Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Research Article

Effects of Cilostazol on the Myocardium in an Obese Wistar Rat Model of Ischemia-Reperfusion Injury

Author(s): Tolga Demir*, Mazlum Sahin, Fatma Tugba Ilal Mert and Fatma Sarac

Volume 21, Issue 4, 2023

Published on: 06 June, 2023

Page: [268 - 273] Pages: 6

DOI: 10.2174/1570161121666230502141044

Price: $65

Open Access Journals Promotions 2
Abstract

Objectives: This study aims to determine the protective effect of cilostazol on myocardium in obese Wistar rats with induced ischemia-reperfusion injury (IRI).

Methods: Four groups with 10 Wistar rats were included: 1] Sham Group: IRI was not established in normal weight-Wistar rats. 2] Control Group: IRI but no cilostazol in normal weight-Wistar rats. 3] Cilostazol in normal weight-Wistar rats: IRI and cilostazol was administered. 4] Cilostazol in obese- Wistar rats: IRI and cilostazol was administered.

Results: Tissue adenosine triphosphate (ATP) levels were significantly higher and superoxide dismutase (SOD) levels significantly lower in the control group than in the sham group and normal weight cilostazol group (p=0.024 and p=0.003). Fibrinogen levels were 198 mg/dL in the sham group, 204 mg/dL in the control group, and 187 mg/dL in the normal-weight cilostazol group (p=0.046). Additionally, plasminogen activator inhibitor-1 (PAI-1) levels were significantly higher in the control group (p=0.047). The level of ATP was significantly lower in the normal-weight cilostazol group than in the obese group (104 vs 131.2 nmol/g protein, p=0.043). PAI-1 level was 2.4 ng/mL in the normal weight cilostazol group and 3.7 ng/mL in the obese cilostazol group (p=0.029). Normal-weight Wistar rats with cilostazol had significantly better histologic outcomes than the control group and obese Wistar rats (p=0.001 and p=0.001).

Conclusion: Cilostazol has a protective effect on myocardial cells in IRI models by decreasing inflammation. The protective role of cilostazol was reduced in obese Wistar rats compared with normal-weight Wistar rats.

Keywords: ATP, cilostazol, ischemia-reperfusion, obese, PAI-1, plasminogen activator.

Graphical Abstract
[1]
Apovian CM. Obesity: Definition, comorbidities, causes, and burden. Am J Manag Care 2016; 22(7): s176-85.
[PMID: 27356115]
[2]
Sadowsky M, McConkey R, Shellard A. Obesity in youth and adults with intellectual disability in Europe and Eurasia. J Appl Res Intellect Disabil 2020; 33(2): 321-6.
[http://dx.doi.org/10.1111/jar.12667] [PMID: 31482623]
[3]
Jokinen E. Obesity and cardiovascular disease. Minerva Pediatr 2015; 67(1): 25-32.
[PMID: 25387321]
[4]
Wu MY, Yiang GT, Liao WT, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem 2018; 46(4): 1650-67.
[http://dx.doi.org/10.1159/000489241] [PMID: 29694958]
[5]
Soares ROS, Losada DM, Jordani MC, Évora P, Castro-e-Silva O. Ischemia/reperfusion injury revisited: An overview of the latest pharmacological strategies. Int J Mol Sci 2019; 20(20): 5034.
[http://dx.doi.org/10.3390/ijms20205034] [PMID: 31614478]
[6]
Zhou M, Yu Y, Luo X, et al. Myocardial ischemia-reperfusion injury: Therapeutics from a mitochondria-centric perspective. Cardiology 2021; 146(6): 781-92.
[http://dx.doi.org/10.1159/000518879] [PMID: 34547747]
[7]
Frangogiannis N. The role of the chemokines in myocardial ischemia and reperfusion. Curr Vasc Pharmacol 2004; 2(2): 163-74.
[http://dx.doi.org/10.2174/1570161043476375] [PMID: 15320517]
[8]
Bugger H, Pfeil K. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis 2020; 1866(7): 165768.
[http://dx.doi.org/10.1016/j.bbadis.2020.165768] [PMID: 32173461]
[9]
Ramachandra CJA, Hernandez-Resendiz S, Crespo-Avilan GE, Lin YH, Hausenloy DJ. Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine 2020; 57: 102884.
[http://dx.doi.org/10.1016/j.ebiom.2020.102884] [PMID: 32653860]
[10]
Lakota J. Molecular mechanism of ischemia — Reperfusion injury after myocardial infarction and its possible targeted treatment. Int J Cardiol 2016; 220: 571-2.
[http://dx.doi.org/10.1016/j.ijcard.2016.06.309] [PMID: 27390990]
[11]
Turer AT, Hill JA. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol 2010; 106(3): 360-8.
[http://dx.doi.org/10.1016/j.amjcard.2010.03.032] [PMID: 20643246]
[12]
Yi G-H, Peng J-F, Salami OM, Habimana O, Xie Y-X, Yao H. Targeted mitochondrial drugs for treatment of ischemia-reperfusion injury. Curr Drug Targets 2022; 23(16): 1526-36.
[http://dx.doi.org/10.2174/1389450123666220913121422] [PMID: 36100990]
[13]
Zhao J, Li X, Hu J, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res 2019; 115(7): 1205-16.
[http://dx.doi.org/10.1093/cvr/cvz040] [PMID: 30753344]
[14]
Cao J, Xie H, Sun Y, et al. Sevoflurane post-conditioning reduces rat myocardial ischemia reperfusion injury through an increase in NOS and a decrease in phopshorylated NHE1 levels. Int J Mol Med 2015; 36(6): 1529-37.
[http://dx.doi.org/10.3892/ijmm.2015.2366] [PMID: 26459736]
[15]
de Sales KPF, Pinto BAS, Ribeiro NLX, et al. Effects of Vitamin C on the prevention of ischemia-reperfusion brain injury: Experimental study in rats. Int J Vasc Med 2019; 2019: 4090549.
[http://dx.doi.org/10.1155/2019/4090549] [PMID: 32089885]
[16]
Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M, Eckle T. Myocardial ischemia reperfusion injury: from Basic science to clinical bedside. Semin Cardiothorac Vasc Anesth 2012; 16(3): 123-32.
[http://dx.doi.org/10.1177/1089253211436350] [PMID: 22368166]
[17]
Kherallah RY, Khawaja M, Olson M, Angiolillo D, Birnbaum Y. Cilostazol: A review of basic mechanisms and clinical uses. Cardiovasc Drugs Ther 2022; 36(4): 777-92.
[http://dx.doi.org/10.1007/s10557-021-07187-x] [PMID: 33860901]
[18]
Noma K, Higashi Y. Cilostazol for treatment of cerebral infarction. Expert Opin Pharmacother 2018; 19(15): 1719-26.
[http://dx.doi.org/10.1080/14656566.2018.1515199] [PMID: 30212227]
[19]
Li J, Xiang X, Xu Z. Cilostazol protects against myocardial ischemia and reperfusion injury by activating transcription factor EB (TFEB). Biotechnol Appl Biochem 2019; 66(4): 555-63.
[http://dx.doi.org/10.1002/bab.1754] [PMID: 30994947]
[20]
Souza Júnior SS, Moreira Neto AA, Schmidt Júnior AF, Lemos JBD, Rodrigues OR. Biochemical study of the effects of cilostazol in rats subjected to acute ischemia and reperfusion of hind limbs. Acta Cir Bras 2013; 28(5): 361-6.
[http://dx.doi.org/10.1590/S0102-86502013000500007] [PMID: 23702938]
[21]
Frias Neto CAS, Koike MK, Saad KR, Saad PF, Montero EFS. Effects of ischemic preconditioning and cilostazol on muscle ischemia-reperfusion injury in rats. Acta Cir Bras 2014; 29 (Suppl. 3): 17-21.
[http://dx.doi.org/10.1590/S0102-86502014001700004] [PMID: 25351151]
[22]
O’Donnell ME, Badger SA, Sharif MA, et al. The effects of cilostazol on exercise-induced ischaemia-reperfusion injury in patients with peripheral arterial disease. Eur J Vasc Endovasc Surg 2009; 37(3): 326-35.
[http://dx.doi.org/10.1016/j.ejvs.2008.11.028] [PMID: 19112032]
[23]
Santos MRGA, Celotto AC, Capellini VK, Evora PRB, Piccinato CE, Joviliano EE. The protective effect of cilostazol on isolated rabbit femoral arteries under conditions of ischemia and reperfusion: The role of the nitric oxide pathway. Clinics (São Paulo) 2012; 67(2): 171-8.
[http://dx.doi.org/10.6061/clinics/2012(02)13] [PMID: 22358243]
[24]
Sahin M, Baytaroglu C, Sevgili E. Cardioprotective effect of cilostazol on ischemia-reperfusion injury model. Rev Bras Cir Cardiovasc 2022; 37(6): 843-7.
[http://dx.doi.org/10.21470/1678-9741-2020-0651] [PMID: 34673517]
[25]
Manolis AA, Manolis TA, Melita H, Mikhailidis DP, Manolis AS. Update on cilostazol: A critical review of its antithrombotic and cardiovascular actions and its clinical applications. J Clin Pharmacol 2022; 62(3): 320-58.
[http://dx.doi.org/10.1002/jcph.1988] [PMID: 34671983]
[26]
El-Hachem N, Fardoun MM, Slika H, Baydoun E, Eid AH. Repurposing cilostazol for Raynaud’s phenomenon. Curr Med Chem 2021; 28(12): 2409-17.
[http://dx.doi.org/10.2174/0929867327666200903114154] [PMID: 32881655]
[27]
McHutchison C, Blair GW, Appleton JP, et al. Cilostazol for secondary prevention of stroke and cognitive decline. Stroke 2020; 51(8): 2374-85.
[http://dx.doi.org/10.1161/STROKEAHA.120.029454] [PMID: 32646330]
[28]
Bai S, Wang X, Wu H, et al. Cardioprotective effect of anisodamine against ischemia/reperfusion injury through the mitochondrial ATP-sensitive potassium channel. Eur J Pharmacol 2021; 901: 174095.
[http://dx.doi.org/10.1016/j.ejphar.2021.174095] [PMID: 33862063]
[29]
Kristensen MLV, Kierulf-Lassen C, Nielsen PM, et al. Remote ischemic perconditioning attenuates ischemia/reperfusion-induced downregulation of AQP2 in rat kidney. Physiol Rep 2016; 4(13): e12865.
[http://dx.doi.org/10.14814/phy2.12865] [PMID: 27405971]
[30]
Sharma AK, Kumar A, Sahu M, Sharma G, Datusalia AK, Rajput SK. Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting GSK-3β phosphorylation in ischemia/reperfusion induced myocardial infarction. Microvasc Res 2018; 120: 59-66.
[http://dx.doi.org/10.1016/j.mvr.2018.06.003] [PMID: 29940198]
[31]
Brand MD. Riding the tiger – physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55(6): 592-661.
[http://dx.doi.org/10.1080/10409238.2020.1828258] [PMID: 33148057]
[32]
Masini E, Cuzzocrea S, Mazzon E, Marzocca C, Mannaioni PF, Salvemini D. Protective effects of M40403, a selective superoxide dismutase mimetic, in myocardial ischaemia and reperfusion injury in vivo. Br J Pharmacol 2002; 136(6): 905-17.
[http://dx.doi.org/10.1038/sj.bjp.0704774] [PMID: 12110615]
[33]
Ghio AJ, Suliman HB, Carter JD, Abushamaa AM, Folz RJ. Overexpression of extracellular superoxide dismutase decreases lung injury after exposure to oil fly ash. Am J Physiol Lung Cell Mol Physiol 2002; 283(1): L211-8.
[http://dx.doi.org/10.1152/ajplung.00409.2001] [PMID: 12060579]
[34]
Roesner JP, Petzelbauer P, Koch A, et al. The fibrin-derived peptide Bβ15–42 is cardioprotective in a pig model of myocardial ischemia-reperfusion injury. Crit Care Med 2007; 35(7): 1730-5.
[http://dx.doi.org/10.1097/01.CCM.0000269035.30231.76] [PMID: 17522584]
[35]
Praetner M, Zuchtriegel G, Holzer M, et al. Plasminogen activator inhibitor-1 promotes neutrophil infiltration and tissue injury on ischemia–reperfusion. Arterioscler Thromb Vasc Biol 2018; 38(4): 829-42.
[http://dx.doi.org/10.1161/ATVBAHA.117.309760] [PMID: 29371242]
[36]
Denorme F, Wyseure T, Peeters M, et al. Inhibition of thrombin-activatable fibrinolysis inhibitor and plasminogen activator inhibitor-1 reduces ischemic brain damage in mice. Stroke 2016; 47(9): 2419-22.
[http://dx.doi.org/10.1161/STROKEAHA.116.014091] [PMID: 27470988]
[37]
Aneja R, Hake PW, Burroughs TJ, Denenberg AG, Wong HR, Zingarelli B. Epigallocatechin, a green tea polyphenol, attenuates myocardial ischemia reperfusion injury in rats. Mol Med 2004; 10(1-6): 55-62.
[http://dx.doi.org/10.2119/2004-00032.Aneja] [PMID: 15502883]
[38]
Okada M, Falcão LFR, Ferez D, et al. Effect of atenolol pre-treatment in heart damage in a model of intestinal ischemia-reperfusion. Acta Cir Bras 2017; 32(11): 964-72.
[http://dx.doi.org/10.1590/s0102-865020170110000008] [PMID: 29236801]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy