Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Mini-Review Article

An Overview of Analytical Methods for the Identification and Quantification of Baclofen

Author(s): Milena Nogueira da Silva, João Victor Belo da Silva, Naara Felipe da Fonsêca, João Augusto Oshiro Junior* and Ana Claudia Dantas Medeiros*

Volume 19, Issue 5, 2023

Published on: 08 May, 2023

Page: [353 - 370] Pages: 18

DOI: 10.2174/1573412919666230502124837

Price: $65

conference banner
Abstract

Background: Baclofen is a potent antispasmodic agent, acting as an analgesic and central skeletal muscle relaxant. It is a GABA-B analog, and is widely used for the treatment of spasticity. Due to its therapeutic importance, various analytical techniques are used in the pharmaceutical industry and research to determine, identify, and characterize baclofen in bulk material, biological fluids, and pharmaceutical forms.

Objective: This review aimed to collect information on reported analytical techniques commonly used to identify and quantify baclofen in pharmaceutical forms and biological samples.

Methods: The authors explored various authenticated scientific journals using these descriptors: highperformance liquid chromatography, liquid chromatography-tandem mass spectrometry, capillary electrophoresis, differential scanning calorimetry, Fourier transform infrared spectroscopy, ultravioletvisible spectroscopy, near-infrared spectroscopy, nuclear magnetic resonance, potentiometry, and Xray diffraction.

Results: Quantification of the drug by all the methods evaluated in the review was possible. There were 73 articles reviewed, of which 26 used HPLC for baclofen quantification; the least used was near infrared spectroscopy and potentiometry, both with one article identified.

Conclusion: This review has shed light on a wide variety of analytical methods that can be used to quantify and identify baclofen. The knowledge provided by the use of these analytical methods makes this document an important tool for developing pharmaceutical formulations containing baclofen.

Keywords: HPLC, mass spectrometry, baclofen, gamma-amino-butyric acid, API, pharmaceutical formulations.

Next »
Graphical Abstract
[1]
Romito, J.W.; Turner, E.R.; Rosener, J.A.; Coldiron, L.; Udipi, A.; Nohrn, L.; Tausiani, J.; Romito, B.T. Baclofen therapeutics, toxicity, and withdrawal: A narrative review. SAGE Open Med., 2021, 9, 20503121211022197.
[http://dx.doi.org/10.1177/20503121211022197] [PMID: 34158937]
[2]
Abraham, M.; Gold, J.; Dweck, J.; Ward, M.; Gendreau, J.; Panse, N.; Holani, K.; Gupta, P.; Mammis, A. Classifying device-related complications associated with intrathecal baclofen pumps: A MAUDE study. World Neurosurg., 2020, 139, e652-e657.
[http://dx.doi.org/10.1016/j.wneu.2020.04.070] [PMID: 32339729]
[3]
Ostovan, A.; Ghaedi, M.; Arabi, M. Fabrication of water-compatible superparamagnetic molecularly imprinted biopolymer for clean separation of baclofen from bio-fluid samples: A mild and green approach. Talanta, 2018, 179, 760-768.
[http://dx.doi.org/10.1016/j.talanta.2017.12.017] [PMID: 29310305]
[4]
Imerci, A.; Rogers, K.; Dixit, D.; McManus, M.; Miller, F.; Sees, J.P. The effectiveness of epidural blood patch in patients with cerebral palsy treated with intrathecal baclofen implantation. Paediatr. Anaesth., 2020, 30(2), 153-160.
[http://dx.doi.org/10.1111/pan.13791] [PMID: 31837185]
[5]
Durant, C.F.; Paterson, L.M.; Turton, S.; Wilson, S.J.; Myers, J.F.M.; Muthukumaraswamy, S.; Venkataraman, A.; Mick, I.; Paterson, S.; Jones, T.; Nahar, L.K.; Cordero, R.E.; Nutt, D.J.; Lingford-Hughes, A. Using baclofen to explore GABA-B receptor function in alcohol dependence: Insights from pharmacokinetic and pharmacodynamic measures. Front. Psychiatry, 2018, 9, 664-671.
[http://dx.doi.org/10.3389/fpsyt.2018.00664] [PMID: 30618857]
[6]
Farokhnia, M.; Deschaine, S.L.; Sadighi, A.; Farinelli, L.A.; Lee, M.R.; Akhlaghi, F.; Leggio, L. A deeper insight into how GABAB receptor agonism via baclofen may affect alcohol seeking and consumption: lessons learned from a human laboratory investigation. Mol. Psychiatry, 2021, 26(2), 545-555.
[http://dx.doi.org/10.1038/s41380-018-0287-y] [PMID: 30382188]
[7]
Pierce, M.; Sutterland, A.; Beraha, E.M.; Morley, K.; van den Brink, W. Efficacy, tolerability, and safety of low-dose and high-dose baclofen in the treatment of alcohol dependence: A systematic review and meta-analysis. Eur. Neuropsychopharmacol., 2018, 28(7), 795-806.
[http://dx.doi.org/10.1016/j.euroneuro.2018.03.017] [PMID: 29934090]
[8]
Morley, K.C.; Baillie, A.; Fraser, I.; Furneaux-Bate, A.; Dore, G.; Roberts, M.; Abdalla, A.; Phung, N.; Haber, P.S. Baclofen in the treatment of alcohol dependence with or without liver disease: multisite, randomised, double-blind, placebo-controlled trial. Br. J. Psychiatry, 2018, 212(6), 362-369.
[http://dx.doi.org/10.1192/bjp.2018.13] [PMID: 29716670]
[9]
Pignon, B.; Labreuche, J.; Auffret, M.; Gautier, S.; Deheul, S.; Simioni, N.; Cottencin, O.; Bordet, R.; Duhamel, A.; Rolland, B. The dose-effect relationship of baclofen in alcohol dependence: A 1-year cohort study. Hum. Psychopharmacol., 2017, 32(4), e2593.
[http://dx.doi.org/10.1002/hup.2593] [PMID: 28517239]
[10]
Pudipeddi, M.; Serajuddin, A.T.M. Trends in solubility of polymorphs. J. Pharm. Sci., 2005, 94(5), 929-939.
[http://dx.doi.org/10.1002/jps.20302] [PMID: 15770643]
[11]
Zhu, Z.; Neirinck, L. Chiral separation and determination of R-(−)- and S-(+)-baclofen in human plasma by high-performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 785(2), 277-283.
[http://dx.doi.org/10.1016/S1570-0232(02)00916-9] [PMID: 12554140]
[12]
Chiang, M.T.; Chang, S.Y.; Whang, C.W. Chiral analysis of baclofen by α-cyclodextrin-modified capillary electrophoresis and laser-induced fluorescence detection. Electrophoresis, 2001, 22(1), 123-127.
[http://dx.doi.org/10.1002/1522-2683(200101)22:1<123:AID-ELPS123>3.0.CO;2-4] [PMID: 11197160]
[13]
Winter, G.; Beni-Adani, L.; Ben-Pazi, H. Intrathecal Baclofen Therapy—Practical Approach: Clinical Benefits and Complication Management. J. Child Neurol., 2018, 33(11), 734-741.
[http://dx.doi.org/10.1177/0883073818785074] [PMID: 30009656]
[14]
Ramesh, P.; Suman, D.; Reddy, K. Asymmetric Synthetic Strategies of (R)-(–)-Baclofen: An Antispastic Drug. Synthesis, 2018, 50(2), 211-226.
[http://dx.doi.org/10.1055/s-0036-1590938]
[15]
Berntsson, S.G.; Gauffin, H.; Melberg, A.; Holtz, A.; Landtblom, A.M. Inherited ataxia and intrathecal baclofen for the treatment of spasticity and painful spasms. Stereotact. Funct. Neurosurg., 2019, 97(1), 18-23.
[http://dx.doi.org/10.1159/000497165] [PMID: 30870851]
[16]
Kumru, H.; Albu, S.; Kofler, M.; Vidal, J. Efecto analgésico del baclofeno intratecal a largo plazo sobre el dolor neuropático en pacientes con lesión medular. Neurologia, 2020, 35(9), 679-681.
[http://dx.doi.org/10.1016/j.nrleng.2019.09.006] [PMID: 31952888]
[17]
Nelson, M.E.S.; McGuire, J.R. Intrathecal baclofen therapy in patients with multiple sclerosis: Improved outcomes and reduced costs through identification of catheter malfunction. Neuromodulation, 2019, 22(7), 839-842.
[http://dx.doi.org/10.1111/ner.12974] [PMID: 31157471]
[18]
Resende, P.; Almeida, W.P.; Coelho, F. An efficient synthesis of (R)-(−)-baclofen. Tetrahedron Asymmetry, 1999, 10(11), 2113-2118.
[http://dx.doi.org/10.1016/S0957-4166(99)00235-9]
[19]
Ahuja, S. Chiral Separations by Chromatography; American Chemical Society: Washington, DC, 2000.
[20]
Couvrat, N.; Sanselme, M.; Poupard, M.; Bensakoun, C.; Drouin, S.H.; Schneider, J.M.; Coquerel, G. Solid-State Overview of R-Baclofen: Relative Stability of Forms A, B and C and Characterization of a New Heterosolvate. J. Pharm. Sci., 2021, 110(10), 3457-3463.
[http://dx.doi.org/10.1016/j.xphs.2021.06.018] [PMID: 34126114]
[21]
O’Neil, M.J. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 14th ed; Merck: N.J, 2006.
[22]
Ghnavatian, S.D.A. Available From: https://pubmed.ncbi.nlm.nih.gov/30252293/
[23]
Felluga, F.; Gombac, V.; Pitacco, G.; Valentin, E. A short and convenient chemoenzymatic synthesis of both enantiomers of 3-phenylGABA and 3-(4-chlorophenyl)GABA (Baclofen). Tetrahedron Asymmetry, 2005, 16(7), 1341-1345.
[http://dx.doi.org/10.1016/j.tetasy.2005.02.019]
[24]
Elagawany, M.; Farid, N.F.; Elgendy, B.; Abdelmomen, E.H.; Abdelwahab, N.S. Baclofen impurities: Facile synthesis and novel environmentally benign chromatographic method for their simultaneous determination in baclofen. Biomed. Chromatogr., 2019, 33(9), e4579.
[http://dx.doi.org/10.1002/bmc.4579]
[25]
Sitaram, B.R.; Tsui, M.; Rawicki, H.B.; Lam, S.; Sitaram, M. Stability and compatibility of intrathecal admixtures containing baclofen and high concentrations of morphine. Int. J. Pharm., 1997, 153(1), 13-24.
[http://dx.doi.org/10.1016/S0378-5173(97)04926-0]
[26]
Consortti, L.P.; Salgado, H.R.N. A critical review of analytical methods for quantification of cefotaxime. Crit. Rev. Anal. Chem., 2017, 47(4), 359-371.
[http://dx.doi.org/10.1080/10408347.2017.1298988] [PMID: 28287269]
[27]
Agabio, R.; Leite-Morris, K.A.; Addolorato, G.; Colombo, G. Targeting the GABAB Receptor for the Treatment of Alcohol Use Disorder. Colombo, G; Receptor, G.A.B.A.B., Ed.; Humana Press: Cham, 2016, pp. 287-307.
[http://dx.doi.org/10.1007/978-3-319-46044-4_15]
[28]
Shaye, H.; Stauch, B.; Gati, C.; Cherezov, V. Molecular mechanisms of metabotropic GABA B receptor function. Sci. Adv., 2021, 7(22), eabg3362.
[http://dx.doi.org/10.1126/sciadv.abg3362] [PMID: 34049877]
[29]
Chevillard, L.; Sabo, N.; Tod, M.; Labat, L.; Chasport, C.; Chevaleyre, C.; Thibaut, F.; Barré, J.; Azuar, J.; Questel, F.; Vorspan, F.; Bloch, V.; Bellivier, F.; Granger, B.; Barrault, C.; Declèves, X. Population pharmacokinetics of oral baclofen at steady-state in alcoholic-dependent adult patients. Fundam. Clin. Pharmacol., 2018, 32(2), 239-248.
[http://dx.doi.org/10.1111/fcp.12330] [PMID: 29091319]
[30]
Wolf, E.; Kothari, N.R.; Roberts, J.K.; Sparks, M.A. Baclofen Toxicity in Kidney Disease. Am. J. Kidney Dis., 2018, 71(2), 275-280.
[http://dx.doi.org/10.1053/j.ajkd.2017.07.005] [PMID: 28899601]
[31]
Agabio, R.; Baldwin, D.S.; Amaro, H.; Leggio, L.; Sinclair, J.M.A. The influence of anxiety symptoms on clinical outcomes during baclofen treatment of alcohol use disorder: A systematic review and meta-analysis. Neurosci. Biobehav. Rev., 2021, 125, 296-313.
[http://dx.doi.org/10.1016/j.neubiorev.2020.12.030] [PMID: 33454289]
[32]
Kakaei, S.; Khameneh, E.S. An efficient and simple ultrasound-assisted approach to synthesis of Baclofen. Main Group Chem., 2018, 17(2), 161-164.
[http://dx.doi.org/10.3233/MGC-180258]
[33]
Nieto, A.; Bailey, T.; Kaczanowska, K.; Mcdonald, P. GABAB receptor chemistry and pharmacology: Agonists, antagonists, and allosteric modulators.Behavioral Neurobiology of GABAB Receptor Function;; Vlachou, S.; Wickman, K., Eds.; Springer: Cham, 2021, pp. 81-118.
[http://dx.doi.org/10.1007/7854_2021_232]
[34]
Albright, A.L. Baclofen in the treatment of cerebral palsy. J. Child Neurol., 1996, 11(2), 77-83.
[http://dx.doi.org/10.1177/088307389601100202] [PMID: 8881981]
[35]
Kaupmann, K.; Huggel, K.; Heid, J.; Flor, P.J.; Bischoff, S.; Mickel, S.J.; McMaster, G.; Angst, C.; Bittiger, H.; Froestl, W.; Bettler, B. Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature, 1997, 386(6622), 239-246.
[http://dx.doi.org/10.1038/386239a0] [PMID: 9069281]
[36]
Keniche, A.; EL Ouar, I.; Zeghina, I.; Dib, M.E.A. Synthesis and Biological Analysis of Anti-addiction Effect and Hepatotoxicity of Tow Baclofen Analogues Complexed with β-Cyclodextrin. Comb. Chem. High Throughput Screen., 2021, 25(1), 187-196.
[http://dx.doi.org/10.2174/1386207323666201209093240] [PMID: 33297911]
[37]
Leisen, C.; Langguth, P.; Herbert, B.; Dressler, C.; Koggel, A.; Spahn-Langguth, H. Lipophilicities of baclofen ester prodrugs correlate with affinities to the ATP-dependent efflux pump P-glycoprotein: relevance for their permeation across the blood-brain barrier? Pharm. Res., 2003, 20(5), 772-778.
[http://dx.doi.org/10.1023/A:1023437603555] [PMID: 12751633]
[38]
Pálla, T.; Tóth, G.; Kraszni, M.; Mirzahosseini, A.; Noszál, B. Population, basicity and partition of short-lived conformers. Characterization of baclofen and pregabalin, the biaxial, doubly rotating drug molecules. Eur. J. Pharm. Sci., 2018, 123, 327-334.
[http://dx.doi.org/10.1016/j.ejps.2018.07.001] [PMID: 29981894]
[39]
Evenseth, L.S.M.; Gabrielsen, M.; Sylte, I. The GABAB Receptor—Structure, Ligand Binding and Drug Development. Molecules, 2020, 25(13), 3093.
[http://dx.doi.org/10.3390/molecules25133093] [PMID: 32646032]
[40]
Lal, R.; Sukbuntherng, J.; Tai, E.H.L.; Upadhyay, S.; Yao, F.; Warren, M.S.; Luo, W.; Bu, L.; Nguyen, S.; Zamora, J.; Peng, G.; Dias, T.; Bao, Y.; Ludwikow, M.; Phan, T.; Scheuerman, R.A.; Yan, H.; Gao, M.; Wu, Q.Q.; Annamalai, T.; Raillard, S.P.; Koller, K.; Gallop, M.A.; Cundy, K.C. Arbaclofen placarbil, a novel R-baclofen prodrug: Improved absorption, distribution, metabolism, and elimination properties compared with R-baclofen. J. Pharmacol. Exp. Ther., 2009, 330(3), 911-921.
[http://dx.doi.org/10.1124/jpet.108.149773] [PMID: 19502531]
[41]
Junaid, M.S.A.; Banga, A.K. Transdermal delivery of baclofen using iontophoresis and microneedles. AAPS Pharm. Sci. Tech., 2022, 23(3), 84.
[http://dx.doi.org/10.1208/s12249-022-02232-w] [PMID: 35288825]
[42]
Dukova, O.A.; Krasnov, E.A.; Efremov, A.A. Development of an HPLC method for determining baclofen. Pharm. Chem. J., 2015, 48(10), 687-689.
[http://dx.doi.org/10.1007/s11094-015-1172-5]
[43]
Agarwal, S.K.; Kriel, R.L.; Cloyd, J.C.; Coles, L.D.; Scherkenbach, L.A.; Tobin, M.H.; Krach, L.E. A pilot study assessing pharmacokinetics and tolerability of oral and intravenous baclofen in healthy adult volunteers. J. Child Neurol., 2015, 30(1), 37-41.
[http://dx.doi.org/10.1177/0883073814535504] [PMID: 25028414]
[44]
Sanchez-Ponce, R.; Wang, L.Q.; Lu, W.; von Hehn, J.; Cherubini, M.; Rush, R. Metabolic and pharmacokinetic differentiation of stx209 and racemic baclofen in humans. Metabolites, 2012, 2(3), 596-613.
[http://dx.doi.org/10.3390/metabo2030596] [PMID: 24957649]
[45]
Abdelkader, H.; Abdalla, O.Y.; Salem, H. Formulation of controlled-release baclofen matrix tablets: Influence of some hydrophilic polymers on the release rate and in vitro evaluation. AAPS Pharm. Sci. Tech., 2007, 8(4), 156.
[http://dx.doi.org/10.1208/pt0804100] [PMID: 18181521]
[46]
Řemínek, R.; Foret, F. Capillary electrophoretic methods for quality control analyses of pharmaceuticals: A review. Electrophoresis, 2021, 42(1-2), 19-37.
[http://dx.doi.org/10.1002/elps.202000185] [PMID: 32901975]
[47]
Kandpal, L.M.; Tewari, J.; Gopinathan, N.; Stolee, J.; Strong, R.; Boulas, P.; Cho, B.K. Quality assessment of pharmaceutical tablet samples using Fourier transform near infrared spectroscopy and multivariate analysis. Infrared Phys. Technol., 2017, 85, 300-306.
[http://dx.doi.org/10.1016/j.infrared.2017.07.016]
[48]
Kumar, M.; Bhatia, R.; Rawal, R.K. Applications of various analytical techniques in quality control of pharmaceutical excipients. J. Pharm. Biomed. Anal., 2018, 157, 122-136.
[http://dx.doi.org/10.1016/j.jpba.2018.05.023] [PMID: 29787965]
[49]
Fakayode, S.O.; Baker, G.A.; Bwambok, D.K.; Bhawawet, N.; Elzey, B.; Siraj, N.; Macchi, S.; Pollard, D.A.; Perez, R.L.; Duncan, A.J.; Warner, I.M. Molecular (Raman, NIR, and FTIR) spectroscopy and multivariate analysis in consumable products analysis. Appl. Spectrosc. Rev., 2019, 1, 1-77.
[http://dx.doi.org/10.1080/05704928.2019.1631176]
[50]
Siddiqui, M.R.; AlOthman, Z.A.; Rahman, N. Analytical techniques in pharmaceutical analysis: A review. Arab. J. Chem., 2017, 10, S1409-S1421.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.016]
[51]
Dong, M.W. Separation Science in Drug Development, Part 3: Analytical Development; LC-GC North America; Intellisphere, LLC, 2015.
[52]
Bunaciu, A.A.; Aboul-Enein, H.Y.; Fleschin, S. Recent Applications of Fourier Transform Infrared Spectrophotometry in Herbal Medicine Analysis. Appl. Spectrosc. Rev., 2011, 46(4), 251-260.
[http://dx.doi.org/10.1080/05704928.2011.565532]
[53]
Rojek, B.; Wesolowski, M.; Suchacz, B. Detection of compatibility between baclofen and excipients with aid of infrared spectroscopy and chemometry. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 116, 532-538.
[http://dx.doi.org/10.1016/j.saa.2013.07.102] [PMID: 23973602]
[54]
Shende, M.A.; Marathe, R.P. Gastroadhesive Suitability Studies for Baclofen Sustained Release Formulation. Indo Am. J. P. Sci., 2017, 4, 3315-3326.
[http://dx.doi.org/10.5281/zenodo.997182]
[55]
Ali, M.A.M.; Sabati, A.M.; Ali, B.A. Formulation and evaluation of baclofen mucoadhesive buccal films. FABAD J. Pharm. Sci., 2017, 42, 179-190.
[http://dx.doi.org/10.4103/0250-474X.78522]
[56]
Melo, C.A.D.; Silva, P.; Gomes, A.A.; Fernandes, D.D.S.; Véras, G.; Medeiros, A.C.D. Classification of Tablets containing Dipyrone, Caffeine and Orphenadrine by Near Infrared Spectroscopy and Chemometric Tools. J. Braz. Chem. Soc., 2013, 24, 991-997.
[http://dx.doi.org/10.5935/0103-5053.20130127]
[57]
Boiret, M.; Chauchard, F. Use of near-infrared spectroscopy and multipoint measurements for quality control of pharmaceutical drug products. Anal. Bioanal. Chem., 2017, 409(3), 683-691.
[http://dx.doi.org/10.1007/s00216-016-9756-9] [PMID: 27422646]
[58]
Mirza, S.; Miroshnyk, I.; Rantanen, J.; Aaltonen, J.; Harjula, P.; Kiljunen, E.; Heinämäki, J.; Yliruusi, J. Solid‐state properties and relationship between anhydrate and monohydrate of baclofen. J. Pharm. Sci., 2007, 96(9), 2399-2408.
[http://dx.doi.org/10.1002/jps.20894] [PMID: 17549770]
[59]
Dandić, A.; Rajkovača, K.; Jozanović, M.; Pukleš, I.; Széchenyi, A.; Budetić, M.; Samardžić, M. Review of characteristics and analytical methods for determination of indomethacin. Rev. Anal. Chem., 2022, 41(1), 34-62.
[http://dx.doi.org/10.1515/revac-2022-0032]
[60]
Islam, T.; Ferdous, S.; Jain, P.; Reza, H.M. Method Development and Validation of Baclofen Mouth Dissolving Tablets by UV Spectroscopy. Chemistry, 2013. Available from: https://www.researchgate.net/publication/284036377_Method_Development_and_Validation_of_Baclofen_Mouth_Dissolving_Tablets_by_UV_Spectroscopy
[61]
Wavhule, P.; Devarajan, P.V. Development and optimization of microballoons assisted floating tablets of baclofen. AAPS Pharm Sci Tech, 2021, 22(8), 272.
[http://dx.doi.org/10.1208/s12249-021-02139-y] [PMID: 34766234]
[62]
Younis, S.; Hougaard, A.; Vestergaard, M.B.; Larsson, H.B.W.; Ashina, M. Migraine and magnetic resonance spectroscopy: A systematic review. Curr. Opin. Neurol., 2017, 30(3), 246-262.
[http://dx.doi.org/10.1097/WCO.0000000000000436] [PMID: 28240609]
[63]
Cutrignelli, A.; Denora, N.; Lopedota, A.; Trapani, A.; Laquintana, V.; Latrofa, A.; Trapani, G.; Liso, G. Comparative effects of some hydrophilic excipients on the rate of gabapentin and baclofen lactamization in lyophilized formulations. Int. J. Pharm., 2007, 332(1-2), 98-106.
[http://dx.doi.org/10.1016/j.ijpharm.2006.09.053] [PMID: 17071027]
[64]
Vashistha, V.K.; Bhushan, R. Preparative enantioseparation of (RS)-baclofen: Determination of molecular dissymmetry. Chirality, 2015, 27(4), 299-305.
[http://dx.doi.org/10.1002/chir.22428] [PMID: 25683386]
[65]
Abu-hassan, A.A.; Ali, R.; Derayea, S.M. A new convenient methodology based on dihydropyridine derivative for selective fluorimetric analysis of baclofen: Application to spiked urine and content uniformity evaluation. In: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; Elrevier: Amsterdam, 2021; vol. 248, .
[http://dx.doi.org/10.1016/j.saa.2020.119165]
[66]
Abu-hassan, A.A.; Ali, R.; Derayea, S.M. A new feasible approach based on utility of ninhydrin for selective fluorimetric analysis of baclofen. Application to content uniformity evaluation. Luminescence, 2021, 36(3), 588-594.
[http://dx.doi.org/10.1002/bio.3976] [PMID: 33140532]
[67]
Patil, T.S.; Deshpande, A.S.; Deshpande, S. Critical review on the analytical methods for the estimation of clofazimine in bulk, biological fluids and pharmaceutical formulations. Crit. Rev. Anal. Chem., 2018, 48(6), 492-502.
[http://dx.doi.org/10.1080/10408347.2018.1451298] [PMID: 29621407]
[68]
Al-Sanea, M.M.; Gamal, M. Critical analytical review: Rare and recent applications of refractive index detector in HPLC chromatographic drug analysis. Microchem. J., 2022, 178, 107339.
[http://dx.doi.org/10.1016/j.microc.2022.107339]
[69]
Sahu, P.K.; Ramisetti, N.R.; Cecchi, T.; Swain, S.; Patro, C.S.; Panda, J. An overview of experimental designs in HPLC method development and validation. J. Pharm. Biomed. Anal., 2018, 147, 590-611.
[http://dx.doi.org/10.1016/j.jpba.2017.05.006] [PMID: 28579052]
[70]
Weatherby, R.P.; Allan, R.D.; Johnston, G.A.R. Resolution of the stereoisomers of baclofen by high performance liquid chromatography. J. Neurosci. Methods, 1984, 10(1), 23-28.
[http://dx.doi.org/10.1016/0165-0270(84)90076-1] [PMID: 6328130]
[71]
Mallik, A.K.; Qiu, H.; Takafuji, M.; Ihara, H. High molecular-shape-selective stationary phases for reversed-phase liquid chromatography: A review. Trends Analyt. Chem., 2018, 108, 381-404.
[http://dx.doi.org/10.1016/j.trac.2018.09.003]
[72]
Hanafi, R.; Mosad, S.; Abouzid, K.; Nieß, R.; Spahn-Langguth, H. Baclofen ester and carbamate prodrug candidates: A simultaneous chromatographic assay, resolution optimized with DryLab®. J. Pharm. Biomed. Anal., 2011, 56(3), 569-576.
[http://dx.doi.org/10.1016/j.jpba.2011.06.023] [PMID: 21782368]
[73]
Cao, L.W.; Li, C. Rapid and sensitive analysis of baclofen by high-performance liquid chromatography with UV-Vis and FD detection. Acta Chromatogr., 2012, 24(3), 383-397.
[http://dx.doi.org/10.1556/AChrom.24.2012.3.4]
[74]
Ali, I.; Suhail, M.; Alothman, Z.A.; Alwarthan, A. Chiral separation and modeling of baclofen, bupropion, and etodolac profens on amylose reversed phase chiral column. Chirality, 2017, 29(7), 386-397.
[http://dx.doi.org/10.1002/chir.22717] [PMID: 28608452]
[75]
Yu, Y.; You, J.; Sun, Z.; Ji, Z.; Hu, N.; Zhou, W.; Zhou, X. HPLC determination of γ‐aminobutyric acid and its analogs in human serum using precolumn fluorescence labeling with 4‐(carbazole‐9‐yl)‐benzyl chloroformate. J. Sep. Sci., 2019, 42(4), jssc.201801108.
[http://dx.doi.org/10.1002/jssc.201801108] [PMID: 30593727]
[76]
Leistner, A.; Holzgrabe, U. Impurity Profiling of Baclofen Using Gradient HPLC–UV Method. Chromatographia, 2021, 84(10), 927-935.
[http://dx.doi.org/10.1007/s10337-021-04079-y]
[77]
Wuis, E.W.; Dirks, R.J.M.; Vree, T.B.; van der Kleyn, E. High-performance liquid chromatographic analysis of baclofen in plasma and urine of man after precolumn extraction and derivatization with o-phthaldialdehyde. J. Chromatogr., Biomed. Appl., 1985, 337(2), 341-350.
[http://dx.doi.org/10.1016/0378-4347(85)80047-5] [PMID: 3988864]
[78]
Harrison, P.M.; Tonkin, A.M.; McLean, A.J. Determination of 4-amino-3-(p-chlorophenyl)butyric acid (baclofen) in plasma by high-performance liquid chromatography. J. Chromatogr., Biomed. Appl., 1985, 339(2), 424-428.
[http://dx.doi.org/10.1016/S0378-4347(00)84675-7] [PMID: 4008583]
[79]
Gupta, V.D. Quantitation of baclofen in tablets using high-performance liquid chromatography. J. Liq. Chromatogr., 1987, 10(4), 749-755.
[http://dx.doi.org/10.1080/01483918708069023]
[80]
Sallerin-caute, B.; Monsarrat, B.; Lazorthes, Y.; Cros, J.; Bastide, R. A sensitive method for the determination of baclofen in human CSF by high performance liquid chromatography. J. Liq. Chromatogr., 1988, 11(8), 1753-1761.
[http://dx.doi.org/10.1080/01483918808076735]
[81]
Spahn, H.; Krauβ, D.; Mutschler, E. Enantiospecific high-performance liquid chromatographic (HPLC) determination of baclofen and its fluoro analogue in biological material. Pharm. Res., 1988, 5(2), 107-112.
[http://dx.doi.org/10.1023/A:1015992218497] [PMID: 3247292]
[82]
Rustum, A.M. Simple and rapid reversed-phase high-performance liquid chromatographic determination of baclofen in human plasma with ultraviolet detection. J. Chromatogr., Biomed. Appl., 1989, 487(1), 107-115.
[http://dx.doi.org/10.1016/S0378-4347(00)83012-1] [PMID: 2715253]
[83]
van Bree, J.B.M.M.; Heijligers-Feijen, C.D.; de Boer, A.G.; Danhof, M.; Breimer, D.D. Stereoselective transport of baclofen across the blood-brain barrier in rats as determined by the unit impulse response methodology. Pharm. Res., 1991, 8(2), 259-262.
[http://dx.doi.org/10.1023/A:1015812725011] [PMID: 2023878]
[84]
Tosunoǧlu, S.; Ersoy, L. Determination of baclofen in human plasma and urine by high-performance liquid chromatography with fluorescence detection. Analyst (Lond.), 1995, 120(2), 373-375.
[http://dx.doi.org/10.1039/AN9952000373] [PMID: 7710128]
[85]
Millerioux, L.; Brault, M.; Gualano, V.; Mignot, A. High-performance liquid chromatographic determination of baclofen in human plasma. J. Chromatogr. A, 1996, 729(1-2), 309-314.
[http://dx.doi.org/10.1016/0021-9673(95)00944-2] [PMID: 9004955]
[86]
Hefnawy, M.; Aboul-Enein, H.Y. Enantioselective high-performance liquid chromatographic method for the determination of baclofen in human plasma. Talanta, 2003, 61(5), 667-673.
[http://dx.doi.org/10.1016/S0039-9140(03)00352-7] [PMID: 18969231]
[87]
Ban, E.; Park, J.S.; Kim, C.K. Semi‐microbore HPLC for the determination of baclofen in human plasma using column switching. J. Liq. Chromatogr. Relat. Technol., 2004, 27(19), 3051-3064.
[http://dx.doi.org/10.1081/JLC-200032681]
[88]
Bhushan, R.; Kumar, V. Indirect resolution of baclofen enantiomers from pharmaceutical dosage form by reversed-phase liquid chromatography after derivatization with Marfey’s reagent and its structural variants. Biomed. Chromatogr., 2008, 22(8), 906-911.
[http://dx.doi.org/10.1002/bmc.1013] [PMID: 18512855]
[89]
Bhushan, R.; Dixit, S. Microwave-assisted synthesis and reversed-phase high-performance liquid chromatographic separation of diastereomers of (R,S)-baclofen using ten chiral derivatizing reagents designed from trichloro-s-triazine. J. Chromatogr. A, 2010, 1217(41), 6382-6387.
[http://dx.doi.org/10.1016/j.chroma.2010.08.014] [PMID: 20817188]
[90]
Bhushan, R.; Dixit, S. HPLC enantioresolution of (R,S)-baclofen using three newly synthesized dichloro-s-triazine reagents having amines and five others having amino acids as chiral auxiliaries. Biomed. Chromatogr., 2012, 26(6), 743-748.
[http://dx.doi.org/10.1002/bmc.1723] [PMID: 21989982]
[91]
Nalluri, B.N.; Sushmitha, K.; Sunandana, B.; Babu, D.P. Development and Validation of RP-HPLC-PDA Method for Simultaneous Estimation of Baclofenand Tizanidine in Bulk and Dosage Forms. J. Appl. Pharm. Sci., 2012, 2, 111-116.
[http://dx.doi.org/10.7324/JAPS.2012.2714]
[92]
Singh, M.; Bhushan, R. HPLC enantioseparation of racemic bupropion, baclofen and etodolac: modification of conventional ligand exchange approach by pre-column formation of chiral ligand exchange complexes. Biomed. Chromatogr., 2016, 30(11), 1728-1732.
[http://dx.doi.org/10.1002/bmc.3746] [PMID: 27105592]
[93]
Dos Santos, J.; Rosa, P.; Adams, A.I.H. Validation of a simple reversed phase-HPLC method for the determination of baclofen in tablets. Drug Anal. Res., 2018, 2(2), 37-43.
[http://dx.doi.org/10.22456/2527-2616.87929]
[94]
Seger, C.; Salzmann, L. After another decade: LC-MS/MS became routine in clinical diagnostics. Clin. Biochem., 2020, 82, 2-11.
[http://dx.doi.org/10.1016/j.clinbiochem.2020.03.004]
[95]
Flärdh, M.; Jacobson, B.M. Sensitive method for the determination of baclofen in plasma by means of solid-phase extraction and liquid chromatography–tandem mass spectrometry. J. Chromatogr. A, 1999, 846(1-2), 169-173.
[http://dx.doi.org/10.1016/S0021-9673(99)00013-8] [PMID: 10420608]
[96]
Miksa, I.R.; Poppenga, R.H. Direct and rapid determination of baclofen (Lioresal) and carisoprodol (Soma) in bovine serum by liquid chromatography-mass spectrometry. J. Anal. Toxicol., 2003, 27(5), 275-283.
[http://dx.doi.org/10.1093/jat/27.5.275] [PMID: 12908940]
[97]
Goda, R.; Murayama, N.; Fujimaki, Y.; Sudo, K. Simple and sensitive liquid chromatography–tandem mass spectrometry method for determination of the S(+)- and R(−)-enantiomers of baclofen in human plasma and cerebrospinal fluid. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 801(2), 257-264.
[http://dx.doi.org/10.1016/j.jchromb.2003.11.025] [PMID: 14751794]
[98]
Monajjemzadeh, F.; Hassanzadeh, D.; Valizadeh, H.; Siahi-Shadbad, M.R.; Mojarrad, J.S.; Robertson, T.; Roberts, M.S. Assessment of feasibility of maillard reaction between baclofen and lactose by liquid chromatography and tandem mass spectrometry, application to pre formulation studies. AAPS Pharm. Sci. Tech., 2009, 10(2), 649-659.
[http://dx.doi.org/10.1208/s12249-009-9248-8] [PMID: 19455427]
[99]
Kim, T.H.; Shin, S.; Shin, J.C.; Choi, J.H.; Seo, W.S.; Park, G.Y.; Kwon, D.R.; Yoo, S.D.; Lee, A.R.; Joo, S.H.; Min, B.S.; Yoo, W.Y.; Shin, B.S. Liquid chromatography–tandem mass spectrometry determination of baclofen in various biological samples and application to a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 938, 43-50.
[http://dx.doi.org/10.1016/j.jchromb.2013.08.030] [PMID: 24036500]
[100]
Nahar, L.K.; Cordero, R.E.; Nutt, D.; Lingford-Hughes, A.; Turton, S.; Durant, C.; Wilson, S.; Paterson, S. Validated method for the quantification of baclofen in human plasma using solid-phase extraction and liquid chromatography–tandem mass spectrometry. J. Anal. Toxicol., 2016, 40(2), 117-123.
[http://dx.doi.org/10.1093/jat/bkv125] [PMID: 26538544]
[101]
Nahar, L.; Smith, A.; Patel, R.; Andrews, R.; Paterson, S. Validated method for the screening and quantification of baclofen, gabapentin and pregabalin in human post-mortem whole blood using protein precipitation and liquid chromatography–tandem mass spectrometry. J. Anal. Toxicol., 2017, 41(5), 441-450.
[http://dx.doi.org/10.1093/jat/bkx019] [PMID: 28335036]
[102]
Larabi, I.A.; Fabresse, N.; Knapp, A.; Forcet, M.; Baud, F.J.; Lorin de la Grandmaison, G.; Alvarez, J.C. LC-MS/MS method for quantification of baclofen in hair: A useful tool to assess compliance in alcohol dependent patients? Drug Test. Anal., 2018, 10(4), 694-700.
[http://dx.doi.org/10.1002/dta.2308] [PMID: 28967184]
[103]
Yang, K.; Zhou, Y.J.; Chen, F.H.; Long, X.M.; Kuang, G.W.; Sun, Z.L.; Liu, Z.Y. Determination of Baclofen Residue in Muscle, Liver, Kidney and Fat of Swine by Liquid Chromatography-Tandem Mass Spectrometry. Food Anal. Methods, 2017, 10(12), 3866-3873.
[http://dx.doi.org/10.1007/s12161-017-0958-3]
[104]
He, Q.; Chhonker, Y.S.; McLaughlin, M.J.; Murry, D.J. Simultaneous Quantitation of S(+)- and R(−)-Baclofen and Its Metabolite in Human Plasma and Cerebrospinal Fluid using LC–APCI–MS/MS: An Application for Clinical Studies. Molecules, 2020, 25(2), 250-262.
[http://dx.doi.org/10.3390/molecules25020250] [PMID: 31936209]
[105]
Amézqueta, S.; Subirats, X.; Fuguet, E.; Ràfols, C. Chapter 12 - Capillary electrophoresis for drug analysis and physicochemical characterization.Handbook of Analytical Separations;; Valkó, K., Ed.; Elsevier Science, 2020, pp. 633-666.
[http://dx.doi.org/10.1016/B978-0-444-64070-3.00012-6]
[106]
Chiang, M.T.; Chang, S.Y.; Whang, C.W. Analysis of baclofen by capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. A, 2000, 877(1-2), 233-237.
[http://dx.doi.org/10.1016/S0021-9673(00)00168-0] [PMID: 10845802]
[107]
Gu, Y.S.; Whang, C.W. Capillary electrophoresis of baclofen with argon-ion laser-induced fluorescence detection. J. Chromatogr. A, 2002, 972(2), 289-293.
[http://dx.doi.org/10.1016/S0021-9673(02)01083-X] [PMID: 12416888]
[108]
Ali, I.; Aboul-Enein, H.Y. Optimization of the chiral resolution of baclofen by capillary electrophoresis using β‐cyclodextrin as the chiral selector. Electrophoresis, 2003, 24(12-13), 2064-2069.
[http://dx.doi.org/10.1002/elps.200305439] [PMID: 12858376]
[109]
Kowalski, P.; Chmielewska, A.; Konieczna, L.; Olȩdzka, I.; Zarzycki, P.K.; Lamparczyk, H. The bioequivalence study of baclofen and lioresal tablets using capillary electrophoresis. Biomed. Chromatogr., 2004, 18(5), 311-317.
[http://dx.doi.org/10.1002/bmc.321] [PMID: 15236439]
[110]
Chang, S.Y.; Zheng, N.Y.; Chen, C.S. Development and validation of a capillary electrophoresis method for the determination of baclofen in human plasma. Int. J. App. Sci. Eng., 2004, 2, 277-285.
[http://dx.doi.org/10.6703/IJASE.2004.2(3).277]
[111]
Kavran-Belin, G.; Rudaz, S.; Veuthey, J.L. Enantioseparation of baclofen with highly sulfated β-cyclodextrin by capillary electrophoresis with laser-induced fluorescence detection. J. Sep. Sci., 2005, 28(16), 2187-2192.
[http://dx.doi.org/10.1002/jssc.200500100] [PMID: 16318216]
[112]
Desiderio, C.; Rossetti, D.; Perri, F.; Giardina, B.; Messana, I.; Castagnola, M. Enantiomeric separation of baclofen by capillary electrophoresis tandem mass spectrometry with sulfobutylether-β-cyclodextrin as chiral selector in partial filling mode. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 875(1), 280-287.
[http://dx.doi.org/10.1016/j.jchromb.2008.07.001] [PMID: 18656427]
[113]
Ghaderi, F.; Nemati, M.; Siahi-Shadbad, M.R.; Valizadeh, H.; Monajjemzadeh, F. Physicochemical analysis and nonisothermal kinetic study of sertraline-lactose binary mixtures. J. Food Drug Anal., 2017, 25(3), 709-716.
[http://dx.doi.org/10.1016/j.jfda.2016.08.003] [PMID: 28911656]
[114]
R Jivani, R.; N Patel, C.; M Patel, D.; P Jivani, N. Development of a Novel Floating In situ Gelling System for Stomach Specific Drug Delivery of the Narrow Absorption Window Drug Baclofen. Iran. J. Pharm. Res., 2010, 9(4), 359-368.
[http://dx.doi.org/10.3797/scipharm.0905-11] [PMID: 24381600]
[115]
Ghasemian, E.; Vatanara, A.; Navidi, N.; Rouini, M.R. Brain delivery of baclofen as a hydrophilic drug by nanolipid carriers: Characteristics and pharmacokinetics evaluation. J. Drug Deliv. Sci. Technol., 2017, 37, 67-73.
[http://dx.doi.org/10.1016/j.jddst.2016.06.012]
[116]
Ibraheem, F.Q.; Gawhri, F.J.A. Preparation and In-vitro Evaluation of Baclofen as an Oral Microsponge Tablets. Iraqi J. Pharm Sci., 2019, 28, 75-90.
[http://dx.doi.org/10.31351/vol28iss1pp75-90]
[117]
Ibrahim, M.; Sarhan, H.A.; Naguib, Y.W.; Abdelkader, H. Design, characterization and in vivo evaluation of modified release baclofen floating coated beads. Int. J. Pharm., 2020, 582, 119344.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119344] [PMID: 32315750]
[118]
Falsafi, S.R.; Rostamabadi, H.; Jafari, S.M. X-ray diffraction (XRD) of nanoencapsulated food ingredients. Characterization of Nanoencapsulated Food Ingredients. In: Characterization of Nanoencapsulated Food Ingredients; Academic Press: Cambridge, 2020; pp. 271-293.
[http://dx.doi.org/10.1016/B978-0-12-815667-4.00009-2]
[119]
Palekar, S.; Nukala, P.K.; Mishra, S.M.; Kipping, T.; Patel, K. Application of 3D printing technology and quality by design approach for development of age-appropriate pediatric formulation of baclofen. Int. J. Pharm., 2019, 556, 106-116.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.062] [PMID: 30513398]
[120]
Songsermsawad, S.; Nalaoh, P.; Promarak, V.; Flood, A.E. Chiral Resolution of RS -Baclofen via a Novel Chiral Cocrystal of R -Baclofen and L -Mandelic Acid. Cryst. Growth Des., 2022, 22(4), 2441-2451.
[http://dx.doi.org/10.1021/acs.cgd.1c01506]
[121]
Özbek, O.; Isildak, Ö. Polymer-based cadmium(II)-selective potentiometric sensors for the analysis of Cd 2+ in different environmental samples. Int. J. Environ. Anal. Chem., 2021, 1-14.
[http://dx.doi.org/10.1080/03067319.2021.1877283]
[122]
Stefan van Staden, R.I.; Rat’ko, A.A. Enantioselective, potentiometric membrane electrodes based on cyclodextrins: Application for the determination of R-baclofen in its pharmaceutical formulation. Talanta, 2006, 69(5), 1049-1053.
[http://dx.doi.org/10.1016/j.talanta.2005.12.022] [PMID: 18970679]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy