Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Systematic Review Article

Antibacterial Effects of Nanocomposites on Efflux Pump Expression and Biofilm Production in Pseudomonas aeruginosa: A Systematic Review

Author(s): Pegah Shakib, Reza Saki, Abdolrazagh Marzban, Gholamreza Goudarzi, Suresh Ghotekar, Kourosh Cheraghipour and Mohammad Reza Zolfaghari*

Volume 25, Issue 1, 2024

Published on: 19 May, 2023

Page: [77 - 92] Pages: 16

DOI: 10.2174/1389201024666230428121122

Price: $65

conference banner
Abstract

Background: Pseudomonas aeruginosa is an opportunistic gram-negative pathogen with multiple mechanisms of resistance to antibiotics.

Aim: This systematic review aimed to study the antibacterial effects of nanocomposites on efflux pump expression and biofilm production in P. aeruginosa.

Methods: The search was conducted from January 1, 2000, to May 30, 2022, using terms such as (P. aeruginosa) AND (biofilm) AND (antibiofilm activity) AND (anti-Efflux Pump Expression activity) AND (nanoparticles) AND (Efflux Pump Expression) AND (Solid Lipid NPS) AND (Nano Lipid Carriers). Many databases are included in the collection, including ScienceDirect, PubMed, Scopus, Ovid, and Cochrane.

Results: A list of selected articles was retrieved by using the relevant keywords. A total of 323 published papers were selected and imported into the Endnote library (version X9). Following the removal of duplicates, 240 were selected for further processing. Based on the titles and abstracts of the articles, 54 irrelevant studies were excluded. Among the remaining 186 articles, 54 were included in the analysis because their full texts were accessible. Ultimately, 74 studies were selected based on inclusion/exclusion criteria.

Conclusion: Recent studies regarding the impact of NPs on drug resistance in P. aeruginosa found that various nanostructures were developed with different antimicrobial properties. The results of our study suggest that NPs may be a feasible alternative for combating microbial resistance in P. aeruginosa by blocking flux pumps and inhibiting biofilm formation.

Keywords: Efflux pump, anti-biofilm activity, Pseudomonas aeruginosa, systematic review, nanoparticles, biofilm.

« Previous
Graphical Abstract
[1]
Costerton, J.W.; Cheng, K.J.; Geesey, G.G.; Ladd, T.I.; Nickel, J.C.; Dasgupta, M.; Marrie, T.J. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol., 1987, 41(1), 435-464.
[http://dx.doi.org/10.1146/annurev.mi.41.100187.002251] [PMID: 3318676]
[2]
Høiby, N.; Ciofu, O.; Johansen, H.K.; Song, Z.; Moser, C.; Jensen, P.Ø.; Molin, S.; Givskov, M.; Tolker-Nielsen, T.; Bjarnsholt, T. The clinical impact of bacterial biofilms. Int. J. Oral Sci., 2011, 3(2), 55-65.
[http://dx.doi.org/10.4248/IJOS11026] [PMID: 21485309]
[3]
Driscoll, J.A.; Brody, S.L.; Kollef, M.H. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs, 2007, 67(3), 351-368.
[http://dx.doi.org/10.2165/00003495-200767030-00003] [PMID: 17335295]
[4]
Parsek, M.R.; Singh, P.K. Bacterial biofilms: An emerging link to disease pathogenesis. Annu. Rev. Microbiol., 2003, 57(1), 677-701.
[http://dx.doi.org/10.1146/annurev.micro.57.030502.090720] [PMID: 14527295]
[5]
Khaledi, A.; Weimann, A.; Schniederjans, M.; Asgari, E.; Kuo, T.H.; Oliver, A.; Cabot, G.; Kola, A.; Gastmeier, P.; Hogardt, M.; Jonas, D.; Mofrad, M.R.K.; Bremges, A.; McHardy, A.C. Häussler, S. Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning‐enabled molecular diagnostics. EMBO Mol. Med., 2020, 12(3), e10264.
[http://dx.doi.org/10.15252/emmm.201910264] [PMID: 32048461]
[6]
Hadadi-Fishani, M.; Khaledi, A.; Fatemi-Nasab, Z.S.J.I.M. Correlation between biofilm formation and antibiotic resistance in Pseudomonas aeruginosa: A meta-analysis. Infez. Med., 2020, 28(1), 47-54.
[PMID: 32172260]
[7]
Salomoni, R.; Léo, P.; Montemor, A.; Rinaldi, B.; Rodrigues, M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol. Sci. Appl., 2017, 10, 115-121.
[http://dx.doi.org/10.2147/NSA.S133415] [PMID: 28721025]
[8]
Poole, K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J. Mol. Microbiol. Biotechnol., 2001, 3(2), 255-264.
[PMID: 11321581]
[9]
Aeschlimann, J.R. The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram-negative bacteria. Pharmacotherapy, 2003, 23(7), 916-924.
[http://dx.doi.org/10.1592/phco.23.7.916.32722] [PMID: 12885104]
[10]
Joji, R.M.; Al Rashed, N.; Saeed, N.; Bindayna, K. Detection of overexpression of efflux pump expression in fluoroquinolone-resistant Pseudomonas aeruginosa isolates. Int. J. Appl. Basic Med. Res., 2020, 10(1), 37-42.
[http://dx.doi.org/10.4103/ijabmr.IJABMR_90_19] [PMID: 32002384]
[11]
Huang, X.; Li, T.; Zhang, X.; Deng, J.; Yin, X. Bimetallic palladium@copper nanoparticles: Lethal effect on the gram-negative bacterium Pseudomonas aeruginosa. Mater. Sci. Eng. C, 2021, 129, 112392.
[http://dx.doi.org/10.1016/j.msec.2021.112392] [PMID: 34579911]
[12]
Liao, S.; Zhang, Y.; Pan, X.; Zhu, F.; Jiang, C.; Liu, Q. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomed., 2019, 14, 1469.
[http://dx.doi.org/10.2147/IJN.S191340]
[13]
Singh, N.; Paknikar, K.M.; Rajwade, J. RNA-sequencing reveals a multitude of effects of silver nanoparticles on Pseudomonas aeruginosa biofilms. Environ. Sci. Nano, 2019, 6(6), 1812-1828.
[http://dx.doi.org/10.1039/C8EN01286E]
[14]
Ju, X.; Chen, J.; Zhou, M.; Zhu, M.; Li, Z.; Gao, S.; Ou, J.; Xu, D.; Wu, M.; Jiang, S.; Hu, Y.; Tian, Y.; Niu, Z. Combating Pseudomonas aeruginosa biofilms by a chitosan-PEG-peptide conjugate via changes in assembled structure. ACS Appl. Mater. Interfaces, 2020, 12(12), 13731-13738.
[http://dx.doi.org/10.1021/acsami.0c02034] [PMID: 32155326]
[15]
Singh, N.; Romero, M.; Travanut, A.; Monteiro, P.F.; Jordana-Lluch, E.; Hardie, K.R.; Williams, P.; Alexander, M.R.; Alexander, C. Dual bioresponsive antibiotic and quorum sensing inhibitor combination nanoparticles for treatment of Pseudomonas aeruginosa biofilms in vitro and ex vivo. Biomater. Sci., 2019, 7(10), 4099-4111.
[http://dx.doi.org/10.1039/C9BM00773C] [PMID: 31355397]
[16]
Subhaswaraj, P.; Barik, S.; Macha, C.; Chiranjeevi, P.V.; Siddhardha, B. Anti quorum sensing and anti biofilm efficacy of cinnamaldehyde encapsulated chitosan nanoparticles against Pseudomonas aeruginosa PAO1. Lebensm. Wiss. Technol., 2018, 97, 752-759.
[http://dx.doi.org/10.1016/j.lwt.2018.08.011]
[17]
Wang, Y.; Venter, H.; Ma, S. Efflux pump inhibitors: A novel approach to combat efflux-mediated drug resistance in bacteria. Curr. Drug Targets, 2016, 17(6), 702-719.
[http://dx.doi.org/10.2174/1389450116666151001103948] [PMID: 26424403]
[18]
Dey, N.; Kamatchi, C.; Vickram, A.S.; Anbarasu, K.; Thanigaivel, S.; Palanivelu, J.; Pugazhendhi, A.; Ponnusamy, V.K. Role of nanomaterials in deactivating multiple drug resistance efflux pumps – A review. Environ. Res., 2022, 204(Pt A), 111968.
[http://dx.doi.org/10.1016/j.envres.2021.111968] [PMID: 34453898]
[19]
Christena, L.R.; Mangalagowri, V.; Pradheeba, P.; Ahmed, K.B.A.; Shalini, B.I.S.; Vidyalakshmi, M.; Anbazhagan, V. Sai subramanian, N. Copper nanoparticles as an efflux pump inhibitor to tackle drug resistant bacteria. RSC Advances, 2015, 5(17), 12899-12909.
[http://dx.doi.org/10.1039/C4RA15382K]
[20]
Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol., 2019, 53, 101174.
[http://dx.doi.org/10.1016/j.jddst.2019.101174]
[21]
Nsayef Muslim, S.; Mohammed Ali, A.N.; Auda, I.G. Anti‐biofilm and anti‐virulence effects of silica oxide nanoparticle–conjugation of lectin purified from Pseudomonas aeruginosa. IET Nanobiotechnol., 2021, 15(3), 318-328.
[http://dx.doi.org/10.1049/nbt2.12022] [PMID: 34694672]
[22]
Dorri, K.; Modaresi, F.; Shakibaie, M.R.; Moazamian, E. Effect of gold nanoparticles on the expression of efflux pump mexA and mexB genes of Pseudomonas aeruginosa strains by Quantitative real-time PCR. Pharmacia, 2022, 69(1), 125-133.
[http://dx.doi.org/10.3897/pharmacia.69.e77608]
[23]
Liu, L.; Li, J.H.; Zi, S.F.; Liu, F.R.; Deng, C.; Ao, X.; Zhang, P. AgNP combined with quorum sensing inhibitor increased the antibiofilm effect on Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 2019, 103(15), 6195-6204.
[http://dx.doi.org/10.1007/s00253-019-09905-w] [PMID: 31129741]
[24]
LewisOscar. F.; Nithya, C.; Vismaya, S.; Arunkumar, M.; Pugazhendhi, A.; Nguyen-Tri, P.; Alharbi, S.A.; Alharbi, N.S.; Thajuddin, N. In vitro analysis of green fabricated silver nanoparticles (AgNPs) against Pseudomonas aeruginosa PA14 biofilm formation, their application on urinary catheter. Prog. Org. Coat., 2021, 151, 106058.
[http://dx.doi.org/10.1016/j.porgcoat.2020.106058]
[25]
Targhi, A.A.; Moammeri, A.; Jamshidifar, E.; Abbaspour, K.; Sadeghi, S.; Lamakani, L.; Akbarzadeh, I. Synergistic effect of curcumin-Cu and curcumin-Ag nanoparticle loaded niosome: Enhanced antibacterial and anti-biofilm activities. Bioorg. Chem., 2021, 115, 105116.
[http://dx.doi.org/10.1016/j.bioorg.2021.105116] [PMID: 34333420]
[26]
Paunova-Krasteva, T.; Haladjova, E.; Petrov, P.; Forys, A.; Trzebicka, B.; Topouzova-Hristova, T.; R., Stoitsova S. Destruction of Pseudomonas aeruginosa pre-formed biofilms by cationic polymer micelles bearing silver nanoparticles. Biofouling, 2020, 36(6), 679-695.
[http://dx.doi.org/10.1080/08927014.2020.1799354] [PMID: 32741293]
[27]
Patel, K.K.; Surekha, D.B.; Tripathi, M.; Anjum, M.M.; Muthu, M.S.; Tilak, R.; Agrawal, A.K.; Singh, S. Antibiofilm potential of silver sulfadiazine-loaded nanoparticle formulations: A study on the effect of DNase-I on microbial biofilm and wound healing activity. Mol. Pharm., 2019, 16(9), 3916-3925.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00527] [PMID: 31318574]
[28]
Madhi, M.; Hasani, A.; Mojarrad, J.S.; Rezaee, M.A.; Zarrini, G.; Davaran, S. Impact of chitosan and silver nanoparticles laden with antibiotics on multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Arch. Clin. Infect. Dis., 2020, 15(4), e100195.
[http://dx.doi.org/10.5812/archcid.100195]
[29]
Mohammad, A.; Molavi, F. Dolatabadi SJJoIUoMSV. Synergistic effect of silver nanoparticles and streptomycin antibiotic on the MexX gene expression of pump efflux system in drug-resistant Pseudomonas aeruginosa strains. J. Ilam Univ. Med. Sci., 2022, 30(2), 41-50.
[30]
Silva Santos, K.; Barbosa, A.; Pereira da Costa, L.; Pinheiro, M.; Oliveira, M.; Ferreira, P.F. Silver nanocomposite biosynthesis: Antibacterial activity against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii. Molecules, 2016, 21(9), 1255.
[http://dx.doi.org/10.3390/molecules21091255] [PMID: 27657031]
[31]
Campo-Beleño, C.; Villamizar-Gallardo, R.A.; López-Jácome, L.E.; González, E.E.; Muñoz-Carranza, S.; Franco, B.; Morales- Espinosa, R.; Coria-Jimenez, R.; Franco-Cendejas, R.; Hernández- Durán, M.; Lara-Martínez, R.; Jiménez-García, L.F.; Fernández- Presas, A.M.; García-Contreras, R. Biologically synthesized silver nanoparticles as potent antibacterial effective against multidrug-resistant Pseudomonas aeruginosa. Lett. Appl. Microbiol., 2022, 75(3), 680-688.
[http://dx.doi.org/10.1111/lam.13759] [PMID: 35687297]
[32]
Kumar, S.; Paliya, B.S.; Singh, B.N. Superior inhibition of virulence and biofilm formation of Pseudomonas aeruginosa PAO1 by phyto-synthesized silver nanoparticles through anti-quorum sensing activity. Microb. Pathog., 2022, 170, 105678.
[http://dx.doi.org/10.1016/j.micpath.2022.105678] [PMID: 35820580]
[33]
Saeki, E.K.; Yamada, A.Y.; de Araujo, L.A.; Anversa, L.; Garcia, D.O.; de Souza, R.L.B.; Martins, H.M.; Kobayashi, R.K.T.; Nakazato, G. Subinhibitory concentrations of biogenic silver nanoparticles affect motility and biofilm formation in Pseudomonas aeruginosa. Front. Cell. Infect. Microbiol., 2021, 11, 656984.
[http://dx.doi.org/10.3389/fcimb.2021.656984] [PMID: 33869087]
[34]
Bhargava, A.; Pareek, V.; Roy Choudhury, S.; Panwar, J.; Karmakar, S. Karmakar SJAam, interfaces. Superior bactericidal efficacy of fucose-functionalized silver nanoparticles against Pseudomonas aeruginosa PAO1 and prevention of its colonization on urinary catheters. ACS Appl. Mater. Interfaces, 2018, 10(35), 29325-29337.
[http://dx.doi.org/10.1021/acsami.8b09475] [PMID: 30096228]
[35]
El-Deeb, N.M.; Abo-Eleneen, M.A.; Al-Madboly, L.A.; Sharaf, M.M.; Othman, S.S.; Ibrahim, O.M.; Mubarak, M.S. Biogenically synthesized polysaccharides-capped silver nanoparticles: Immunomodulatory and antibacterial potentialities against resistant Pseudomonas aeruginosa. Front. Bioeng. Biotechnol., 2020, 8, 643.
[http://dx.doi.org/10.3389/fbioe.2020.00643] [PMID: 32793561]
[36]
Guo, J.; Qin, S.; Wei, Y.; Liu, S.; Peng, H.; Li, Q.; Luo, L.; Lv, M. Silver nanoparticles exert concentration‐dependent influences on biofilm development and architecture. Cell Prolif., 2019, 52(4), e12616.
[http://dx.doi.org/10.1111/cpr.12616] [PMID: 31050052]
[37]
Korzekwa, K.; Kędziora, A.; Stańczykiewicz, B.; Bugla- Płoskońska, G.; Wojnicz, D. Benefits of usage of immobilized silver nanoparticles as Pseudomonas aeruginosa antibiofilm factors. Int. J. Mol. Sci., 2021, 23(1), 284.
[http://dx.doi.org/10.3390/ijms23010284] [PMID: 35008720]
[38]
Shariati, A.; Asadian, E.; Fallah, F.; Azimi, T.; Hashemi, A.; Yasbolaghi, S.J.; Taati, M.M. Evaluation of Nano-curcumin effects on expression levels of virulence genes and biofilm production of multidrug-resistant Pseudomonas aeruginosa isolated from burn wound infection in Tehran, Iran. Infect. Drug Resist., 2019, 12, 2223-2235.
[http://dx.doi.org/10.2147/IDR.S213200] [PMID: 31440064]
[39]
Shahbandeh, M.; Taati Moghadam, M.; Mirnejad, R.; Mirkalantari, S.; Mirzaei, M. The efficacy of AgNO3 nanoparticles alone and conjugated with imipenem for combating extensively drug-resistant Pseudomonas aeruginosa. Int. J. Nanomedicine, 2020, 15, 6905-6916.
[http://dx.doi.org/10.2147/IJN.S260520]
[40]
Abdolhosseini, M.; Zamani, H.; Salehzadeh, A. Synergistic antimicrobial potential of ciprofloxacin with silver nanoparticles conjugated to thiosemicarbazide against ciprofloxacin resistant Pseudomonas aeruginosa by attenuation of MexA-B efflux pump genes. Biologia, 2019, 74(9), 1191-1196.
[http://dx.doi.org/10.2478/s11756-019-00269-0]
[41]
Al-Obaidi, H.; Kalgudi, R.; Zariwala, M.G. Fabrication of inhaled hybrid silver/ciprofloxacin nanoparticles with synergetic effect against Pseudomonas aeruginosa. Eur. J. Pharm. Biopharm., 2018, 128, 27-35.
[http://dx.doi.org/10.1016/j.ejpb.2018.04.006] [PMID: 29654885]
[42]
Singh, P.; Pandit, S. Garnæs, J.; Tunjic, S.; Mokkapati, V.; Sultan, A.; Thygesen, A.; Mackevica, A.; Mateiu, R.V.; Daugaard, A.E.; Baun, A.; Mijakovic, I. Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int. J. Nanomedicine, 2018, 13, 3571-3591.
[http://dx.doi.org/10.2147/IJN.S157958] [PMID: 29950836]
[43]
Slavin, Y.N.; Ivanova, K.; Hoyo, J.; Perelshtein, I.; Owen, G.; Haegert, A.; Lin, Y.Y.; LeBihan, S.; Gedanken, A. Häfeli, U.O.; Tzanov, T.; Bach, H. Novel lignin-capped silver nanoparticles against multidrug-resistant bacteria. ACS Appl. Mater. Interfaces, 2021, 13(19), 22098-22109.
[http://dx.doi.org/10.1021/acsami.0c16921] [PMID: 33945683]
[44]
Yang, Y.; Alvarez, P.J.J.E.S.; Letters, T. Sublethal concentrations of silver nanoparticles stimulate biofilm development. Environ. Sci. Technol., 2015, 2(8), 221-226.
[45]
de Lacerda Coriolano, D.; de Souza, J.B.; Bueno, E.V.; Medeiros, S.M.F.R.; Cavalcanti, I.D.L.; Cavalcanti, I.M.F. Antibacterial and antibiofilm potential of silver nanoparticles against antibiotic-sensitive and multidrug-resistant Pseudomonas aeruginosa strains. Braz. J. Microbiol., 2021, 52(1), 267-278.
[http://dx.doi.org/10.1007/s42770-020-00406-x] [PMID: 33231865]
[46]
Parasuraman, P. R y, T.; Shaji, C.; Sharan, A.; Bahkali, A.H.; Al-Harthi, H.F.; Syed, A.; Anju, V.T.; Dyavaiah, M.; Siddhardha, B. Biogenic silver nanoparticles decorated with methylene blue potentiated the photodynamic inactivation of Pseudomonas aeruginosa and Staphylococcus aureus. Pharmaceutics, 2020, 12(8), 709.
[http://dx.doi.org/10.3390/pharmaceutics12080709] [PMID: 32751176]
[47]
Ding, F.; Songkiatisak, P.; Cherukuri, P.K.; Huang, T.; Xu, X.H.N. Xu X-HNJAo. Size-dependent inhibitory effects of antibiotic drug nanocarriers against Pseudomonas aeruginosa. ACS Omega, 2018, 3(1), 1231-1243.
[http://dx.doi.org/10.1021/acsomega.7b01956] [PMID: 29399654]
[48]
Gondil, V.S.; Kalaiyarasan, T.; Bharti, V.K.; Chhibber, S. Antibiofilm potential of Seabuckthorn silver nanoparticles (SBT@AgNPs) against Pseudomonas aeruginosa. 3 Biotech, 2019, 9(11), 402.
[http://dx.doi.org/10.1007/s13205-019-1947-6] [PMID: 31681523]
[49]
Hůlková, M.; Soukupová, J.; Carlson, R.P.; Maršálek, B.; Biointerfaces, S.B. Biointerfaces, S.B. Interspecies interactions can enhance Pseudomonas aeruginosa tolerance to surfaces functionalized with silver nanoparticles. Colloids Surf. B Biointerfaces, 2020, 192, 111027.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111027] [PMID: 32387859]
[50]
Chakraborty, P.; Paul, P.; Kumari, M.; Bhattacharjee, S.; Singh, M.; Maiti, D.; Dastidar, D.G.; Akhter, Y.; Kundu, T.; Das, A.; Tribedi, P. Attenuation of Pseudomonas aeruginosa biofilm by thymoquinone: An individual and combinatorial study with tetrazine-capped silver nanoparticles and tryptophan. Folia Microbiol., 2021, 66(2), 255-271.
[http://dx.doi.org/10.1007/s12223-020-00841-1] [PMID: 33411249]
[51]
Qureshi, R.; Qamar, M.U.; Shafique, M.; Muzammil, S.; Rasool, M.H.; Ahmad, I.; Ejaz, H. Antibacterial efficacy of silver nanoparticles against metallo-β-lactamase (blaNDM, blaVIM, blaOXA) producing clinically isolated Pseudomonas aeruginosa. Pak. J. Pharm. Sci., 2021, 34(S1), 237-243.
[PMID: 34275847]
[52]
Pompilio, A.; Geminiani, C.; Bosco, D.; Rana, R.; Aceto, A.; Bucciarelli, T.; Scotti, L.; Di Bonaventura, G. Electrochemically synthesized silver nanoparticles are active against planktonic and biofilm cells of Pseudomonas aeruginosa and other cystic fibrosis-associated bacterial pathogens. Front. Microbiol., 2018, 9, 1349.
[http://dx.doi.org/10.3389/fmicb.2018.01349] [PMID: 30026732]
[53]
Aziz, S.A.A.A.; Mahmoud, R.; Mohamed, M.B.E.D. Control of biofilm-producing Pseudomonas aeruginosa isolated from dairy farm using Virokill silver nano-based disinfectant as an alternative approach. Sci. Rep., 2022, 12(1), 9452.
[http://dx.doi.org/10.1038/s41598-022-13619-x] [PMID: 35676412]
[54]
El-Telbany, M.; El-Sharaki, A. Antibacterial and anti-biofilm activity of silver nanoparticles on multi-drug resistance Pseudomonas Aeruginosa isolated from dental-implant. J. Oral Biol. Craniofac. Res., 2022, 12(1), 199-203.
[http://dx.doi.org/10.1016/j.jobcr.2021.12.002] [PMID: 35028283]
[55]
Ugalde-Arbizu, M.; Aguilera-Correa, J.J.; Mediero, A.; Esteban, J. Páez, P.L.; San Sebastian, E.; Gómez-Ruiz, S. Hybrid nanosystems based on nicotinate-functionalized mesoporous silica and silver chloride nanoparticles loaded with phenytoin for preventing Pseudomonas aeruginosa biofilm development. Pharmaceuticals, 2022, 15(7), 884.
[http://dx.doi.org/10.3390/ph15070884] [PMID: 35890182]
[56]
Hemmati, F.; Salehi, R.; Ghotaslou, R.; Kafil, H.S.; Hasani, A.; Gholizadeh, P.; Rezaee, M.A. The assessment of antibiofilm activity of chitosan-zinc oxide-gentamicin nanocomposite on Pseudomonas aeruginosa and Staphylococcus aureus. Int. J. Biol. Macromol., 2020, 163, 2248-2258.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.037] [PMID: 32920055]
[57]
Madhi, M.; Hasani, A.; Mojarrad, J.S.; Rezaee, M.A.; Zarrini, G.; Davaran, S. Nano-strategies in pursuit of efflux pump activeness in Acinetobacter baumannii and Pseudomonas aeruginosa. Gene Rep., 2020, 21, 100915.
[http://dx.doi.org/10.1016/j.genrep.2020.100915]
[58]
Badawy, M.S.E.M.; Riad, O.K.M.; Taher, F.A.; Zaki, S.A. Chitosan and chitosan-zinc oxide nanocomposite inhibit expression of LasI and RhlI genes and quorum sensing dependent virulence factors of Pseudomonas aeruginosa. Int. J. Biol. Macromol., 2020, 149, 1109-1117.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.019] [PMID: 32032711]
[59]
Abdelraheem, W.M.; Mohamed, E.S. The effect of Zinc Oxide nanoparticles on Pseudomonas aeruginosa biofilm formation and virulence genes expression. J. Infect. Dev. Ctries., 2021, 15(6), 826-832.
[http://dx.doi.org/10.3855/jidc.13958] [PMID: 34242193]
[60]
García-Lara B.; Saucedo-Mora, M.Á.; Roldán-Sánchez, J.A.; Pérez-Eretza, B.; Ramasamy, M.; Lee, J.; Coria-Jimenez, R.; Tapia, M.; Varela-Guerrero, V.; García-Contreras, R. Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Lett. Appl. Microbiol., 2015, 61(3), 299-305.
[http://dx.doi.org/10.1111/lam.12456] [PMID: 26084709]
[61]
Fadwa, A.O.; Alkoblan, D.K.; Mateen, A.; Albarag, A.M. Synergistic effects of zinc oxide nanoparticles and various antibiotics combination against Pseudomonas aeruginosa clinically isolated bacterial strains. Saudi J. Biol. Sci., 2021, 28(1), 928-935.
[http://dx.doi.org/10.1016/j.sjbs.2020.09.064] [PMID: 33424384]
[62]
El-Shounya, W.A.; Moawad, M.; Haider, A.S.; Ali, S. Nouh SJEJoB. Antibacterial potential of a newly synthesized zinc peroxide nanoparticles (ZnO2-NPs) to combat biofilm-producing multi-drug resistant Pseudomonas aeruginosa. Egypt. J. Bot., 2019, 59(3), 657-666.
[63]
Eleftheriadou, I.; Giannousi, K.; Protonotariou, E.; Skoura, L.; Arsenakis, M.; Dendrinou-Samara, C.; Sivropoulou, A. Cocktail of CuO, ZnO, or CuZn nanoparticles and antibiotics for combating multidrug-resistant Pseudomonas aeruginosa via efflux pump inhibition. ACS Appl. Nano Mater., 2021, 4(9), 9799-9810.
[http://dx.doi.org/10.1021/acsanm.1c02208]
[64]
Rahmati, A.; Shakib, P.; Javadi, A. Zolfaghari, MRJB Synthesis and evaluation of antimicrobial activities of Gold and ZnO nanoparticles on inhibiting the mexab-oprm efflux pump in pseudomonas aeruginosa isolates. Bio. Nano. Sci, 2022, 12(1), 1455-1463.
[http://dx.doi.org/10.1007/s12668-022-00992-0]
[65]
Khan, F.; Kang, M.G.; Jo, D.M.; Chandika, P.; Jung, W.K.; Kang, H.W.; Kim, Y.M. Phloroglucinol-gold and-zinc oxide nanoparticles: Antibiofilm and antivirulence activities towards Pseudomonas aeruginosa PAO1. Mar. Drugs, 2021, 19(11), 601.
[http://dx.doi.org/10.3390/md19110601] [PMID: 34822472]
[66]
Mirzaei, S.Z.; Ahmadi Somaghian, S.; Lashgarian, H.E.; Karkhane, M.; Cheraghipour, K.; Marzban, A. Phyco-fabrication of bimetallic nanoparticles (zinc–selenium) using aqueous extract of Gracilaria corticata and its biological activity potentials. Ceram. Int., 2021, 47(4), 5580-5586.
[http://dx.doi.org/10.1016/j.ceramint.2020.10.142]
[67]
Aswathanarayan, J.B.; Vittal, R.R. Antimicrobial, biofilm inhibitory and anti-infective activity of metallic nanoparticles against pathogens MRSA and Pseudomonas aeruginosa PA01. Pharm. Nanotechnol., 2017, 5(2), 148-153.
[http://dx.doi.org/10.2174/2211738505666170424121944] [PMID: 28440203]
[68]
Mubdir, D.M.; Al-Shukri, M.S. Antimicrobial activity of gold nanoparticles and SWCNT-COOH on viability of Pseudomonas aeruginosa. Ann. Rom. Soc. Cell Biol., 2021, 5507-5513.
[69]
Arya, S.S.; Sharma, M.M.; Das, R.K.; Rookes, J.; Cahill, D.; Lenka, S.K. Vanillin mediated green synthesis and application of gold nanoparticles for reversal of antimicrobial resistance in Pseudomonas aeruginosa clinical isolates. Heliyon, 2019, 5(7), e02021.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02021] [PMID: 31312733]
[70]
Ali, S.G.; Jalal, M.; Ahmad, H.; Umar, K.; Ahmad, A.; Alshammari, M.B.; Khan, H.M. Biosynthesis of gold nanoparticles and its effect against Pseudomonas aeruginosa. Molecules, 2022, 27(24), 8685.
[http://dx.doi.org/10.3390/molecules27248685] [PMID: 36557818]
[71]
Qais, F.A.; Ahmad, I.; Altaf, M.; Alotaibi, S.H. Biofabrication of gold nanoparticles using Capsicum annuum extract and its antiquorum sensing and antibiofilm activity against bacterial pathogens. ACS Omega, 2021, 6(25), 16670-16682.
[http://dx.doi.org/10.1021/acsomega.1c02297] [PMID: 34235339]
[72]
Habimana, O.; Zanoni, M.; Vitale, S.; O’Neill, T.; Scholz, D.; Xu, B.; Casey, E. One particle, two targets: A combined action of functionalised gold nanoparticles, against Pseudomonas fluorescens biofilms. J. Colloid Interface Sci., 2018, 526, 419-428.
[http://dx.doi.org/10.1016/j.jcis.2018.05.014] [PMID: 29763820]
[73]
Satisha, S.; Syed, B.; Prasad, N.M.N. Endogenic mediated synthesis of gold nanoparticles bearing bactericidal activity. J. Microsc. Ultrastruct., 2016, 4(3), 162-166.
[http://dx.doi.org/10.1016/j.jmau.2016.01.004] [PMID: 30023223]
[74]
Zhang, C.; Shi, D.T.; Yan, K.C.; Sedgwick, A.C.; Chen, G.R.; He, X.P.; James, T.D.; Ye, B.; Hu, X.L.; Chen, D. A glycoconjugate-based gold nanoparticle approach for the targeted treatment of Pseudomonas aeruginosa biofilms. Nanoscale, 2020, 12(45), 23234-23240.
[http://dx.doi.org/10.1039/D0NR05365A] [PMID: 33206087]
[75]
Khare, T.; Mahalunkar, S.; Shriram, V.; Gosavi, S.; Kumar, V. Embelin-loaded chitosan gold nanoparticles interact synergistically with ciprofloxacin by inhibiting efflux pumps in multidrug-resistant Pseudomonas aeruginosa and Escherichia coli. Environ. Res., 2021, 199, 111321.
[http://dx.doi.org/10.1016/j.envres.2021.111321] [PMID: 33989619]
[76]
Rajkumari, J.; Busi, S.; Vasu, A.C.; Reddy, P. Facile green synthesis of baicalein fabricated gold nanoparticles and their antibiofilm activity against Pseudomonas aeruginosa PAO1. Microb. Pathog., 2017, 107, 261-269.
[http://dx.doi.org/10.1016/j.micpath.2017.03.044] [PMID: 28377235]
[77]
Armijo, L.M.; Wawrzyniec, S.J.; Kopciuch, M.; Brandt, Y.I.; Rivera, A.C.; Withers, N.J.; Cook, N.C.; Huber, D.L.; Monson, T.C.; Smyth, H.D.C. Osiński, M. Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. J. Nanobiotechnology, 2020, 18(1), 35.
[http://dx.doi.org/10.1186/s12951-020-0588-6] [PMID: 32070354]
[78]
Pham, D.T.N.; Khan, F.; Phan, T.T.V.; Park, S.; Manivasagan, P.; Oh, J.; Kim, Y.M. Biofilm inhibition, modulation of virulence and motility properties by FeOOH nanoparticle in Pseudomonas aeruginosa. Braz. J. Microbiol., 2019, 50(3), 791-805.
[http://dx.doi.org/10.1007/s42770-019-00108-z] [PMID: 31250405]
[79]
Sharif, R. Effect of iron oxide nanoparticles and probiotic bifidobacterium bifidum on mexa gene expression in drug resistant isolates of pseudomonas aeruginosa. Resen. Med., 2019, 43(3), 118-123.
[80]
Baig, U.; Ansari, M.A.; Gondal, M.A.; Akhtar, S.; Khan, F.A.; Falath, W.S. Single step production of high-purity copper oxide-titanium dioxide nanocomposites and their effective antibacterial and anti-biofilm activity against drug-resistant bacteria. Mater. Sci. Eng. C, 2020, 113, 110992.
[http://dx.doi.org/10.1016/j.msec.2020.110992] [PMID: 32487404]
[81]
Singh, N.; Paknikar, K.M.; Rajwade, J. Gene expression is influenced due to ‘nano’ and ‘ionic’ copper in pre-formed Pseudomonas aeruginosa biofilms. Environ. Res., 2019, 175, 367-375.
[http://dx.doi.org/10.1016/j.envres.2019.05.034] [PMID: 31153105]
[82]
Li, N.; Wang, L.; Yan, H.; Wang, M.; Shen, D.; Yin, J.; Shentu, J. Effects of low-level engineered nanoparticles on the quorum sensing of Pseudomonas aeruginosa PAO1. Environ. Sci. Pollut. Res. Int., 2018, 25(7), 7049-7058.
[http://dx.doi.org/10.1007/s11356-017-0947-5] [PMID: 29273994]
[83]
Hiebner, D.W.; Barros, C.; Quinn, L.; Vitale, S.; Casey, E. Surface functionalization-dependent localization and affinity of SiO2 nanoparticles within the biofilm EPS matrix. Biofilm, 2020, 2, 100029.
[http://dx.doi.org/10.1016/j.bioflm.2020.100029] [PMID: 33447814]
[84]
Memar, M.Y.; Yekani, M.; Ghanbari, H.; Nabizadeh, E.; Vahed, S.Z.; Dizaj, S.M.; Sharifi, S. Antimicrobial and antibiofilm activities of meropenem loaded-mesoporous silica nanoparticles against carbapenem-resistant Pseudomonas aeruginosa. J. Biomater. Appl., 2021, 36(4), 605-612.
[http://dx.doi.org/10.1177/08853282211003848] [PMID: 33722086]
[85]
Shakibaie, M.; Forootanfar, H.; Golkari, Y.; Mohammadi-Khorsand, T.; Shakibaie, M.R. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J. Trace Elem. Med. Biol., 2015, 29, 235-241.
[http://dx.doi.org/10.1016/j.jtemb.2014.07.020] [PMID: 25175509]
[86]
Prateeksha; Singh, B.R.; Shoeb, M.; Sharma, S.; Naqvi, A.H.; Gupta, V.K.; Singh, B.N. Scaffold of selenium nanovectors and honey phytochemicals for inhibition of Pseudomonas aeruginosa quorum sensing and biofilm formation. Front. Cell. Infect. Microbiol., 2017, 7, 93.
[http://dx.doi.org/10.3389/fcimb.2017.00093] [PMID: 28386534]
[87]
Jegel, O.; Pfitzner, F.; Gazanis, A. Oberländer, J.; Pütz, E.; Lange, M.; von der Au, M.; Meermann, B.; Mailänder, V.; Klasen, A.; Heermann, R.; Tremel, W. Transparent polycarbonate coated with CeO 2 nanozymes repel Pseudomonas aeruginosa PA14 biofilms. Nanoscale, 2021, 14(1), 86-98.
[http://dx.doi.org/10.1039/D1NR03320D] [PMID: 34897345]
[88]
Xu, Y.; Wang, C.; Hou, J.; Wang, P.; You, G.; Miao, L. Mechanistic understanding of cerium oxide nanoparticle-mediated biofilm formation in Pseudomonas aeruginosa. Environ. Sci. Pollut. Res. Int., 2018, 25(34), 34765-34776.
[http://dx.doi.org/10.1007/s11356-018-3418-8] [PMID: 30324376]
[89]
Zubair, M.; Husain, F.M.; Qais, F.A.; Alam, P.; Ahmad, I.; Albalawi, T.; Ahmad, N.; Alam, M.; Baig, M.H.; Dong, J-J.; Fatima, F.; Alsayed, B. Bio-fabrication of titanium oxide nanoparticles from Ochradenus arabicus to obliterate biofilms of drug-resistant Staphylococcus aureus and Pseudomonas aeruginosa isolated from diabetic foot infections. Appl. Nanosci., 2021, 11(2), 375-387.
[http://dx.doi.org/10.1007/s13204-020-01630-5]
[90]
Rajkumari, J.; Magdalane, C.M.; Siddhardha, B.; Madhavan, J.; Ramalingam, G.; Al-Dhabi, N.A.; Arasu, M.V.; Ghilan, A.K.M.; Duraipandiayan, V.; Kaviyarasu, K. Synthesis of titanium oxide nanoparticles using Aloe barbadensis mill and evaluation of its antibiofilm potential against Pseudomonas aeruginosa PAO1. J. Photochem. Photobiol. B, 2019, 201, 111667.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111667] [PMID: 31683167]
[91]
Ahmed, F.Y.; Aly, U.F.; Abd El-Baky, R.M.; Waly, N.G.F.M. Effect of titanium dioxide nanoparticles on the expression of efflux pump and quorum-sensing genes in MDR Pseudomonas aeruginosa isolates. Antibiotics, 2021, 10(6), 625.
[http://dx.doi.org/10.3390/antibiotics10060625] [PMID: 34073802]
[92]
Darabpour, E.; Doroodmand, M.M.; Halabian, R.; Imani, F.A.A. Sulfur-functionalized fullerene nanoparticle as an inhibitor and eliminator agent on Pseudomonas aeruginosa biofilm and expression of toxA gene. Microb. Drug Resist., 2019, 25(4), 594-602.
[http://dx.doi.org/10.1089/mdr.2018.0008] [PMID: 30461338]
[93]
Kher, L.; Santoro, D.; Kelley, K.; Gibson, D.; Schultz, G. Effect of nanosulfur against multidrug-resistant Staphylococcus pseudintermedius and Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 2022, 106(8), 3201-3213.
[http://dx.doi.org/10.1007/s00253-022-11872-8] [PMID: 35384449]
[94]
Maruthupandy, M.; Rajivgandhi, G.N.; Quero, F.; Li, W-J. Anti-quorum sensing and anti-biofilm activity of nickel oxide nanoparticles against Pseudomonas aeruginosa. J. Environ. Chem. Eng., 2020, 8(6), 104533.
[http://dx.doi.org/10.1016/j.jece.2020.104533]
[95]
Alvares, J.J.; Furtado, I.J. Anti-Pseudomonas aeruginosa biofilm activity of tellurium nanorods biosynthesized by cell lysate of Haloferax alexandrinus GUSF-1(KF796625). Biometals, 2021, 34(5), 1007-1016.
[http://dx.doi.org/10.1007/s10534-021-00323-y] [PMID: 34173930]
[96]
Ibrahim, N.; Akindoyo, J.O.; Mariatti, M. Recent development in silver-based ink for flexible electronics. J. Sci-adv. Mater. Dev., 2022, 7(1), 100395.
[http://dx.doi.org/10.1016/j.jsamd.2021.09.002]
[97]
Senthamarai, M.D.; Malaikozhundan, B. Synergistic action of zinc oxide nanoparticle using the unripe fruit extract of Aegle marmelos (L.) - Antibacterial, antibiofilm, radical scavenging and ecotoxicological effects. Mater. Today Commun., 2022, 30, 103228.
[http://dx.doi.org/10.1016/j.mtcomm.2022.103228]
[98]
Mann, R.; Holmes, A.; McNeilly, O.; Cavaliere, R.; Sotiriou, G.A.; Rice, S.A.; Gunawan, C. Evolution of biofilm-forming pathogenic bacteria in the presence of nanoparticles and antibiotic: Adaptation phenomena and cross-resistance. J. Nanobiotechnology, 2021, 19(1), 291.
[http://dx.doi.org/10.1186/s12951-021-01027-8] [PMID: 34579731]
[99]
Rai, M.; Ingle, A.P.; Pandit, R.; Paralikar, P.; Shende, S.; Gupta, I.; Biswas, J.K.; da Silva, S.S. Copper and copper nanoparticles: Role in management of insect-pests and pathogenic microbes. Nanotechnol. Rev., 2018, 7(4), 303-315.
[http://dx.doi.org/10.1515/ntrev-2018-0031]
[100]
Chakrapani, V.; Ayaz Ahmed, K.B.; Kumar, V.V.; Ganapathy, V.; Anthony, S.P.; Anbazhagan, V. A facile route to synthesize casein capped copper nanoparticles: An effective antibacterial agent and selective colorimetric sensor for mercury and tryptophan. RSC Advances, 2014, 4(63), 33215-33221.
[http://dx.doi.org/10.1039/C4RA03086A]
[101]
Niranjan, R.; Zafar, S.; Lochab, B.; Priyadarshini, R. Synthesis and characterization of sulfur and sulfur-selenium nanoparticles loaded on reduced graphene oxide and their antibacterial activity against gram-positive pathogens. Nanomaterials, 2022, 12(2), 191.
[http://dx.doi.org/10.3390/nano12020191] [PMID: 35055210]
[102]
Tran, T.T.; Hadinoto, K. A potential quorum-sensing inhibitor for bronchiectasis therapy: Quercetin–chitosan nanoparticle complex exhibiting superior inhibition of biofilm formation and swimming motility of Pseudomonas aeruginosa to the native quercetin. Int. J. Mol. Sci., 2021, 22(4), 1541.
[http://dx.doi.org/10.3390/ijms22041541] [PMID: 33546487]
[103]
Verma, V.; Al-Dossari, M.; Singh, J.; Rawat, M.; Kordy, M.G.M.; Shaban, M. A review on green synthesis of TiO2 NPs: Photocatalysis and antimicrobial applications. Polymers (Basel), 2022, 14(7), 1444.
[http://dx.doi.org/10.3390/polym14071444] [PMID: 35406317]
[104]
Xie, J.; Hung, Y.C. UV-A activated TiO2 embedded biodegradable polymer film for antimicrobial food packaging application. Lebensm. Wiss. Technol., 2018, 96, 307-314.
[http://dx.doi.org/10.1016/j.lwt.2018.05.050]
[105]
Younis, AB; Haddad, Y; Kosaristanova, L Smerkova, KJWIRN Titanium dioxide nanoparticles: Recent progress in antimicrobial applications. Wiley Interdiscip Rev Comput, 2022, e1860.
[http://dx.doi.org/10.1002/wnan.1860] [PMID: 36205103]
[106]
de Dicastillo, C.L.; Correa, M.G. Martínez, FB; Streitt, C; Galotto, MJJAR-AOHP Antimicrobial effect of titanium dioxide nanoparticles. In: Antimicrobial Resistance - A One Health Perspective; 2020.
[http://dx.doi.org/10.5772/intechopen.90891]
[107]
Zhang, M.; Zhang, C.; Zhai, X.; Luo, F.; Du, Y.; Yan, C. Antibacterial mechanism and activity of cerium oxide nanoparticles. Sci. China Mater., 2019, 62(11), 1727-1739.
[http://dx.doi.org/10.1007/s40843-019-9471-7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy