Research Article

PAFAH1B3通过影响EMT调节甲状腺乳头状癌细胞增殖和转移

卷 31, 期 9, 2024

发表于: 04 August, 2023

页: [1152 - 1164] 页: 13

弟呕挨: 10.2174/0929867330666230427102920

价格: $65

摘要

引言:甲状腺癌(TC)是目前世界范围内流行的内分泌恶性肿瘤,发病率约为每100000人15.5例。然而,TC肿瘤发生的潜在机制仍有待进一步阐明。 方法:通过数据库分析,发现血小板活化因子乙酰水解酶1B3(PAFAH1B3)在几种癌症中失调,可能引发肿瘤的发生和TC的进展。来自本地验证队列和癌症基因组图谱(TCGA)队列的患者的临床病理学信息也证实了这一假设。 结果:我们目前的研究表明,PAFAH1B3的表达升高与甲状腺乳头状癌(PTC)的不良行为密切相关。我们利用小干扰RNA获得了PAFAH1B3转染的PTC细胞系,包括BCPAP、FTC-133和TPC-1,然后在体外进一步检测了它们的生物学功能。此外,基因集富集分析表明,PAFAH1B3与上皮-间充质转化(EMT)有关。之后,进行针对EMT相关蛋白的蛋白质印迹分析。 结论:总之,我们的结果表明,沉默PAFAH1B3可能会阻碍PTC细胞的增殖、迁移和侵袭能力。增加PAFAH1B3 mi的表达

关键词: PAFAH1B3、PTC、迁移、侵袭、EMT、癌症。

[1]
Mao, Y.; Xing, M. Recent incidences and differential trends of thyroid cancer in the USA. Endocr Relat Cancer., 2016, 23(4), 313-22.
[2]
Shimura, H.; Matsumoto, Y.; Murakami, T.; Fukunari, N.; Kitaoka, M.; Suzuki, S.J.C. Diagnostic strategies for thyroid nodules based on ultrasonographic findings in Japan. Cancers, 2021, 13(18), 4629.
[3]
Sebastian, S.O.; Gonzalez, J.R.; Paricio, P.P. Papillary thyroid carcinoma: Prognostic index for survival including the histological variety. Arch Surg, 2000, 135(3), 272-7.
[http://dx.doi.org/10.1001/archsurg.135.3.272]
[4]
Kato, K.; Clark, G.D.; Bazan, N.G.; Zorumski, C.F.J.N. Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature, 1994, 367(6459), 175-9.
[http://dx.doi.org/10.1038/367175a0]
[5]
Vandenberghe, L.; Heindryckx, B.; Smits, K. Platelet-activating factor acetylhydrolase 1B3 (PAFAH1B3) is required for the formation of the meiotic spindle during in vitro oocyte maturation. Reprod Fertil Dev., 2018, 30(12), 1739-1750.
[6]
Satoh, K.; Imaizumi, T.-A.; Kawamura, Y. Platelet-activating factor (PAF) stimulates the production of PAF acetylhydrolase by the human hepatoma cell line, HepG2. J. Clin. Invest., 1991, 87(2), 476-481.
[7]
Nilsson, R.; Jain, M.; Madhusudhan, N. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat. Commun., 2014, 5, 3128.
[http://dx.doi.org/10.1038/ncomms4128]
[8]
Kume, K.; Shimizu, T. Platelet-activating factor (PAF) induces growth stimulation, inhibition, and suppression of oncogenic transformation in NRK cells overexpressing the PAF receptor. J. Biol. Chem., 1997, 272(36), 22898-904.
[9]
Seo, K.H.; Ko, H.-M.; Kim, H.-A. Platelet-activating factor induces up-regulation of antiapoptotic factors in a melanoma cell line through nuclear factor-kappaB activation. Cancer Res., 2006, 66(9), 4681-6.
[10]
Melnikova, V.O.; Mourad-Zeidan, A.A.; Lev, D.C. Platelet-activating factor mediates MMP-2 expression and activation via phosphorylation of cAMP-response element-binding protein and contributes to melanoma metastasis. J. Biol. Chem., 2006, 281(5), 2911-22.
[11]
Xie, T.; Guo, X.; Wu, D. PAFAH1B3 expression is correlated with gastric cancer cell proliferation and immune infiltration. Front. Oncol., 2021, 11, 591545.
[http://dx.doi.org/10.3389/fonc.2021.591545] [PMID: 33732641]
[12]
Xu, W.; Lu, X.; Liu, J. Identification of PAFAH1B3 as candidate prognosis marker and potential therapeutic target for hepatocellular carcinoma. Front. Oncol., 2021, 11, 700700.
[http://dx.doi.org/10.3389/fonc.2021.700700]
[13]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4), 402-8.
[14]
Thiery, J.P.; Acloque, H.; Huang, R.Y. Epithelial-mesenchymal transitions in development and disease. Cell, 2009, 139(5), 871-90.
[15]
Wei, J.; Huang, K.; Chen, Z.; Hu, M.; Bai, Y.; Lin, S.; Du, H. Characterization of glycolysis-associated molecules in the tumor microenvironment revealed by pan-cancer tissues and lung cancer single cell data. Cancers, 2020, 12(7), 1788.
[http://dx.doi.org/10.3390/cancers12071788] [PMID: 32635458]
[16]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[17]
Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res., 2014, 74(11), 2913-2921.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0155] [PMID: 24840647]
[18]
Morris, L.G.T.; Tuttle, R.M.; Davies, L. Changing trends in the incidence of thyroid cancer in the United States. JAMA Otolaryngol. Head Neck Surg., 2016, 142(7), 709-711.
[http://dx.doi.org/10.1001/jamaoto.2016.0230] [PMID: 27078686]
[19]
Nikiforov, Y.E.; Seethala, R.R.; Tallini, G.; Baloch, Z.W.; Basolo, F.; Thompson, L.D.R.; Barletta, J.A.; Wenig, B.M.; Al Ghuzlan, A.; Kakudo, K.; Giordano, T.J.; Alves, V.A.; Khanafshar, E.; Asa, S.L.; El-Naggar, A.K.; Gooding, W.E.; Hodak, S.P.; Lloyd, R.V.; Maytal, G.; Mete, O.; Nikiforova, M.N.; Nosé, V.; Papotti, M.; Poller, D.N.; Sadow, P.M.; Tischler, A.S.; Tuttle, R.M.; Wall, K.B.; LiVolsi, V.A.; Randolph, G.W.; Ghossein, R.A. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma. JAMA Oncol., 2016, 2(8), 1023-1029.
[http://dx.doi.org/10.1001/jamaoncol.2016.0386] [PMID: 27078145]
[20]
Fonseca, E.; Soares, P.; Rossi, S.; Sobrinho-Simões, M. Prognostic factors in thyroid carcinomas. Verh. Dtsch. Ges. Pathol., 1997, 81, 82-96.
[PMID: 9474858]
[21]
Gilliland, F.D.; Hunt, W.C.; Morris, D.M.; Key, C.R. Prognostic factors for thyroid carcinoma. Cancer, 1997, 79(3), 564-573.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19970201)79:3<564::AID-CNCR20>3.0.CO;2-0] [PMID: 9028369]
[22]
Hay, I.D.; Bergstralh, E.J.; Goellner, J.R.; Ebersold, J.R.; Grant, C.S. Predicting outcome in papillary thyroid carcinoma: Development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery, 1993, 114(6), 1050-1057.
[PMID: 8256208]
[23]
Mazzaferri, E.L.; Jhiang, S.M. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am. J. Med., 1994, 97(5), 418-428.
[http://dx.doi.org/10.1016/0002-9343(94)90321-2] [PMID: 7977430]
[24]
Sherman, S.I.; Brierley, J.D.; Sperling, M.; Ain, K.B.; Bigos, S.T.; Cooper, D.S.; Haugen, B.R.; Ho, M.; Klein, I.; Ladenson, P.W.; Robbins, J.; Ross, D.S.; Specker, B.; Taylor, T.; Maxon, H.R., III Prospective multicenter study of thyroiscarcinoma treatment: Initial analysis of staging and outcome. Cancer, 1998, 83(5), 1012-1021.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19980901)83:5<1012::AID-CNCR28>3.0.CO;2-9] [PMID: 9731906]
[25]
LiVolsi, V.A.; Fadda, G.; Baloch, Z.W. Prognostic factors in well-differentiated thyroid cancer. Rays, 2000, 25(2), 163-175.
[PMID: 11370535]
[26]
Wilson, D.B.; Staren, E.D.; Prinz, R.A. Thyroid reoperations: Indications and risks. Am. Surg., 1998, 64(7), 674-678.
[PMID: 9655281]
[27]
White, M.L.; Gauger, P.G.; Doherty, G.M. Central lymph node dissection in differentiated thyroid cancer. World J. Surg., 2007, 31(5), 895-904.
[http://dx.doi.org/10.1007/s00268-006-0907-6] [PMID: 17347896]
[28]
White, M.L.; Doherty, G.M. Level VI lymph node dissection for papillary thyroid cancer. Minerva Chir., 2007, 62(5), 383-393.
[PMID: 17947949]
[29]
Wingert, D.J.; Friesen, S.R.; Iliopoulos, J.I.; Pierce, G.E.; Thomas, J.H.; Hermreck, A.S. Post-thyroidectomy hypocalcemia. Am. J. Surg., 1986, 152(6), 606-610.
[http://dx.doi.org/10.1016/0002-9610(86)90435-6] [PMID: 3789283]
[30]
Xing, M.; Alzahrani, A.S.; Carson, K.A.; Viola, D.; Elisei, R.; Bendlova, B.; Yip, L.; Mian, C.; Vianello, F.; Tuttle, R.M.; Robenshtok, E.; Fagin, J.A.; Puxeddu, E.; Fugazzola, L.; Czarniecka, A.; Jarzab, B.; O’Neill, C.J.; Sywak, M.S.; Lam, A.K.; Riesco-Eizaguirre, G.; Santisteban, P.; Nakayama, H.; Tufano, R.P.; Pai, S.I.; Zeiger, M.A.; Westra, W.H.; Clark, D.P.; Clifton-Bligh, R.; Sidransky, D.; Ladenson, P.W.; Sykorova, V. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA, 2013, 309(14), 1493-1501.
[http://dx.doi.org/10.1001/jama.2013.3190] [PMID: 23571588]
[31]
Xing, M.; Alzahrani, A.S.; Carson, K.A.; Shong, Y.K.; Kim, T.Y.; Viola, D.; Elisei, R.; Bendlová, B.; Yip, L.; Mian, C.; Vianello, F.; Tuttle, R.M.; Robenshtok, E.; Fagin, J.A.; Puxeddu, E.; Fugazzola, L.; Czarniecka, A.; Jarzab, B.; O’Neill, C.J.; Sywak, M.S.; Lam, A.K.; Riesco-Eizaguirre, G.; Santisteban, P.; Nakayama, H.; Clifton-Bligh, R.; Tallini, G.; Holt, E.H.; Sýkorová, V. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J. Clin. Oncol., 2015, 33(1), 42-50.
[http://dx.doi.org/10.1200/JCO.2014.56.8253] [PMID: 25332244]
[32]
Romei, C.; Ciampi, R.; Elisei, R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat. Rev. Endocrinol., 2016, 12(4), 192-202.
[http://dx.doi.org/10.1038/nrendo.2016.11] [PMID: 26868437]
[33]
Xing, M.; Haugen, B.R.; Schlumberger, M. Progress in molecular-based management of differentiated thyroid cancer. Lancet, 2013, 381(9871), 1058-1069.
[http://dx.doi.org/10.1016/S0140-6736(13)60109-9] [PMID: 23668556]
[34]
Wang, Y.; Bhandari, A.; Niu, J.; Yang, F.; Xia, E.; Yao, Z.; Jin, Y.; Zheng, Z.; Lv, S.; Wang, O. The lncRNA UNC5B-AS1 promotes proliferation, migration, and invasion in papillary thyroid cancer cell lines. Hum. Cell, 2019, 32(3), 334-342.
[http://dx.doi.org/10.1007/s13577-019-00242-8] [PMID: 30805847]
[35]
Wang, Q.; Yang, H.; Wu, L.; Yao, J.; Meng, X.; Jiang, H.; Xiao, C.; Wu, F. Identification of specific long non-coding RNA expression: Profile and analysis of association with clinicopathologic characteristics and BRAF mutation in papillary thyroid Cancer. Thyroid, 2016, 26(12), 1719-1732.
[http://dx.doi.org/10.1089/thy.2016.0024] [PMID: 27758138]
[36]
Gibb, E.A.; Brown, C.J.; Lam, W.L. The functional role of long non-coding RNA in human carcinomas. Mol. Cancer, 2011, 10(1), 38.
[http://dx.doi.org/10.1186/1476-4598-10-38] [PMID: 21489289]
[37]
Monillas, E.S.; Caplan, J.L.; Thévenin, A.F.; Bahnson, B.J. Oligomeric state regulated trafficking of human platelet-activating factor acetylhydrolase type-II. Biochim. Biophys. Acta. Proteins Proteomics, 2015, 1854(5), 469-475.
[http://dx.doi.org/10.1016/j.bbapap.2015.02.007] [PMID: 25707358]
[38]
Stafforini, D.M. Diverse functions of plasma PAF-AH in tumorigenesis. Enzymes, 2015, 38, 157-179.
[http://dx.doi.org/10.1016/bs.enz.2015.09.005] [PMID: 26612652]
[39]
Fiedler, E.R.C.; Bhutkar, A.; Lawler, E.; Besada, R.; Hemann, M.T. In vivo RNAi screening identifies Pafah1b3 as a target for combination therapy with TKIs in BCR-ABL1+ BCP-ALL. Blood Adv., 2018, 2(11), 1229-1242.
[http://dx.doi.org/10.1182/bloodadvances.2017015610] [PMID: 29853524]
[40]
Kohnz, R.A.; Mulvihill, M.M.; Chang, J.W.; Hsu, K.L.; Sorrentino, A.; Cravatt, B.F.; Bandyopadhyay, S.; Goga, A.; Nomura, D.K. Activity-based protein profiling of oncogene-driven changes in metabolism reveals broad dysregulation of PAFAH1B2 and 1B3 in cancer. ACS Chem. Biol., 2015, 10(7), 1624-1630.
[http://dx.doi.org/10.1021/acschembio.5b00053] [PMID: 25945974]
[41]
Fan, J.; Yang, Y.; Qian, J.; Zhang, X.; Ji, J.; Zhang, L.; Li, S.; Yuan, F. Aberrant expression of PAFAH1B3 affects proliferation and apoptosis in osteosarcoma. Front. Oncol., 2021, 11, 664478.
[http://dx.doi.org/10.3389/fonc.2021.664478] [PMID: 34136395]
[42]
Ribatti, D.; Tamma, R.; Annese, T. Epithelial-Mesenchymal Transition in cancer: A historical overview. Transl. Oncol., 2020, 13(6), 100773.
[http://dx.doi.org/10.1016/j.tranon.2020.100773] [PMID: 32334405]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy