Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Novel Leflunomide Analog, UTLOH-4e, Ameliorates Gouty Arthritis Induced by Monosodium Urate Via NF-κB/NLRP3 Signaling Pathway

Author(s): Tianmin Yuan, Shilong Chen, Yifeng Yin, Jiajiu Shaw, Jin Zeng, Li Li, Lei Song, Yiguan Zhang, Zhujun Yin* and Junning Zhao*

Volume 25, Issue 3, 2024

Published on: 22 September, 2023

Page: [350 - 364] Pages: 15

DOI: 10.2174/1389201024666230420101219

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Gouty arthritis (GA) is a common form of inflammatory arthritis caused by intra-articular deposition of monosodium urate (MSU) crystals; however, there is a tremendous lack of safe and effective therapy in the clinic.

Objective: The goal of this work was to investigate a novel leflunomide analogue, N-(2,4- dihydroxyphenyl)-5-methyl-1,2-oxazole-3-carboxamide (UTLOH-4e), for its potential to prevent/ treat gouty arthritis.

Methods: In this study, the anti-inflammatory activity of UTLOH-4e was evaluated by MSUinduced GA model in vivo and in vitro, and the molecular docking test was applied to estimate the affinity of UTLOH-4e/UTL-5g/b for MAPKs, NF-κB, and NLRP3.

Results: In vitro, UTLOH-4e (1~100 μM) treatment inhibited the inflammatory reaction with no obvious cytotoxicity in PMA-induced THP-1 macrophages exposed to MSU crystals for 24 h, involving the prominent decreased production and gene expression of IL-1β, TNF-α, and IL-6. Western blot analyses demonstrated that UTLOH-4e (1~100 μM) significantly suppressed the activation of NLRP3 inflammasomes, NF-κB, and MAPK pathways. Furthermore, the data from the experiment on gouty rats induced by intra-articular injection of MSU crystal confirmed that UTLOH-4e markedly ameliorated rat paw swelling, articular synovium inflammation and reduced the concentration of IL-1β and TNF-α in serum through down-regulating NLRP3 protein expression.

Conclusion: These results manifested that UTLOH-4e ameliorates GA induced by MSU crystals, which contributes to the modulation of NF-κB/ NLRP3 signaling pathway, suggesting that UTLOH- 4e is a promising and potent drug candidate for the prevention and treatment of gouty arthritis.

Keywords: UTLOH-4e, gouty arthritis, monosodium urate, nuclear factor-κB, pyrin domain-containing protein 3 (NLRP3) inflammasome, inflammation.

Graphical Abstract
[1]
Dalbeth, N.; Merriman, T.R.; Stamp, L.K. Gout. Lancet, 2016, 388(10055), 2039-2052.
[http://dx.doi.org/10.1016/S0140-6736(16)00346-9] [PMID: 27112094]
[2]
Dalbeth, N.; Choi, H.K.; Joosten, L.A.B.; Khanna, P.P.; Matsuo, H.; Perez-Ruiz, F.; Stamp, L.K. Gout. Nat. Rev. Dis. Primers, 2019, 5(1), 69.
[http://dx.doi.org/10.1038/s41572-019-0115-y] [PMID: 31558729]
[3]
Robinson, P.C. Gout – An update of aetiology, genetics, comorbidities and management. Maturitas, 2018, 118, 67-73.
[http://dx.doi.org/10.1016/j.maturitas.2018.10.012] [PMID: 30415758]
[4]
Smith, E.; Hoy, D.G.; Cross, M.; Vos, T.; Naghavi, M.; Buchbinder, R.; Woolf, A.D.; March, L. The global burden of other musculoskeletal disorders: Estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis., 2014, 73(8), 1462-1469.
[http://dx.doi.org/10.1136/annrheumdis-2013-204680] [PMID: 24590181]
[5]
Dehlin, M.; Jacobsson, L.; Roddy, E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol., 2020, 16(7), 380-390.
[http://dx.doi.org/10.1038/s41584-020-0441-1] [PMID: 32541923]
[6]
Kuo, C.F.; Grainge, M.J.; Zhang, W.; Doherty, M. Global epidemiology of gout: Prevalence, incidence and risk factors. Nat. Rev. Rheumatol., 2015, 11(11), 649-662.
[http://dx.doi.org/10.1038/nrrheum.2015.91] [PMID: 26150127]
[7]
Giuliani, A.L.; Sarti, A.C.; Falzoni, S.; Di Virgilio, F. The P2X7 receptor-interleukin-1 liaison. Front. Pharmacol., 2017, 8, 123.
[http://dx.doi.org/10.3389/fphar.2017.00123] [PMID: 28360855]
[8]
Dinarello, C.A. How interleukin-1β induces gouty arthritis. Arthritis Rheum., 2010, 62(11), 3140-3144.
[http://dx.doi.org/10.1002/art.27663] [PMID: 20662058]
[9]
Busso, N.; So, A. Mechanisms of inflammation in gout. Arthritis Res. Ther., 2010, 12(2), 206.
[http://dx.doi.org/10.1186/ar2952] [PMID: 20441605]
[10]
Holzinger, D.; Nippe, N.; Vogl, T.; Marketon, K.; Mysore, V.; Weinhage, T.; Dalbeth, N.; Pool, B.; Merriman, T.; Baeten, D.; Ives, A.; Busso, N.; Foell, D.; Bas, S.; Gabay, C.; Roth, J. Myeloidrelated proteins 8 and 14 contribute to monosodium urate monohydrate crystal-induced inflammation in gout. Arthritis Rheumatol., 2014, 66(5), 1327-1339.
[http://dx.doi.org/10.1002/art.38369] [PMID: 24470119]
[11]
Kwon, H.K.; Patra, M.C.; Shin, H.J.; Gui, X.; Achek, A.; Panneerselvam, S.; Kim, D.J.; Song, S.J.; Hong, R.; Kim, K.S.; Kim, Y.G.; Lee, F.Y.; Hahm, D.H.; Lee, S.H.; Choi, S. A cell penetrating peptide blocks Toll-like receptor-mediated downstream signaling and ameliorates autoimmune and inflammatory diseases in mice. Exp. Mol. Med., 2019, 51(4), 1-19.
[http://dx.doi.org/10.1038/s12276-019-0244-0] [PMID: 31028244]
[12]
Israël, A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb. Perspect. Biol., 2010, 2(3), a000158.
[http://dx.doi.org/10.1101/cshperspect.a000158] [PMID: 20300203]
[13]
Campillo-Gimenez, L.; Renaudin, F.; Jalabert, M.; Gras, P.; Gosset, M.; Rey, C.; Sarda, S.; Collet, C.; Cohen-Solal, M.; Combes, C.; Lioté, F.; Ea, H.K. Inflammatory potential of four different phases of calcium pyrophosphate relies on NF-κB activation and MAPK pathways. Front. Immunol., 2018, 9, 2248.
[http://dx.doi.org/10.3389/fimmu.2018.02248] [PMID: 30356764]
[14]
Martín-Sánchez, F.; Diamond, C.; Zeitler, M.; Gomez, A.I.; Baroja-Mazo, A.; Bagnall, J.; Spiller, D.; White, M.; Daniels, M.J.D.; Mortel laro, A.; Peñalver, M.; Paszek, P.; Steringer, J.P.; Nickel, W.; Brough, D.; Pelegrín, P. Inflammasome-dependent IL-1β release depends upon membrane permeabilisation. Cell Death Differ., 2016, 23(7), 1219-1231.
[http://dx.doi.org/10.1038/cdd.2015.176] [PMID: 26868913]
[15]
Chien, T.M.; Hsieh, P.C.; Huang, S.S.; Deng, J.S.; Ho, Y.L.; Chang, Y.S.; Huang, G.J. Acanthopanax trifoliatus inhibits lipopolysaccharide-induced inflammatory response in vitro and in vivo. Kaohsiung J. Med. Sci., 2015, 31(10), 499-509.
[http://dx.doi.org/10.1016/j.kjms.2015.07.007] [PMID: 26520688]
[16]
Xin, Y.; Wang, K.; Jia, Z.; Xu, T.; Xu, Q.; Zhang, C.; Liu, J.; Chen, R.; Du, Z.; Sun, J. Zurampic protects pancreatic β-cells from high uric acid induced-damage by inhibiting URAT1 and inactivating the ROS/AMPK/ERK pathways. Cell. Physiol. Biochem., 2018, 47(3), 1074-1083.
[http://dx.doi.org/10.1159/000490184] [PMID: 29843128]
[17]
Goldenberg, M.M. Leflunomide, a novel immunomodulator for the treatment of active rheumatoid arthritis. Clin. Ther., 1999, 21(11), 1837-1852.
[http://dx.doi.org/10.1016/S0149-2918(00)86732-6] [PMID: 10890256]
[18]
Song, Y.; Zhang, Y.; Lee, A.R.; Huang, W.H.; Chen, B.; Palfey, B.; Shaw, J. Comparison of two molecular scaffolds, 5-methylisoxazole-3-carboxamide and 5-methylisoxazole-4-carboxamide. Curr. Pharm. Des., 2014, 20(1), 146-152.
[http://dx.doi.org/10.2174/13816128113199990584] [PMID: 23944378]
[19]
Kalgutkar, A.S.; Nguyen, H.T.; Vaz, A.D.; Doan, A.; Dalvie, D.K.; McLeod, D.G.; Murray, J.C. In vitro metabolism studies on the isoxazole ring scission in the anti-inflammatory agent lefluonomide to its active alpha-cyanoenol metabolite A771726: Mechanistic similarities with the cytochrome P450-catalyzed dehydration of aldoximes. Drug Metab. Dispos., 2003, 31(10), 1240-1250.
[http://dx.doi.org/10.1124/dmd.31.10.1240] [PMID: 12975333]
[20]
Yu, J.; Folmer, J.J.; Hoesch, V.; Doherty, J.; Campbell, J.B.; Burdette, D. Elucidation of a novel bioactivation pathway of a 3,4-unsubstituted isoxazole in human liver microsomes: Formation of a glutathione adduct of a cyanoacrolein derivative after isoxazole ring opening. Drug Metab. Dispos., 2011, 39(2), 302-311.
[http://dx.doi.org/10.1124/dmd.110.036285] [PMID: 21045198]
[21]
Shaw, J.; Chen, B.; Wooley, P.; Huang, W.H.; Lee, A.R.; Zeng, D. Anti-inflammatory and anti-arthritic effects of a novel leflunomide analogue, UTL-5b (GBL-5b). Am. J. Biomed. Sci., 2011, 3(1), 31-39.
[http://dx.doi.org/10.5099/aj110100031]
[22]
Shaw, J.; Chen, B.; Huang, W.H.; Lee, A.R. Media, Joseph, Valeriote, A. Frederick, The small-molecule TNF-α modulator, UTL-5g, reduces side effects induced by cisplatin and enhances the therapeutic effect of cisplatin in vivo. J. Exp. Ther. Oncol., 2011.
[23]
Carruthers, N.J.; Stemmer, P.M.; Chen, B.; Valeriote, F.; Gao, X.; Guatam, S.C.; Shaw, J. Phosphoproteome and transcription factor activity profiling identify actions of the anti-inflammatory agent UTL-5g in LPS stimulated RAW 264.7 cells including disrupting actin remodeling and STAT-3 activation. Eur. J. Pharmacol., 2017, 811, 66-73.
[http://dx.doi.org/10.1016/j.ejphar.2017.05.049] [PMID: 28576409]
[24]
McOmie, J.F.W.; Watts, M.L.; West, D.E. Demethylation of aryl methyl ethers by boron tribromide. Tetrahedron, 1968, 24(5), 2289-2292.
[http://dx.doi.org/10.1016/0040-4020(68)88130-X]
[25]
Dalal, V.; Dhankhar, P.; Singh, V.; Singh, V.; Rakhaminov, G.; Golemi-Kotra, D.; Kumar, P. Structure-based identification of potential drugs against fmta of Staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM. Protein J., 2021, 40(2), 148-165.
[http://dx.doi.org/10.1007/s10930-020-09953-6] [PMID: 33421024]
[26]
Dhankhar, P.; Dalal, V.; Singh, V.; Tomar, S.; Kumar, P. Computational guided identification of novel potent inhibitors of N-terminal domain of nucleocapsid protein of severe acute respiratory syndrome coronavirus 2. J. Biomol. Struct. Dyn., 2022, 40(9), 4084-4099.
[http://dx.doi.org/10.1080/07391102.2020.1852968] [PMID: 33251943]
[27]
Trott, O.; Olson, A.J. Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[28]
Rigsby, R.E.; Parker, A.B. Using the PyMOL application to reinforce visual understanding of protein structure. Biochem. Mol. Biol. Educ., 2016, 44(5), 433-437.
[http://dx.doi.org/10.1002/bmb.20966] [PMID: 27241834]
[29]
Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res., 2015, 43(W1), W443-W447.
[http://dx.doi.org/10.1093/nar/gkv315] [PMID: 25873628]
[30]
Sha, L.; You-Bing, X.; Yi, Z.; Jie, C.; Yan-Yun, M.U.; Jing, G.; An-Ju, X. Modified method with the ankle joint urate arthritis in RATS. Chin. J. Integr. Med., 2014.
[31]
Singh, J.A.; Gaffo, A. Gout epidemiology and comorbidities. Semin. Arthritis Rheum., 2020, 50(3), S11-S16.
[http://dx.doi.org/10.1016/j.semarthrit.2020.04.008] [PMID: 32620196]
[32]
Perez-Ruiz, F.; Dalbeth, N. Gout. Rheum. Dis. Clin. North Am., 2019, 45(4), 583-591.
[http://dx.doi.org/10.1016/j.rdc.2019.08.001] [PMID: 31564298]
[33]
Tsuchiya, S.; Yamabe, M.; Yamaguchi, Y.; Kobayashi, Y.; Konno, T.; Tada, K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int. J. Cancer, 1980, 26(2), 171-176.
[http://dx.doi.org/10.1002/ijc.2910260208] [PMID: 6970727]
[34]
Qin, Z. The use of THP-1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature. Atherosclerosis, 2012, 221(1), 2-11.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.09.003] [PMID: 21978918]
[35]
Schwende, H.; Fitzke, E.; Ambs, P.; Dieter, P. Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. J. Leukoc. Biol., 1996, 59(4), 555-561.
[http://dx.doi.org/10.1002/jlb.59.4.555] [PMID: 8613704]
[36]
Lunov, O.; Syrovets, T.; Loos, C.; Beil, J.; Delacher, M.; Tron, K.; Nienhaus, G.U.; Musyanovych, A.; Mailänder, V.; Landfester, K.; Simmet, T. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano, 2011, 5(3), 1657-1669.
[http://dx.doi.org/10.1021/nn2000756] [PMID: 21344890]
[37]
Vasamsetti, S.B.; Karnewar, S.; Kanugula, A.K.; Thatipalli, A.R.; Kumar, J.M.; Kotamraju, S. Metformin inhibits monocyte-to macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: Potential role in atherosclerosis. Diabetes, 2015, 64(6), 2028-2041.
[http://dx.doi.org/10.2337/db14-1225] [PMID: 25552600]
[38]
Tausche, A.K.; Richter, K.; Grässler, A.; Hänsel, S.; Roch, B.; Schröder, H.E. Severe gouty arthritis refractory to anti-inflammatory drugs: Treatment with anti-tumour necrosis factor as a new therapeutic option. Ann. Rheum. Dis., 2004, 63(10), 1351-1352.
[http://dx.doi.org/10.1136/ard.2003.015743] [PMID: 15361402]
[39]
Fiehn, C.; Zeier, M. Successful treatment of chronic tophaceous gout with infliximab (Remicade). Rheumatol. Int., 2006, 26(3), 274-276.
[http://dx.doi.org/10.1007/s00296-005-0617-7] [PMID: 15933855]
[40]
Dumusc, A.; So, A. Interleukin-1 as a therapeutic target in gout. Curr. Opin. Rheumatol., 2015, 27(2), 156-163.
[http://dx.doi.org/10.1097/BOR.0000000000000143] [PMID: 25633244]
[41]
Richette, P.; Doherty, M.; Pascual, E.; Barskova, V.; Becce, F.; Castañeda-Sanabria, J.; Coyfish, M.; Guillo, S.; Jansen, T.L.; Janssens, H.; Lioté, F.; Mallen, C.; Nuki, G.; Perez-Ruiz, F.; Pimentao, J.; Punzi, L.; Pywell, T.; So, A.; Tausche, A.K.; Uhlig, T.; Zavada, J.; Zhang, W.; Tubach, F.; Bardin, T. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann. Rheum. Dis., 2017, 76(1), 29-42.
[http://dx.doi.org/10.1136/annrheumdis-2016-209707] [PMID: 27457514]
[42]
Moriwaki, K.; Bertin, J.; Gough, P.J.; Chan, F.K.M.A. RIPK3-caspase 8 complex mediates atypical pro-IL-1β processing. J. Immunol., 2015, 194(4), 1938-1944.
[http://dx.doi.org/10.4049/jimmunol.1402167] [PMID: 25567679]
[43]
Qu, J.; Wang, W.; Zhang, Q.; Li, S. Inhibition of lipopolysaccharide-induced inflammation of chicken liver tissue by selenomethionine via TLR4-NF-κB-NLRP3 signaling pathway. Biol. Trace Elem. Res., 2020, 195(1), 205-214.
[http://dx.doi.org/10.1007/s12011-019-01841-0] [PMID: 31332706]
[44]
Son, S.; Shim, D.W.; Hwang, I.; Park, J.H.; Yu, J.W. Chemotherapeutic agent paclitaxel mediates priming of NLRP3 inflammasome activa-tion. Front. Immunol., 2019, 10, 1108.
[http://dx.doi.org/10.3389/fimmu.2019.01108] [PMID: 31156650]
[45]
Chen, J.; Wu, M.; Yang, J.; Wang, J.; Qiao, Y.; Li, X. The immunological basis in the pathogenesis of gout. Iran. J. Immunol., 2017, 14(2), 90-98.
[PMID: 28630380]
[46]
Jiang, H.; He, H.; Chen, Y.; Huang, W.; Cheng, J.; Ye, J.; Wang, A.; Tao, J.; Wang, C.; Liu, Q.; Jin, T.; Jiang, W.; Deng, X.; Zhou, R. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J. Exp. Med., 2017, 214(11), 3219-3238.
[http://dx.doi.org/10.1084/jem.20171419] [PMID: 29021150]
[47]
So, A.K.; Martinon, F. Inflammation in gout: Mechanisms and therapeutic targets. Nat. Rev. Rheumatol., 2017, 13(11), 639-647.
[http://dx.doi.org/10.1038/nrrheum.2017.155] [PMID: 28959043]
[48]
Mulero, M.C.; Huxford, T.; Ghosh, G. NF-κB, IκB, and IKK: Integral components of immune system signaling. Adv. Exp. Med. Biol., 2019, 1172, 207-226.
[http://dx.doi.org/10.1007/978-981-13-9367-9_10] [PMID: 31628658]
[49]
Lester, S.N.; Li, K. Toll-like receptors in antiviral innate immunity. J. Mol. Biol., 2014, 426(6), 1246-1264.
[http://dx.doi.org/10.1016/j.jmb.2013.11.024] [PMID: 24316048]
[50]
Liu, J.; Wang, Y.; Ouyang, X. Beyond toll-like receptors: Porphyromonas gingivalis induces IL-6, IL-8, and VCAM-1 expression through NOD-mediated NF-κB and ERK signaling pathways in periodontal fibroblasts. Inflammation, 2014, 37(2), 522-533.
[http://dx.doi.org/10.1007/s10753-013-9766-0] [PMID: 24162780]
[51]
McCormack, W.J.; Parker, A.E.; O’Neill, L.A. Toll-like receptors and NOD-like receptors in rheumatic diseases. Arthritis Res. Ther., 2009, 11(5), 243.
[http://dx.doi.org/10.1186/ar2729] [PMID: 19835640]
[52]
Rosillo, M.A.; Sanchez-Hidalgo, M.; Cárdeno, A.; Alarcón de la Lastra, C. Protective effect of ellagic acid, a natural polyphenolic com-pound, in a murine model of Crohn’s disease. Biochem. Pharmacol., 2011, 82(7), 737-745.
[http://dx.doi.org/10.1016/j.bcp.2011.06.043] [PMID: 21763290]
[53]
Kaminska, B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta. Proteins Proteomics, 2005, 1754(1-2), 253-262.
[http://dx.doi.org/10.1016/j.bbapap.2005.08.017] [PMID: 16198162]
[54]
Li, N.; Xu, Q.; Liu, Q.; Pan, D.; Jiang, Y.; Liu, M.; Liu, M.; Xu, H.; Lin, C. Leonurine attenuates fibroblast-like synoviocyte mediated synovial inflammation and joint destruction in rheumatoid arthritis. Rheumatology, 2017, 56(8), 1417-1427.
[http://dx.doi.org/10.1093/rheumatology/kex142] [PMID: 28431044]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy