. Neurosci Biobehav Rev 2016; 64: 346-58.
[http://dx.doi.org/10.1016/j.neubiorev.2016.02.022] [PMID: 26987640]
[94]
Bravo R, Matito S, Cubero J, et al. Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans. Age 2013; 35(4): 1277-85.
[http://dx.doi.org/10.1007/s11357-012-9419-5] [PMID: 22622709]
[95]
Silber BY, Schmitt JAJ. Effects of tryptophan loading on human cognition, mood, and sleep. Neurosci Biobehav Rev 2010; 34(3): 387-407.
[http://dx.doi.org/10.1016/j.neubiorev.2009.08.005] [PMID: 19715722]
[96]
Fernstrom JD. Can nutrient supplements modify brain function? Am J Clin Nutr 2000; 71(S6): 1669S-73S.
[http://dx.doi.org/10.1093/ajcn/71.6.1669S] [PMID: 10837313]
[97]
Devine A, Criddle RA, Dick IM, Kerr DA, Prince RL. A longitudinal study of the effect of sodium and calcium intakes on regional bone density in postmenopausal women. Am J Clin Nutr 1995; 62(4): 740-5.
[http://dx.doi.org/10.1093/ajcn/62.4.740] [PMID: 7572702]
[98]
Nordin BC, Need AG, Steurer T, Morris HA, Chatterton B, Horowitz M. Nutrition, osteoporosis, and aging. Ann N Y Acad Sci 1998; 854(1 TOWARDS PROLO): 336-51.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb09914.x] [PMID: 9928442]
[99]
Leach CS, Alfrey CP, Suki WN, et al. Regulation of body fluid compartments during short-term spaceflight. J Appl Physiol 1996; 81(1): 105-16.
[http://dx.doi.org/10.1152/jappl.1996.81.1.105] [PMID: 8828652]
[100]
De Abreu S, Amirova L, Murphy R, et al. Multi-system deconditioning in 3-day dry immersion without daily raise. Front Physiol 2017; 8: 799.
[http://dx.doi.org/10.3389/fphys.2017.00799] [PMID: 29081752]
[101]
Foglia PEG, Bettinelli A, Tosetto C, et al. Cardiac work up in primary renal hypokalaemia-hypomagnesaemia (Gitelman syndrome). Nephrol Dial Transplant 2004; 19(6): 1398-402.
[http://dx.doi.org/10.1093/ndt/gfh204] [PMID: 15034158]
[102]
Zerwekh JE, Odvina CV, Wuermser LA, Pak CYC. Reduction of renal stone risk by potassium-magnesium citrate during 5 weeks of bed rest. J Urol 2007; 177(6): 2179-84.
[http://dx.doi.org/10.1016/j.juro.2007.01.156] [PMID: 17509313]
[103]
Whitson PA, Pietrzyk RA, Jones JA, Nelman-Gonzalez M, Hudson EK, Sams CF. Effect of potassium citrate therapy on the risk of renal stone formation during spaceflight. J Urol 2009; 182(5): 2490-6.
[http://dx.doi.org/10.1016/j.juro.2009.07.010] [PMID: 19765769]
[104]
Basit S. Vitamin D in health and disease: A literature review. Br J Biomed Sci 2013; 70(4): 161-72.
[http://dx.doi.org/10.1080/09674845.2013.11669951] [PMID: 24400428]
[105]
Black RE. Global distribution and disease burden related to micronutrient deficiencies. In: International nutrition: achieving millennium goals and beyond 78. Karger Publishers 2014; pp. 21-8.
[106]
Cooper M, Perchonok M, Douglas GL. Initial assessment of the nutritional quality of the space food system over three years of ambient storage. NPJ Microgravity 2017; 3(1): 17.
[107]
Smith SM. Red blood cell and iron metabolism during space flight. Nutrition 2002; 18(10): 864-6.
[http://dx.doi.org/10.1016/S0899-9007(02)00912-7] [PMID: 12361780]
[108]
Smith SM. Nutritional biochemistry of space flight (Space science, exploration and policies series). Nova Science Publishers Incorporated 2009; 208. Available from: https://www.amazon.com/Nutritional-Biochemistry-Science-Exploration-Policies/dp/1607416417
[109]
Neubek DJ. Nutrition requirements. Standards, and operating bands for exploration missions. NTRS 2005. Available from: https://ntrs.nasa.gov/citations/20200001703
[110]
Pouraram H, Elmadfa I, Dorosty AR, Abtahi M, Neyestani TR, Sadeghian S. Long-term consequences of iron-fortified flour consumption in nonanemic men. Ann Nutr Metab 2012; 60(2): 115-21.
[http://dx.doi.org/10.1159/000336184] [PMID: 22433920]
[111]
Weiss JF, Landauer MR. Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology 2003; 189(1-2): 1-20.
[http://dx.doi.org/10.1016/S0300-483X(03)00149-5] [PMID: 12821279]
[112]
Sacheck JM, Blumberg JB. Role of vitamin E and oxidative stress in exercise. Nutrition 2001; 17(10): 809-14.
[http://dx.doi.org/10.1016/S0899-9007(01)00639-6] [PMID: 11684385]
[113]
Stein TP. Space flight and oxidative stress. Nutrition 2002; 18(10): 867-71.
[http://dx.doi.org/10.1016/S0899-9007(02)00938-3] [PMID: 12361781]
[114]
Wambi CO, Sanzari JK, Sayers CM, et al. Protective effects of dietary antioxidants on proton total-body irradiation-mediated hematopoietic cell and animal survival. Radiat Res 2009; 172(2): 175-86.
[http://dx.doi.org/10.1667/RR1708.1] [PMID: 19630522]
[115]
Carr AC, Frei B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am J Clin Nutr 1999; 69(6): 1086-107.
[http://dx.doi.org/10.1093/ajcn/69.6.1086] [PMID: 10357726]
[116]
Siegel EM, Patel N, Lu B, et al. Circulating biomarkers of iron storage and clearance of incident human papillomavirus infection. Cancer Epidemiol Biomarkers Prev 2012; 21(5): 859-65.
[http://dx.doi.org/10.1158/1055-9965.EPI-12-0073] [PMID: 22426142]
[117]
Bouayed J, Bohn T. Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev 2010; 3(4): 228-37.
[http://dx.doi.org/10.4161/oxim.3.4.12858] [PMID: 20972369]
[118]
Gómez X, Sanon S, Zambrano K, Asquel S, Bassantes M, Morales JE. Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by Reactive Oxygen Species (ROS) during manned space missions. NPJ Microgravity 2021; 7(1): 35.
[119]
Taylor P. Impact of space flight on bacterial virulence and antibiotic susceptibility. Infect Drug Resist 2015; 8: 249-62.
[http://dx.doi.org/10.2147/IDR.S67275] [PMID: 26251622]
[120]
Bergouignan A, Rudwill F, Simon C, Blanc S. Physical inactivity as the culprit of metabolic inflexibility: Evidence from bed-rest studies. J Appl Physiol 2011; 111(4): 1201-10.
[http://dx.doi.org/10.1152/japplphysiol.00698.2011] [PMID: 21836047]
[121]
Tobin BW, Uchakin PN, Leeper-Woodford SK. Insulin secretion and sensitivity in space flight. Nutrition 2002; 18(10): 842-8.
[http://dx.doi.org/10.1016/S0899-9007(02)00940-1] [PMID: 12361776]
[122]
Ohira T, Kawano F, Ohira T, Goto K, Ohira Y. Responses of skeletal muscles to gravitational unloading and/or reloading. J Physiol Sci 2015; 65(4): 293-310.
[http://dx.doi.org/10.1007/s12576-015-0375-6] [PMID: 25850921]
[123]
Stein TP. Weight, muscle and bone loss during space flight: Another perspective. Eur J Appl Physiol 2013; 113(9): 2171-81.
[http://dx.doi.org/10.1007/s00421-012-2548-9] [PMID: 23192310]
[124]
Smith SM, Davis-Street JE, Fesperman JV, et al. Evaluation of treadmill exercise in a lower body negative pressure chamber as a countermeasure for weightlessness-induced bone loss: A bed rest study with identical twins. J Bone Miner Res 2003; 18(12): 2223-30.
[http://dx.doi.org/10.1359/jbmr.2003.18.12.2223] [PMID: 14672358]
[126]
Belin de Chantemele E, Blanc S, Pellet N, et al. Does resistance exercise prevent body fluid changes after a 90-day bed rest? Eur J Appl Physiol 2004; 92(4-5): 555-64.
[http://dx.doi.org/10.1007/s00421-004-1121-6] [PMID: 15170571]
[127]
Aboarrage Junior AM, Teixeira CVLS, dos Santos RN, et al. A high-intensity jump-based aquatic exercise program improves bone mineral density and functional fitness in postmenopausal women. Rejuvenation Res 2018; 21(6): 535-40.
[http://dx.doi.org/10.1089/rej.2018.2069] [PMID: 29886815]
[128]
García-Pinillos F, Laredo-Aguilera JA, Muñoz-Jiménez M, Latorre-Román PA. Effects of 12-week concurrent high-intensity interval strength and endurance training program on physical performance in healthy older people. J Strength Cond Res 2019; 33(5): 1445-52.
[http://dx.doi.org/10.1519/JSC.0000000000001895] [PMID: 28301438]
[129]
Taylor D, Binns E, Signal N. Upping the ante. Curr Opin Psychiatry 2017; 30(5): 352-7.
[http://dx.doi.org/10.1097/YCO.0000000000000349] [PMID: 28682801]
[130]
De Souza JFT, Dáttilo M, de Mello MT, Tufik S, Antunes HKM. High-intensity interval training attenuates insulin resistance induced by sleep deprivation in healthy males. Front Physiol 2017; 8: 992.
[http://dx.doi.org/10.3389/fphys.2017.00992] [PMID: 29270126]
[131]
Hannan A, Hing W, Simas V, et al. High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: A systematic review and meta-analysis. Open Access J Sports Med 2018; 9: 1-17.
[http://dx.doi.org/10.2147/OAJSM.S150596] [PMID: 29416382]
[132]
De Strijcker D, Lapauw B, Ouwens DM, et al. High intensity interval training is associated with greater impact on physical fitness, insulin sensitivity and muscle mitochondrial content in males with overweight/obesity, as opposed to continuous endurance training: A randomized controlled trial. J Musculoskelet Neuronal Interact 2018; 18(2): 215-26.
[PMID: 29855444]
[133]
Matsuo T, Ohkawara K, Seino S, et al. An exercise protocol designed to control energy expenditure for long-term space missions. Aviat Space Environ Med 2012; 83(8): 783-9.
[http://dx.doi.org/10.3357/ASEM.3298.2012] [PMID: 22872993]
[134]
White RJ, Averner M. Humans in space. Nature 2001; 409(6823): 1115-8.
[http://dx.doi.org/10.1038/35059243] [PMID: 11234026]
[135]
Maniam J, Morris MJ. The link between stress and feeding behaviour. Neuropharmacology 2012; 63(1): 97-110.
[http://dx.doi.org/10.1016/j.neuropharm.2012.04.017] [PMID: 22710442]
[136]
Olabi A, Levitsky DA, Hunter JB, Spies R, Rovers AP, Abdouni L. Food and mood: A nutritional and mood assessment of a 30-day vegan space diet. Food Qual Prefer 2015; 40: 110-5.
[http://dx.doi.org/10.1016/j.foodqual.2014.09.003]
[137]
Tulipani S, Llorach R, Jáuregui O, et al. Metabolomics unveils urinary changes in subjects with metabolic syndrome following 12-week nut consumption. J Proteome Res 2011; 10(11): 5047-58.
[http://dx.doi.org/10.1021/pr200514h] [PMID: 21905751]
[138]
Tao W, Li M, Xie R. Preparation and structure of porous silk sericin materials. Macromol Mater Eng 2005; 290(3): 188-94.
[http://dx.doi.org/10.1002/mame.200400306]
[139]
Kato N, Sato S, Yamanaka A, Yamada H, Fuwa N, Nomura M. Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci Biotechnol Biochem 1998; 62(1): 145-7.
[http://dx.doi.org/10.1271/bbb.62.145] [PMID: 9501526]
[140]
Kato N, Kayashita J, Sasaki M. Physiological functions of buckwheat protein and sericin as resistant proteins. Nippon Eiyo Shokuryo Gakkaishi. J Jpn Soc Nutr Food Sci 2000; 53(2): 71-5.
[http://dx.doi.org/10.4327/jsnfs.53.71]
[141]
Wang HY, Zhao JG, Wei ZG, Zhang YQ. The renal protection of flavonoid-rich ethanolic extract from silkworm green cocoon involves in inhibiting TNF-α-p38 MAP kinase signalling pathway in type 2 diabetic mice. Biomed Pharmacother 2019; 118: 109379.
[http://dx.doi.org/10.1016/j.biopha.2019.109379] [PMID: 31545278]
[142]
Hu D, Liu Q, Cui H, Wang H, Han D, Xu H. Effects of amino acids from selenium-rich silkworm pupas on human hepatoma cells. Life Sci 2005; 77(17): 2098-110.
[http://dx.doi.org/10.1016/j.lfs.2005.02.017] [PMID: 15978626]
[143]
Nofer JR, Kehrel B, Fobker M, Levkau B, Assmann G, Eckardstein A. HDL and arteriosclerosis: Beyond reverse cholesterol transport. Atherosclerosis 2002; 161(1): 1-16.
[http://dx.doi.org/10.1016/S0021-9150(01)00651-7] [PMID: 11882312]
[144]
Okazaki Y, Kakehi S, Xu Y, et al. Consumption of sericin reduces serum lipids, ameliorates glucose tolerance and elevates serum adiponectin in rats fed a high-fat diet. Biosci Biotechnol Biochem 2010; 74(8): 1534-8.
[http://dx.doi.org/10.1271/bbb.100065] [PMID: 20699593]
[145]
Liu Z, Li Z, Shang P, Huang Y, Tan A. Effects of the space environment on silkworm development time. In: Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite. Singapore: Springer 2019; pp. 109-29.
[http://dx.doi.org/10.1007/978-981-13-6325-2_5]
[146]
Yang Y, Tang L, Tong L, Liu Y, Liu H, Li X. Initial ground experiments of silkworm cultures living on different feedstock for provision of high quality animal protein for human in space. Adv Space Res 2010; 46(6): 707-11.
[http://dx.doi.org/10.1016/j.asr.2010.04.007]
[147]
Bron PA, van Baarlen P, Kleerebezem M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol 2012; 10(1): 66-78.
[http://dx.doi.org/10.1038/nrmicro2690] [PMID: 22101918]
[148]
Crabbé A, Schurr MJ, Monsieurs P, et al. Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Appl Environ Microbiol 2011; 77(4): 1221-30.
[http://dx.doi.org/10.1128/AEM.01582-10] [PMID: 21169425]
[149]
Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav Immun 2011; 25(3): 397-407.
[http://dx.doi.org/10.1016/j.bbi.2010.10.023] [PMID: 21040780]
[150]
Thomas CM, Versalovic J. Probiotics-host communication. Gut Microbes 2010; 1(3): 148-63.
[http://dx.doi.org/10.4161/gmic.1.3.11712] [PMID: 20672012]
[151]
Lee BJ, Bak YT. Irritable bowel syndrome, gut microbiota and probiotics. J Neurogastroenterol Motil 2011; 17(3): 252-66.
[http://dx.doi.org/10.5056/jnm.2011.17.3.252] [PMID: 21860817]
[152]
Mayor S. Probiotics have no effect on gut microbiota in healthy people, review suggests. BMJ 2016; 353: i2617.
[http://dx.doi.org/10.1136/bmj.i2617]
[153]
Venir E, Del Torre M, Stecchini ML, Maltini E, Di Nardo P. Preparation of freeze-dried yoghurt as a space food. J Food Eng 2007; 80(2): 402-7.
[http://dx.doi.org/10.1016/j.jfoodeng.2006.02.030]
[154]
NASA - Food for Space Flight. NASA 2004. Available from: nasa.gov/audience/forstudents/postsecondary/features/F_Food_for_Space_Flight.html
[155]
Morrow R, Wetzel J, Richter R, Crabb T, Eds. Evolution of spacebased plant growth technologies for hybrid life support systems 47th International Conference on Environmental Systems. 2017.July 16-20; Charleston, South Carolina. 2017.
[156]
Odeh R, Guy CL. Gardening for therapeutic people-plant interactions during long-duration space missions. Open Agric 2017; 2(1): 1-13.
[http://dx.doi.org/10.1515/opag-2017-0001]
[157]
Bingham G, Bates S, Bugbee B, Garland J, Podolski I, Levinskikh R. Validating Vegetable Production Unit (VPU) plants, protocols, Procedures and Requirements (P3R) using currently existing flight resources 2009; 1-5. Available from: https://ntrs.nasa.gov/api/citations/20090014824/downloads/20090014824.pdf
[158]
Barden P, Comber R, Green D, Jackson D, Ladha C, Bartindale T, Eds. Telematic dinner party: Designing for togetherness through play and performance. Proceedings of the designing interactive systems Conference. 2012 June; Newcastle, UK. 2012.
[159]
Terfansky ML, Thangavelu M, editors . 3D printing of food for space missions. AIAA SPACE 2013 Conference and Exposition; Sep 2013.
[http://dx.doi.org/10.1145/2317956.2317964]
[160]
Lin C. 3D food printing: A taste of the future. J Food Sci Educ 2015; 14(3): 86-7.
[http://dx.doi.org/10.1111/1541-4329.12061]
[161]
Lachance PA. How HACCP started. Food Technol 1997; 51(5): 35.
[162]
Perchonok MH, Cooper MR, Catauro PM. Mission to Mars: Food production and processing for the final frontier. Annu Rev Food Sci Technol 2012; 3(1): 311-30.
[http://dx.doi.org/10.1146/annurev-food-022811-101222] [PMID: 22136130]
[163]
Balan IM, Popescu AC, Iancu T, Popescu G, Tulcan C. Food safety versus food security in a world of famine. SSRN Electronic Journal 2020; 5(1): 20-30.
[http://dx.doi.org/10.2139/ssrn.3791137]
[164]
Havermans RC, Janssen T, Giesen JCAH, Roefs A, Jansen A. Food liking, food wanting, and sensory-specific satiety. Appetite 2009; 52(1): 222-5.
[http://dx.doi.org/10.1016/j.appet.2008.09.020] [PMID: 18951934]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy