Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Molecular Aspects of Carrageenan in the Pharmaceutical and Food Industries

Author(s): Julianne Soares Pereira and Robson Xavier Faria*

Volume 20, Issue 4, 2024

Published on: 03 July, 2023

Page: [466 - 475] Pages: 10

DOI: 10.2174/1573401319666230418123401

Price: $65

Abstract

Carrageenan is a gel-forming polysaccharide obtained by extracting certain species of red algae. This substance is used in several food groups due to carrageenan's ability to replace fat and combine easily with milk proteins to increase solubility and improve texture. Although the FDA (Food and Drug Administration) considers carrageenan safe for consumption, this point is still subject to intense scrutiny to investigate the potential health risks associated with human consumption. In view of this, the objective of this review was to address the consumption of carrageenan in the food and pharmaceutical industries and its possible toxic effects on health. One hundred and eleven articles were related to the objective of this review. Although carrageenan is widely used for consumption and several studies describe its beneficial effects, a large number of articles have already been bringing possible toxic effects that it can generate in the long term.

Keywords: Carrageenan, food industry, pharmaceutical industry, toxic effects, FDA, marine polysaccharides.

Graphical Abstract
[1]
Liu Z, Gao T, Yang Y, et al. Anti-cancer activity of porphyran and carrageenan from red seaweeds. Molecules 2019; 24(23): 4286.
[http://dx.doi.org/10.3390/molecules24234286]
[2]
Marques SM, Pinheiro JHPA. Algae as bioindicators of water quality. Anap Brasil, Unesp Ilha Solteira/sp 2017; (19): 76-88.
[3]
Torres MD, Flórez-Fernández N, Domínguez H. Integral utilization of red seaweed for bioactive production. Mar Drugs 2019; 17(6): 314.
[http://dx.doi.org/10.3390/md17060314] [PMID: 31142051]
[4]
Pacheco-Quito EM, Ruiz-Caro R, Veiga MD. Carrageenan: Drug delivery systems and other biomedical applications. Mar Drugs 2020; 18(11): 583.
[http://dx.doi.org/10.3390/md18110583] [PMID: 33238488]
[5]
Álvarez-Viñas M, Flórez-Fernández N, Torres MD, Domínguez H. Successful approaches for a red seaweed biorefinery. Mar Drugs 2019; 17(11): 620.
[http://dx.doi.org/10.3390/md17110620] [PMID: 31671676]
[6]
Tobacman JK. Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environ Health Perspect 2001; 109(10): 983-94.
[http://dx.doi.org/10.1289/ehp.01109983] [PMID: 11675262]
[7]
Torres FG, Troncoso OP, Pisani A, Gatto F, Bardi G. Natural polysaccharide nanomaterials: An overview of their immunological properties. Int J Mol Sci 2019; 20(20): 5092.
[http://dx.doi.org/10.3390/ijms20205092]
[8]
Feferman L, Bhattacharyya S, Oates E, et al. Carrageenan-free diet shows improved glucose tolerance and insulin signaling in prediabetes: A randomized, pilot clinical trial. J Diabetes Res 2020; 2020: 1-16.
[http://dx.doi.org/10.1155/2020/8267980] [PMID: 32377523]
[9]
Kalsoom Khan A, Saba AU, Nawazish S, et al. Carrageenan-based bio nancomposites as a drug delivery tool with special emphasis on the influence of ferromagnetic nanoparticles. Oxid Med Cell Longev 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/8158315] [PMID: 28303171]
[10]
Martino JV, Van Limbergen J, Cahill LE. The role of carrageenan and carboxymethylcellulose in the development of intestinal inflammation. Front Pediatr 2017; 5: 96.
[http://dx.doi.org/10.3389/fped.2017.00096] [PMID: 28507982]
[11]
Zhang Y, Zhou D, Chen J, et al. Biomaterials based on marine resources for 3D bioprinting applications. Mar Drugs 2019; 17(10): 555.
[http://dx.doi.org/10.3390/md17100555] [PMID: 31569366]
[12]
Necas J, Bartosikova L. Carrageenan: A review. Vet Med 2013; 4(58): 187-205.
[http://dx.doi.org/10.17221/6758-VETMED]
[13]
Pereira JG. Effects of sulfate polysaccharide from red marine seaweed simplex (J Agardh) on nociception and inflammation 2014.
[14]
Budtova T, Aguilera DA, Beluns S, et al. Biorefinery approach for aerogels. Polymers 2020; 12(12): 2779.
[http://dx.doi.org/10.3390/polym12122779] [PMID: 33255498]
[15]
Fonseca JA. Application of algae in the food and pharmaceutical industry. 2016.
[16]
Mckim JM, Willoughby JA, Blakemore WR, Weiner ML. Clarifying the confusion between poligeenan, degraded carrageenan, and carrageenan: A review of the chemistry, nomenclature, and in vivo toxicology by the oral route. Crit Rev Food Sci Nutr 2018; 59(19): 3054-73.
[17]
Ludwig M, Enzenhofer E, Schneider S, et al. Efficacy Of a carrageenan nasal spray in patients with common cold: A randomized controlled trial. Respir Res 2013; 14(1): 124.
[http://dx.doi.org/10.1186/1465-9921-14-124]
[18]
Salgado-Benvindo C, Thaler M, Tas A, et al. Suramin inibe an infecção por SARS-CoV-2 em cultura celular, interferindo nas etapas iniciais do ciclo de replicação. Antimicrob Agents Chemother 2020; 64(8)
[http://dx.doi.org/10.1128/AAC.00900-20] [PMID: 32513797]
[19]
Lee YE, Kim H, Seo C, et al. Marine polysaccharides: Therapeutic efficacy and biomedical applications. Arch Pharm Res 2017; 40(9): 1006-20.
[http://dx.doi.org/10.1007/s12272-017-0958-2] [PMID: 28918561]
[20]
Pacheco-Quito EM, Ruiz-Caro R, Rubio J, Tamayo A, Veiga MD. Carrageenan-based acyclovir mucoadhesive vaginal tablets for prevention of genital herpes. Mar Drugs 2020; 18(5): 249.
[http://dx.doi.org/10.3390/md18050249] [PMID: 32403219]
[21]
Wells ML, Potin P, Craigie JS, et al. Algae as nutritional and functional food sources: Revisiting our understanding. J Appl Phycol 2017; 29(2): 949-82.
[http://dx.doi.org/10.1007/s10811-016-0974-5] [PMID: 28458464]
[22]
Wu PH, Onodera Y, Recuenco FC, et al. Lambda-carrageenan enhances the effects of radiation therapy in cancer treatment by suppressing cancer cell invasion and metastasis through racgap1 inhibition. Cancers 2019; 11(8): 1192.
[http://dx.doi.org/10.3390/cancers11081192] [PMID: 31426369]
[23]
Friedland BA, Hoesley CJ, Plagianos M, et al. First-in-human trial of MIV-150 and zinc acetate coformulated in a carrageenan gel: Safety, pharmacokinetics, acceptability, adherence, and pharmacodynamics. J Acquir Immune Defic Syndr 2016; 73(5): 489-96.
[http://dx.doi.org/10.1097/QAI.0000000000001136] [PMID: 27437826]
[24]
Hsu M, Aravantinou M, Menon R, et al. A combination microbicide gel protects macaques against vaginal simian human immunodeficiency virus-reverse transcriptase infection, but only partially reduces herpes simplex virus-2 infection after a single high-dose cochallenge. AIDS Res Hum Retroviruses 2014; 30(2): 174-83.
[http://dx.doi.org/10.1089/aid.2013.0165] [PMID: 24117013]
[25]
Aravantinou M, Mizenina O, Calenda G, et al. Experimental oral herpes simplex virus-1 (HSV-1) coinfection in rhesus monkeys infected with simian immunodeficiency virus (SIV). Front Microbiol 2017; 8: 2342.
[http://dx.doi.org/10.3389/fmicb.2017.02342]
[26]
Zhang K, Zeng X, Chen Y, Zhao R, Wang H, Wu J. Therapeutic effects of Qian-Yu decoction and its three extracts on carrageenan-induced chronic prostatitis/chronic pelvic pain syndrome in rats. BMC Complement Altern Med 2017; 17(1): 75.
[http://dx.doi.org/10.1186/s12906-016-1553-7] [PMID: 28122556]
[27]
Menegazzi M, Dipaola R, Mazzon E, et al. Glycyrrhizin attenuates the development of carrageenan-induced lung injury in mice. Pharmacol Res 2008; 58(1): 22-31.
[http://dx.doi.org/10.1016/j.phrs.2008.05.012] [PMID: 18590825]
[28]
Choi HS, Kang SY, Roh DH, Choi SR, Ryu Y, Lee JH. Bee venom stimulation of a lung meridian acupoint reduces inflammation in carrageenan-induced pleurisy: An alternative therapeutic approach for respiratory inflammation. J Vet Sci 2018; 19(5): 708-15.
[http://dx.doi.org/10.4142/jvs.2018.19.5.708] [PMID: 29929357]
[29]
Cohen SM, Ito N. A critical review of the toxicological effects of carrageenan and processed eucheuma seaweed on the gastrointestinal tract. Crit Rev Toxicol 2002; 32(5): 413-44.
[http://dx.doi.org/10.1080/20024091064282] [PMID: 12389870]
[30]
Gao S, Tian B, Han J, et al. Enhanced transdermal delivery of lornoxicam by nanostructured lipid carrier gels modified with polyarginine peptide for treatment of carrageenan-induced rat paw edema. Int J Nanomedicine 2019; 14: 6135-50.
[http://dx.doi.org/10.2147/IJN.S205295] [PMID: 31447556]
[31]
Britti D, Crupi R, Impellizzeri D, et al. A novel composite formulation of palmitoylethanolamide and quercetin decreases inflammation and relieves pain in inflammatory and osteoarthritic pain models. BMC Vet Res 2017; 13(1): 229.
[http://dx.doi.org/10.1186/s12917-017-1151-z] [PMID: 28768536]
[32]
Zhang H, Shang C, Tian Z, et al. Diallyl disulfide suppresses inflammatory and oxidative machineries following carrageenan injection-induced paw edema in mice. Mediators Inflamm 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/8508906] [PMID: 32377166]
[33]
Ou Z, Zhao J, Zhu L, et al. Anti-inflammatory effect and potential mechanism of betulinic acid on λ-carrageenan-induced paw edema in mice. Biomed Pharmacother 2019; 118: 109347.
[http://dx.doi.org/10.1016/j.biopha.2019.109347] [PMID: 31545273]
[34]
El-Shitany NA, Eid BG. Icariin modulates carrageenan-induced acute inflammation through HO-1/Nrf2 and NF-kB signaling pathways. Biomed Pharmacother 2019; 120: 109567.
[http://dx.doi.org/10.1016/j.biopha.2019.109567] [PMID: 31670031]
[35]
Calimag KPD, Arbis CCH, Collantes TMA, et al. Attenuation of carrageenan-induced hind paw edema and plasma TNF-α level by Philippine stingless bee (Tetragonula biroi Friese) propolis. Exp Anim 2021; 70(2): 185-93.
[http://dx.doi.org/10.1538/expanim.20-0118] [PMID: 33239488]
[36]
Kim KH, Im HW, Karmacharya MB, et al. Low-intensity ultrasound attenuates paw edema formation and decreases vascular permeability induced by carrageenan injection in rats. J Inflamm 2020; 17(1): 7.
[http://dx.doi.org/10.1186/s12950-020-0235-x] [PMID: 32082083]
[37]
Mihajilov-Krstev T, Jovanović B, Zlatković B, et al. Phytochemistry, toxicology and therapeutic value of Petasites hybridus Subsp. Ochroleucus (Common Butterbur) from the Balkans. Plants 2020; 9(6): 700.
[http://dx.doi.org/10.3390/plants9060700] [PMID: 32486467]
[38]
Rafiee L, Hajhashemi V, Javanmard SH. Maprotiline inhibits COX2 and iNOS gene expression in lipopolysaccharide-stimulated U937 macrophages and carrageenan-induced paw edema in rats. Cent Eur J Immunol 2019; 44(1): 15-22.
[http://dx.doi.org/10.5114/ceji.2019.84011] [PMID: 31114432]
[39]
Houshmand G, Naghizadeh B, Ghorbanzadeh B, Ghafouri Z, Goudarzi M, Mansouri MT. Celecoxib inhibits acute edema and inflammatory biomarkers through peroxisome proliferator-activated receptor-γ in rats. Iran J Basic Med Sci 2020; 23(12): 1544-50.
[http://dx.doi.org/10.22038/ijbms.2020.43995.10315] [PMID: 33489027]
[40]
Barth CR, Funchal GA, Luft C, de Oliveira JR, Porto BN, Donadio MVF. Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis. Eur J Immunol 2016; 46(4): 964-70.
[http://dx.doi.org/10.1002/eji.201545520] [PMID: 26786873]
[41]
Falcão TR, Araújo AA, Soares LAL, et al. Libidibia ferrea fruit crude extract and fractions show anti-inflammatory, antioxidant, and antinociceptive effect In vivo and increase cell viability in vitro. Evid Based Complement Alternat Med 2019; 2019: 1-14.
[http://dx.doi.org/10.1155/2019/6064805] [PMID: 30915148]
[42]
Bezerra RDL, Silva ALM, da Silva JCP, et al. Nootkatone inhibits acute and chronic inflammatory responses in mice. Molecules 2020; 25(9): 2181.
[http://dx.doi.org/10.3390/molecules25092181] [PMID: 32392744]
[43]
Lopes K, Oliveira J, Sousa-Junior FJC, et al. Chemical composition, toxicity, antinociceptive, and anti-inflammatory activity of dry aqueous extract of varronia multi spicata (Cham.) Borhidi (Cordiaceae) leaves. Front Pharmacol 2019; 10: 1376.
[http://dx.doi.org/10.3389/fphar.2019.01376] [PMID: 31827436]
[44]
Basting RT, Spindola HM, Sousa IMO, et al. Pterodon pubescens and Cordia verbenacea association promotes a synergistic response in antinociceptive model and improves the anti-inflammatory results in animal models. Biomed Pharmacother 2019; 112: 108693.
[http://dx.doi.org/10.1016/j.biopha.2019.108693] [PMID: 30798128]
[45]
da Silva MD, Guginski G, de Paula Werner MF, Baggio CH, Marcon R, Santos ARS. Involvement of interleukin-10 in the anti-inflammatory effect of sanyinjiao (SP6) acupuncture in a mouse model of peritonitis. Evid Based Complement Alternat Med 2011; 2011: 1-9.
[http://dx.doi.org/10.1093/ecam/neq036] [PMID: 21799673]
[46]
Pires AF, Marques GFO, Alencar NMN, et al. Inhibitory effect of lonchocarpus caripensis lectin in rat acute models of inflammation. An Acad Bras Cienc 2019; 91(2): e20180991.
[http://dx.doi.org/10.1590/0001-3765201920180991]
[47]
Oliveira ISS, Colares AV, Cardoso FO, et al. Vernonia polysphaera Baker: Anti-inflammatory activity in vivo and inhibitory effect in LPS-stimulated RAW 264.7 cells. PLoS One 2019; 14(12): e0225275.
[http://dx.doi.org/10.1371/journal.pone.0225275] [PMID: 31830043]
[48]
Zhang Z, Zhang S, Jin B, et al. Ciclamilast ameliorates adjuvant-induced arthritis in a rat model. BioMed Res Int 2015; 2015: 1-11.
[http://dx.doi.org/10.1155/2015/786104] [PMID: 26000303]
[49]
Macorini LFB, Radai JAS, Maris RS, et al. Antiarthritic and antihyperalgesic properties of ethanolic extract from Gomphrena celosioides Mart. (Amaranthaceae) Aerial Parts. Evid Based Complement Alternat Med 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/4170589]
[50]
Florentino IF, Silva DPB, Silva DM, et al. Potential anti-inflammatory effect of LQFM-021 in carrageenan-induced inflammation: The role of nitric oxide. Nitric Oxide 2017; 69: 35-44.
[http://dx.doi.org/10.1016/j.niox.2017.04.006] [PMID: 28412475]
[51]
Rachmawati H, Safitri D, Pradana A, Adnyana I. TPGS-stabilized curcumin nanoparticles exhibit superior effect on carrageenan-induced inflammation in wistar rat. Pharmaceutics 2016; 8(3): 24.
[http://dx.doi.org/10.3390/pharmaceutics8030024] [PMID: 27537907]
[52]
Ribeiro EL, Barbosa KPS, Fragoso IT, et al. Diethylcarbamazine attenuates the development of carrageenan-induced lung injury in mice. Mediators Inflamm 2014; 2014: 1-12.
[http://dx.doi.org/10.1155/2014/105120] [PMID: 24550603]
[53]
Ahmad SF, Zoheir KMA, Abdel-Hamied HE, et al. Role of a histamine 4 receptor as an anti-inflammatory target in carrageenan-induced pleurisy in mice. Immunology 2014; 142(3): 374-83.
[http://dx.doi.org/10.1111/imm.12257] [PMID: 24460575]
[54]
Essel LB, Obiri DD, Osafo N, Antwi AO, Duduyemi BM. The ethanolic stem-bark extract of Antrocaryon micraster inhibits carrageenan-induced pleurisy and pedal oedema in murine models of inflammation. Int Sch Res Notices 2017; 2017: 1-11.
[http://dx.doi.org/10.1155/2017/6859230] [PMID: 28798953]
[55]
Pace S, Rossi A, Krauth V, et al. Sex differences in prostaglandin biosynthesis in neutrophils during acute inflammation. Sci Rep 2017; 7(1): 3759.
[http://dx.doi.org/10.1038/s41598-017-03696-8] [PMID: 28630405]
[56]
Caiazzo E, Morello S, Carnuccio R, Ialenti A, Cicala C. The Ecto-5′-Nucleotidase/CD73 inhibitor, α,β-methylene adenosine 5′-diphosphate, exacerbates carrageenan-induced pleurisy in rat. Front Pharmacol 2019; 10: 775.
[57]
Cheong KL, Qiu HM, Du H, Liu Y, Khan BM. Oligosaccharides derived from red seaweed: Production, properties, and potential health and cosmetic applications. Molecules 2018; 23(10): 2451.
[http://dx.doi.org/10.3390/molecules23102451]
[58]
Nunes N, Valente S, Ferraz S, Barreto MC, Pinheiro de CMAA. Nutraceutical potential of Asparagopsis taxiformis (Delile) Trevisan extract and evaluation of a downstream purification strategy. Heliyon 2018; 4(11): e00957.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00957]
[59]
MAPA. Ministry of Agriculture and Supply Ordinance No 364, OF SEPTEMBER 4, 1997. 1997.
[60]
Younes M, Aggett P, Aguilar F, et al. Re-evaluation of carrageenan (E 407) and processed Eucheuma seaweed (E 407a) as food additives. EFSA J 2018; 16(4): e05238.
[http://dx.doi.org/10.2903/j.efsa.2018.5238] [PMID: 32625873]
[61]
MAPA. Ministry of Agriculture and Supply Ordinance No 146, OF MARCH 7, 1996. 1996.
[62]
ANVISA. Resolution of the collegiate board - RDC No 272, of March 14, 2019. National Health Surveillance Agency 2019.
[63]
Yun EJ, Lee S, Kim JH, et al. Enzymatic production of 3,6-anhydro-l-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Appl Microbiol Biotechnol 2013; 97(7): 2961-70.
[http://dx.doi.org/10.1007/s00253-012-4184-z] [PMID: 22678025]
[64]
Holdt SL, Kraan S. Bioactive compounds in seaweed: Functional food applications and legislation. J Appl Phycol 2011; 23(3): 543-97.
[http://dx.doi.org/10.1007/s10811-010-9632-5]
[65]
Alves A, Sousa E, Kijjoa A, Pinto M. Marine-derived compounds with potential use as cosmeceuticals and nutricosmetics. Molecules 2020; 25(11): 2536.
[http://dx.doi.org/10.3390/molecules25112536] [PMID: 32486036]
[66]
Panlasigui LN, Baello OQ, Dimatangal JM, Dumelod BD. Blood cholesterol and lipid-lowering effects of carrageenan on human volunteers. Asia Pac J Clin Nutr 2003; 12(2): 209-14.
[PMID: 12810413]
[67]
David S, Fahoum L, Rozen G, et al. Revisiting the carrageenan controversy: Do we really understand the digestive fate and safety of carrageenan in our foods? Food Funct 2018; 9: 1344-52.
[http://dx.doi.org/10.1039/c7fo01721a]
[68]
de Jesus Raposo MF, de Morais AM, de Morais RM. Emergent sources of prebiotics: Seaweeds and microalgae. Mar Drugs 2016; 14(2): 27.
[http://dx.doi.org/10.3390/md14020027]
[69]
Burges Watson D. Regulação da saúde pública e carragena: Uma revisão e análise. J Appl Phycol 2008; 20: 505-13.
[http://dx.doi.org/10.1007/s10811-007-9252-x]
[70]
Prajapati VD, Maheriya PM, Jani GK, Solanki HK. RETRACTED: Carrageenan: A natural seaweed polysaccharide and its applications. Carbohydr Polym 2014; 105: 97-112.
[http://dx.doi.org/10.1016/j.carbpol.2014.01.067] [PMID: 24708958]
[71]
Barbut S. Pale, soft, and exudative poultry meat-Reviewing ways to manage at the processing plant. Poult Sci 2009; 88(7): 1506-12.
[http://dx.doi.org/10.3382/ps.2009-00118] [PMID: 19531724]
[72]
Fani M. Carrageenan in food - What are the advantages of its use? Additives ingredients. Available from: https://aditivosingredientes.com/artigos/artigos-editoriais-geral/carragenas-em-alimentos-quais-as-vantagens-do-seu-uso
[73]
Code Of Federal Regulations: CFR Title 21Database. Food and Drug Administration 2019.
[74]
Lee D, Swan CK, Suskind D, et al. Children with Crohn’s disease frequently consume select food additives. Dig Dis Sci 2018; 63(10): 2722-8.
[http://dx.doi.org/10.1007/s10620-018-5145-x] [PMID: 29862484]
[75]
Joint FAO/WHO Expert Committee on Food Additives. Meeting.. Safety evaluation of certain food additives and contaminants/ prepared by the fifty-seventh meeting of the Joint FAO/WHO Expert Committee on Food Additives ( JECFA). Rome, Italy: World Health Organization 2002.
[76]
Safety assessment of certain food additives/prepared by the seventy-ninth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Geneva, Switzerland: World Health Organization 2015.
[77]
Lopes AH, Rangel LS, Miriam DF. Carrageenan triggers NLRP3 inflammasome activation and IL-1β production by macrophages. Elsevier 2019; pp. 1-39.
[http://dx.doi.org/10.3389/fphar.2019.00775] [PMID: 31354490]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy